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Objectives

To introduce CPU scheduling, which is the basis for 

multiprogrammed operating systems

To describe various CPU-scheduling algorithms

To discuss evaluation criteria for selecting a CPU-scheduling 

algorithm for a particular system

To examine the scheduling algorithms of several operating 

systems
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Basic Concepts

Maximum CPU utilization 

obtained with multiprogramming

CPU–I/O Burst Cycle – Process 

execution consists of a cycle of 

CPU execution and I/O wait

CPU burst followed by I/O burst

CPU burst distribution is of main 

concern
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Histogram of CPU-burst Times
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CPU Scheduler

Short-term scheduler selects from among the processes in

ready queue, and allocates the CPU to one of them

Queue may be ordered in various ways

CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

Scheduling under 1 and 4 is nonpreemptive

All other scheduling is preemptive

Consider access to shared data

Consider preemption while in kernel mode

Consider interrupts occurring during crucial OS activities
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Dispatcher

Dispatcher module gives control of the CPU to the process 

selected by the short-term scheduler; this involves:

switching context

switching to user mode

jumping to the proper location in the user program to 

restart that program

Dispatch latency – time it takes for the dispatcher to stop 

one process and start another running
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Scheduling Criteria

CPU utilization – keep the CPU as busy as possible

Throughput – # of processes that complete their execution per 

time unit

Turnaround time – amount of time to execute a particular 

process

Waiting time – amount of time a process has been waiting in the 

ready queue

Response time – amount of time it takes from when a request 

was submitted until the first response is produced, not output  (for 

time-sharing environment)
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Scheduling Algorithm Optimization Criteria

Max CPU utilization

Max throughput

Min turnaround time 

Min waiting time 

Min response time
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First- Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3  

The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time:  (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 24 3027
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FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

P2 , P3 , P1

The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3

Average waiting time:   (6 + 0 + 3)/3 = 3

Much better than previous case

Convoy effect - short process behind long process

Consider one CPU-bound and many I/O-bound processes
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Shortest-Job-First (SJF) Scheduling

Associate with each process the length of its next CPU burst

Use these lengths to schedule the process with the shortest 

time

SJF is optimal – gives minimum average waiting time for a given 

set of processes

The difficulty is knowing the length of the next CPU request

Could ask the user
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Example of SJF

ProcessArrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

SJF scheduling chart

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7
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Determining Length of Next CPU Burst

Can only estimate the length – should be similar to the previous one

Then pick process with shortest predicted next CPU burst

Can be done by using the length of previous CPU bursts, using 

exponential averaging

Commonly, α set to ½

Preemptive version called shortest-remaining-time-first
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Prediction of the Length of the Next CPU Burst
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Examples of Exponential Averaging

 =0

n+1 = n

Recent history does not count

 =1

n+1 =  tn

Only the actual last CPU burst counts

If we expand the formula, we get:

n+1 =  tn+(1 - ) tn -1 + …

+(1 -  )j  tn -j + …

+(1 -  )n +1 0

Since both  and (1 - ) are less than or equal to 1, each 
successive term has less weight than its predecessor
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Example of Shortest-remaining-time-first

Now we add the concepts of varying arrival times and preemption to 

the analysis

ProcessAarri Arrival TimeT Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

Preemptive SJF Gantt Chart

Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 

msec
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Priority Scheduling

A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority 

(smallest integer  highest priority)

Preemptive

Nonpreemptive

SJF is priority scheduling where priority is the inverse of predicted 

next CPU burst time

Problem  Starvation – low priority processes may never execute

Solution  Aging – as time progresses increase the priority of the 

process
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Example of Priority Scheduling

ProcessA arri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Priority scheduling Gantt Chart

Average waiting time = 8.2 msec
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Round Robin (RR)

Each process gets a small unit of CPU time (time quantum q), 

usually 10-100 milliseconds.  After this time has elapsed, the 

process is preempted and added to the end of the ready queue.

If there are n processes in the ready queue and the time 

quantum is q, then each process gets 1/n of the CPU time in 

chunks of at most q time units at once.  No process waits more 

than (n-1)q time units.

Timer interrupts every quantum to schedule next process

Performance

q large  FIFO

q small  q must be large with respect to context switch, 

otherwise overhead is too high
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Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

The Gantt chart is: 

Typically, higher average turnaround than SJF, but better 
response

q should be large compared to context switch time

q usually 10ms to 100ms, context switch < 10 usec
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Time Quantum and Context Switch Time



6.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Turnaround Time Varies With The Time Quantum

80% of CPU bursts 
should be shorter than q
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Multilevel Queue

Ready queue is partitioned into separate queues, eg:

foreground (interactive)

background (batch)

Process permanently in a given queue

Each queue has its own scheduling algorithm:

foreground – RR

background – FCFS

Scheduling must be done between the queues:

Fixed priority scheduling; (i.e., serve all from foreground then 

from background).  Possibility of starvation.

Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes; i.e., 80% to 

foreground in RR

20% to background in FCFS 



6.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue Scheduling
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Multilevel Feedback Queue

A process can move between the various queues; aging can be 

implemented this way

Multilevel-feedback-queue scheduler defined by the following 

parameters:

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process

method used to determine when to demote a process

method used to determine which queue a process will enter 

when that process needs service
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Example of Multilevel Feedback Queue

Three queues: 

Q0 – RR with time quantum 8 

milliseconds

Q1 – RR time quantum 16 milliseconds

Q2 – FCFS

Scheduling

A new job enters queue Q0 which is 

served FCFS

 When it gains CPU, job receives 8 

milliseconds

 If it does not finish in 8 

milliseconds, job is moved to 

queue Q1

At Q1 job is again served FCFS and 

receives 16 additional milliseconds

 If it still does not complete, it is 

preempted and moved to queue Q2
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Thread Scheduling

Distinction between user-level and kernel-level threads

When threads supported, threads scheduled, not processes

Many-to-one and many-to-many models, thread library schedules 

user-level threads to run on LWP

Known as process-contention scope (PCS) since scheduling 

competition is within the process

Typically done via priority set by programmer

Kernel thread scheduled onto available CPU is system-contention 

scope (SCS) – competition among all threads in system
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Pthread Scheduling

API allows specifying either PCS or SCS during thread creation

PTHREAD_SCOPE_PROCESS schedules threads using 

PCS scheduling

PTHREAD_SCOPE_SYSTEM schedules threads using 

SCS scheduling

Can be limited by OS – Linux and Mac OS X only allow 

PTHREAD_SCOPE_SYSTEM
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Pthread Scheduling API
#include <pthread.h> 

#include <stdio.h> 

#define NUM_THREADS 5 

int main(int argc, char *argv[]) { 

int i, scope;

pthread_t tid[NUM THREADS]; 

pthread_attr_t attr; 

/* get the default attributes */ 

pthread_attr_init(&attr); 

/* first inquire on the current scope */

if (pthread_attr_getscope(&attr, &scope) != 0) 

fprintf(stderr, "Unable to get scheduling scope\n"); 

else { 

if (scope == PTHREAD_SCOPE_PROCESS) 

printf("PTHREAD_SCOPE_PROCESS"); 

else if (scope == PTHREAD_SCOPE_SYSTEM) 

printf("PTHREAD_SCOPE_SYSTEM"); 

else

fprintf(stderr, "Illegal scope value.\n"); 

} 
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Pthread Scheduling API

/* set the scheduling algorithm to PCS or SCS */ 

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM); 

/* create the threads */

for (i = 0; i < NUM_THREADS; i++) 

pthread_create(&tid[i],&attr,runner,NULL); 

/* now join on each thread */

for (i = 0; i < NUM_THREADS; i++) 

pthread_join(tid[i], NULL); 

} 

/* Each thread will begin control in this function */ 

void *runner(void *param)

{ 

/* do some work ... */ 

pthread_exit(0); 

} 
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Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are 

available

Homogeneous processors within a multiprocessor

Asymmetric multiprocessing – only one processor accesses 

the system data structures, alleviating the need for data sharing

Symmetric multiprocessing (SMP) – each processor is self-

scheduling, all processes in common ready queue, or each has 

its own private queue of ready processes

Currently, most common

Processor affinity – process has affinity for processor on which 

it is currently running

soft affinity

hard affinity

Variations including processor sets
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NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity
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Multiple-Processor Scheduling – Load Balancing

If SMP, need to keep all CPUs loaded for efficiency

Load balancing attempts to keep workload evenly distributed

Push migration – periodic task checks load on each processor, 

and if found pushes task from overloaded CPU to other CPUs

Pull migration – idle processors pulls waiting task from busy 

processor
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Multicore Processors

Recent trend to place multiple processor cores on same 

physical chip

Faster and consumes less power

Multiple threads per core also growing

Takes advantage of memory stall to make progress on 

another thread while memory retrieve happens
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Multithreaded Multicore System
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Real-Time CPU Scheduling

Can present obvious 

challenges

Soft real-time systems – no 

guarantee as to when critical 

real-time process will be 

scheduled

Hard real-time systems –

task must be serviced by its 

deadline

Two types of latencies affect 

performance

1. Interrupt latency – time from 

arrival of interrupt to start of 

routine that services interrupt

2. Dispatch latency – time for 

schedule to take current process 

off CPU and switch to another
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Real-Time CPU Scheduling (Cont.)

Conflict phase of 

dispatch latency:

1. Preemption of 

any process 

running in kernel 

mode

2. Release by low-

priority process 

of resources 

needed by high-

priority 

processes
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Priority-based Scheduling

For real-time scheduling, scheduler must support preemptive, priority-

based scheduling

But only guarantees soft real-time

For hard real-time must also provide ability to meet deadlines

Processes have new characteristics: periodic ones require CPU at 

constant intervals

Has processing time t, deadline d, period p

0 ≤ t ≤ d ≤ p

Rate of periodic task is 1/p
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Virtualization and Scheduling

Virtualization software schedules multiple guests onto 

CPU(s)

Each guest doing its own scheduling

Not knowing it doesn’t own the CPUs

Can result in poor response time

Can effect time-of-day clocks in guests

Can undo good scheduling algorithm efforts of guests



6.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Rate Montonic Scheduling

A priority is assigned based on the inverse of its period

Shorter periods = higher priority;

Longer periods = lower priority

P1 is assigned a higher priority than P2.
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Missed Deadlines with Rate Monotonic Scheduling
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Earliest Deadline First Scheduling (EDF)

Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;

the later the deadline, the lower the priority
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Proportional Share Scheduling

T shares are allocated among all processes in the system

An application receives N shares where N < T

This ensures each application will receive N / T of the total 

processor time
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POSIX Real-Time Scheduling

n The POSIX.1b standard

n API provides functions for managing real-time threads

n Defines two scheduling classes for real-time threads:

1. SCHED_FIFO - threads are scheduled using a FCFS strategy with a 

FIFO queue. There is no time-slicing for threads of equal priority

2. SCHED_RR - similar to SCHED_FIFO except time-slicing occurs for 

threads of equal priority

n Defines two functions for getting and setting scheduling policy:

1. pthread_attr_getsched_policy(pthread_attr_t *attr, 

int *policy) 

2. pthread_attr_setsched_policy(pthread_attr_t *attr, 

int policy) 
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POSIX Real-Time Scheduling API

#include <pthread.h> 

#include <stdio.h> 

#define NUM_THREADS 5 

int main(int argc, char *argv[]) 

{ 

int i, policy;

pthread_t_tid[NUM_THREADS]; 

pthread_attr_t attr; 

/* get the default attributes */ 

pthread_attr_init(&attr); 

/* get the current scheduling policy */

if (pthread_attr_getschedpolicy(&attr, &policy) != 0) 

fprintf(stderr, "Unable to get policy.\n"); 

else { 

if (policy == SCHED_OTHER) printf("SCHED_OTHER\n"); 

else if (policy == SCHED_RR) printf("SCHED_RR\n"); 

else if (policy == SCHED_FIFO) printf("SCHED_FIFO\n"); 

} 
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POSIX Real-Time Scheduling API (Cont.)

/* set the scheduling policy - FIFO, RR, or OTHER */ 

if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) != 0) 

fprintf(stderr, "Unable to set policy.\n"); 

/* create the threads */

for (i = 0; i < NUM_THREADS; i++) 

pthread_create(&tid[i],&attr,runner,NULL); 

/* now join on each thread */

for (i = 0; i < NUM_THREADS; i++) 

pthread_join(tid[i], NULL); 

}

/* Each thread will begin control in this function */ 

void *runner(void *param)

{ 

/* do some work ... */ 

pthread_exit(0); 

} 
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Operating System Examples

Linux scheduling

Windows scheduling

Solaris scheduling
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Linux Scheduling Through Version 2.5

Prior to kernel version 2.5, ran variation of standard UNIX 
scheduling algorithm

Version 2.5 moved to constant order O(1) scheduling time

Preemptive, priority based

Two priority ranges: time-sharing and real-time

Real-time range from 0 to 99 and nice value from 100 to 140

Map into  global priority with numerically lower values indicating higher 
priority

Higher priority gets larger q

Task run-able as long as time left in time slice (active)

If no time left (expired), not run-able until all other tasks use their slices

All run-able tasks tracked in per-CPU runqueue data structure

 Two priority arrays (active, expired)

 Tasks indexed by priority

 When no more active, arrays are exchanged

Worked well, but poor response times for interactive processes
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Linux Scheduling in Version 2.6.23 +

Completely Fair Scheduler (CFS)

Scheduling classes

Each has specific priority

Scheduler picks highest priority task in highest scheduling class

Rather than quantum based on fixed time allotments, based on proportion of CPU 
time

2 scheduling classes included, others can be added

1. default

2. real-time

Quantum calculated based on nice value from -20 to +19

Lower value is higher priority

Calculates target latency – interval of time during which task should run at least 
once

Target latency can increase if say number of active tasks increases

CFS scheduler maintains per task virtual run time in variable vruntime

Associated with decay factor based on priority of task – lower priority is higher 
decay rate

Normal default priority yields virtual run time = actual run time

To decide next task to run, scheduler picks task with lowest virtual run time
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CFS Performance
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Linux Scheduling (Cont.)

Real-time scheduling according to POSIX.1b

Real-time tasks have static priorities

Real-time plus normal map into global priority scheme

Nice value of -20 maps to global priority 100

Nice value of +19 maps to priority 139
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Windows Scheduling

Windows uses priority-based preemptive scheduling

Highest-priority thread runs next

Dispatcher is scheduler

Thread runs until (1) blocks, (2) uses time slice, (3) 

preempted by higher-priority thread

Real-time threads can preempt non-real-time

32-level priority scheme

Variable class is 1-15, real-time class is 16-31

Priority 0 is memory-management thread

Queue for each priority

If no run-able thread, runs idle thread
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Windows Priority Classes

Win32 API identifies several priority classes to which a process can belong

REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS, 

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS, 

BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

All are variable except REALTIME

A thread within a given priority class has a relative priority

TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL, 

LOWEST, IDLE

Priority class and relative priority combine to give numeric priority

Base priority is NORMAL within the class

If quantum expires, priority lowered, but never below base
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Windows Priority Classes (Cont.)

If wait occurs, priority boosted depending on what was waited for

Foreground window given 3x priority boost

Windows 7 added user-mode scheduling (UMS) 

Applications create and manage threads independent of kernel

For large number of threads, much more efficient

UMS schedulers come from programming language libraries like                                         

C++ Concurrent Runtime (ConcRT) framework
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Windows Priorities
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Solaris

Priority-based scheduling

Six classes available

Time sharing (default) (TS)

Interactive (IA)

Real time (RT)

System (SYS)

Fair Share (FSS)

Fixed priority (FP)

Given thread can be in one class at a time

Each class has its own scheduling algorithm

Time sharing is multi-level feedback queue

Loadable table configurable by sysadmin
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Solaris Dispatch Table 
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Solaris Scheduling
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Solaris Scheduling (Cont.)

Scheduler converts class-specific priorities into a per-thread global 

priority

Thread with highest priority runs next

Runs until (1) blocks, (2) uses time slice, (3) preempted by 

higher-priority thread

Multiple threads at same priority selected via RR
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Algorithm Evaluation

How to select CPU-scheduling algorithm for an OS?

Determine criteria, then evaluate algorithms

Deterministic modeling

Type of analytic evaluation

Takes a particular predetermined workload and defines the 

performance of each algorithm  for that workload

Consider 5 processes arriving at time 0:
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Deterministic Evaluation

For each algorithm, calculate minimum average waiting time

Simple and fast, but requires exact numbers for input, applies only to 

those inputs

FCS is 28ms:

Non-preemptive SFJ is 13ms:

RR is 23ms:
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Queueing Models

Describes the arrival of processes, and CPU and I/O bursts 

probabilistically

Commonly exponential, and described by mean

Computes average throughput, utilization, waiting time, etc

Computer system described as network of servers, each with 

queue of waiting processes

Knowing arrival rates and service rates

Computes utilization, average queue length, average wait 

time, etc
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Little’s Formula

n = average queue length

W = average waiting time in queue

λ = average arrival rate into queue

Little’s law – in steady state, processes leaving queue must equal 

processes arriving, thus:

n = λ x W

Valid for any scheduling algorithm and arrival distribution

For example, if on average 7 processes arrive per second, and 

normally 14 processes in queue, then average wait time per 

process = 2 seconds
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Simulations

Queueing models limited

Simulations more accurate

Programmed model of computer system

Clock is a variable

Gather statistics  indicating algorithm performance

Data to drive simulation gathered via

 Random number generator according to probabilities

 Distributions defined mathematically or empirically

 Trace tapes record sequences of real events in real systems
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Evaluation of CPU Schedulers by Simulation
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Implementation

Even simulations have limited accuracy

Just implement new scheduler and test in real systems

High cost, high risk

Environments vary

Most flexible schedulers can be modified per-site or per-system

Or APIs to modify priorities

But again environments vary
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End of Chapter 6


