
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

6.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

Basic Concepts

Scheduling Criteria

Scheduling Algorithms

Thread Scheduling

Multiple-Processor Scheduling

Real-Time CPU Scheduling

Operating Systems Examples

Algorithm Evaluation

6.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

To introduce CPU scheduling, which is the basis for

multiprogrammed operating systems

To describe various CPU-scheduling algorithms

To discuss evaluation criteria for selecting a CPU-scheduling

algorithm for a particular system

To examine the scheduling algorithms of several operating

systems

6.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Concepts

Maximum CPU utilization

obtained with multiprogramming

CPU–I/O Burst Cycle – Process

execution consists of a cycle of

CPU execution and I/O wait

CPU burst followed by I/O burst

CPU burst distribution is of main

concern

6.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Histogram of CPU-burst Times

6.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Scheduler

Short-term scheduler selects from among the processes in

ready queue, and allocates the CPU to one of them

Queue may be ordered in various ways

CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

Scheduling under 1 and 4 is nonpreemptive

All other scheduling is preemptive

Consider access to shared data

Consider preemption while in kernel mode

Consider interrupts occurring during crucial OS activities

6.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dispatcher

Dispatcher module gives control of the CPU to the process

selected by the short-term scheduler; this involves:

switching context

switching to user mode

jumping to the proper location in the user program to

restart that program

Dispatch latency – time it takes for the dispatcher to stop

one process and start another running

6.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Criteria

CPU utilization – keep the CPU as busy as possible

Throughput – # of processes that complete their execution per

time unit

Turnaround time – amount of time to execute a particular

process

Waiting time – amount of time a process has been waiting in the

ready queue

Response time – amount of time it takes from when a request

was submitted until the first response is produced, not output (for

time-sharing environment)

6.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Algorithm Optimization Criteria

Max CPU utilization

Max throughput

Min turnaround time

Min waiting time

Min response time

6.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First- Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 24 3027

6.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

P2 , P3 , P1

The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3

Average waiting time: (6 + 0 + 3)/3 = 3

Much better than previous case

Convoy effect - short process behind long process

Consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 30

P
2

P
3

6.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shortest-Job-First (SJF) Scheduling

Associate with each process the length of its next CPU burst

Use these lengths to schedule the process with the shortest

time

SJF is optimal – gives minimum average waiting time for a given

set of processes

The difficulty is knowing the length of the next CPU request

Could ask the user

6.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of SJF

ProcessArrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

SJF scheduling chart

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P
3

0 3 24

P
4

P
1

169

P
2

6.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Determining Length of Next CPU Burst

Can only estimate the length – should be similar to the previous one

Then pick process with shortest predicted next CPU burst

Can be done by using the length of previous CPU bursts, using

exponential averaging

Commonly, α set to ½

Preemptive version called shortest-remaining-time-first

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.

=

=

+

 1n

th
n nt

() .1
1 nnn

t −+=
=

6.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Prediction of the Length of the Next CPU Burst

6.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of Exponential Averaging

 =0

n+1 = n

Recent history does not count

 =1

n+1 = tn

Only the actual last CPU burst counts

If we expand the formula, we get:

n+1 = tn+(1 -) tn -1 + …

+(1 -)j tn -j + …

+(1 -)n +1 0

Since both and (1 -) are less than or equal to 1, each
successive term has less weight than its predecessor

6.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Shortest-remaining-time-first

Now we add the concepts of varying arrival times and preemption to

the analysis

ProcessAarri Arrival TimeT Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

Preemptive SJF Gantt Chart

Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5

msec

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

6.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Scheduling

A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority

(smallest integer highest priority)

Preemptive

Nonpreemptive

SJF is priority scheduling where priority is the inverse of predicted

next CPU burst time

Problem Starvation – low priority processes may never execute

Solution Aging – as time progresses increase the priority of the

process

6.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Priority Scheduling

ProcessA arri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Priority scheduling Gantt Chart

Average waiting time = 8.2 msec

6.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Round Robin (RR)

Each process gets a small unit of CPU time (time quantum q),

usually 10-100 milliseconds. After this time has elapsed, the

process is preempted and added to the end of the ready queue.

If there are n processes in the ready queue and the time

quantum is q, then each process gets 1/n of the CPU time in

chunks of at most q time units at once. No process waits more

than (n-1)q time units.

Timer interrupts every quantum to schedule next process

Performance

q large FIFO

q small q must be large with respect to context switch,

otherwise overhead is too high

6.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

The Gantt chart is:

Typically, higher average turnaround than SJF, but better
response

q should be large compared to context switch time

q usually 10ms to 100ms, context switch < 10 usec

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

6.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Time Quantum and Context Switch Time

6.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter than q

6.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue

Ready queue is partitioned into separate queues, eg:

foreground (interactive)

background (batch)

Process permanently in a given queue

Each queue has its own scheduling algorithm:

foreground – RR

background – FCFS

Scheduling must be done between the queues:

Fixed priority scheduling; (i.e., serve all from foreground then

from background). Possibility of starvation.

Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to

foreground in RR

20% to background in FCFS

6.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue Scheduling

6.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Feedback Queue

A process can move between the various queues; aging can be

implemented this way

Multilevel-feedback-queue scheduler defined by the following

parameters:

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process

method used to determine when to demote a process

method used to determine which queue a process will enter

when that process needs service

6.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Multilevel Feedback Queue

Three queues:

Q0 – RR with time quantum 8

milliseconds

Q1 – RR time quantum 16 milliseconds

Q2 – FCFS

Scheduling

A new job enters queue Q0 which is

served FCFS

 When it gains CPU, job receives 8

milliseconds

 If it does not finish in 8

milliseconds, job is moved to

queue Q1

At Q1 job is again served FCFS and

receives 16 additional milliseconds

 If it still does not complete, it is

preempted and moved to queue Q2

6.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thread Scheduling

Distinction between user-level and kernel-level threads

When threads supported, threads scheduled, not processes

Many-to-one and many-to-many models, thread library schedules

user-level threads to run on LWP

Known as process-contention scope (PCS) since scheduling

competition is within the process

Typically done via priority set by programmer

Kernel thread scheduled onto available CPU is system-contention

scope (SCS) – competition among all threads in system

6.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Pthread Scheduling

API allows specifying either PCS or SCS during thread creation

PTHREAD_SCOPE_PROCESS schedules threads using

PCS scheduling

PTHREAD_SCOPE_SYSTEM schedules threads using

SCS scheduling

Can be limited by OS – Linux and Mac OS X only allow

PTHREAD_SCOPE_SYSTEM

6.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Pthread Scheduling API
#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[]) {

int i, scope;

pthread_t tid[NUM THREADS];

pthread_attr_t attr;

/* get the default attributes */

pthread_attr_init(&attr);

/* first inquire on the current scope */

if (pthread_attr_getscope(&attr, &scope) != 0)

fprintf(stderr, "Unable to get scheduling scope\n");

else {

if (scope == PTHREAD_SCOPE_PROCESS)

printf("PTHREAD_SCOPE_PROCESS");

else if (scope == PTHREAD_SCOPE_SYSTEM)

printf("PTHREAD_SCOPE_SYSTEM");

else

fprintf(stderr, "Illegal scope value.\n");

}

6.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Pthread Scheduling API

/* set the scheduling algorithm to PCS or SCS */

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

/* create the threads */

for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i],&attr,runner,NULL);

/* now join on each thread */

for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

/* do some work ... */

pthread_exit(0);

}

6.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are

available

Homogeneous processors within a multiprocessor

Asymmetric multiprocessing – only one processor accesses

the system data structures, alleviating the need for data sharing

Symmetric multiprocessing (SMP) – each processor is self-

scheduling, all processes in common ready queue, or each has

its own private queue of ready processes

Currently, most common

Processor affinity – process has affinity for processor on which

it is currently running

soft affinity

hard affinity

Variations including processor sets

6.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity

6.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiple-Processor Scheduling – Load Balancing

If SMP, need to keep all CPUs loaded for efficiency

Load balancing attempts to keep workload evenly distributed

Push migration – periodic task checks load on each processor,

and if found pushes task from overloaded CPU to other CPUs

Pull migration – idle processors pulls waiting task from busy

processor

6.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multicore Processors

Recent trend to place multiple processor cores on same

physical chip

Faster and consumes less power

Multiple threads per core also growing

Takes advantage of memory stall to make progress on

another thread while memory retrieve happens

6.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multithreaded Multicore System

6.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Real-Time CPU Scheduling

Can present obvious

challenges

Soft real-time systems – no

guarantee as to when critical

real-time process will be

scheduled

Hard real-time systems –

task must be serviced by its

deadline

Two types of latencies affect

performance

1. Interrupt latency – time from

arrival of interrupt to start of

routine that services interrupt

2. Dispatch latency – time for

schedule to take current process

off CPU and switch to another

6.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Real-Time CPU Scheduling (Cont.)

Conflict phase of

dispatch latency:

1. Preemption of

any process

running in kernel

mode

2. Release by low-

priority process

of resources

needed by high-

priority

processes

6.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority-based Scheduling

For real-time scheduling, scheduler must support preemptive, priority-

based scheduling

But only guarantees soft real-time

For hard real-time must also provide ability to meet deadlines

Processes have new characteristics: periodic ones require CPU at

constant intervals

Has processing time t, deadline d, period p

0 ≤ t ≤ d ≤ p

Rate of periodic task is 1/p

6.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Virtualization and Scheduling

Virtualization software schedules multiple guests onto

CPU(s)

Each guest doing its own scheduling

Not knowing it doesn’t own the CPUs

Can result in poor response time

Can effect time-of-day clocks in guests

Can undo good scheduling algorithm efforts of guests

6.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Rate Montonic Scheduling

A priority is assigned based on the inverse of its period

Shorter periods = higher priority;

Longer periods = lower priority

P1 is assigned a higher priority than P2.

6.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Missed Deadlines with Rate Monotonic Scheduling

6.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Earliest Deadline First Scheduling (EDF)

Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;

the later the deadline, the lower the priority

6.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Proportional Share Scheduling

T shares are allocated among all processes in the system

An application receives N shares where N < T

This ensures each application will receive N / T of the total

processor time

6.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

POSIX Real-Time Scheduling

n The POSIX.1b standard

n API provides functions for managing real-time threads

n Defines two scheduling classes for real-time threads:

1. SCHED_FIFO - threads are scheduled using a FCFS strategy with a

FIFO queue. There is no time-slicing for threads of equal priority

2. SCHED_RR - similar to SCHED_FIFO except time-slicing occurs for

threads of equal priority

n Defines two functions for getting and setting scheduling policy:

1. pthread_attr_getsched_policy(pthread_attr_t *attr,

int *policy)

2. pthread_attr_setsched_policy(pthread_attr_t *attr,

int policy)

6.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

POSIX Real-Time Scheduling API

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[])

{

int i, policy;

pthread_t_tid[NUM_THREADS];

pthread_attr_t attr;

/* get the default attributes */

pthread_attr_init(&attr);

/* get the current scheduling policy */

if (pthread_attr_getschedpolicy(&attr, &policy) != 0)

fprintf(stderr, "Unable to get policy.\n");

else {

if (policy == SCHED_OTHER) printf("SCHED_OTHER\n");

else if (policy == SCHED_RR) printf("SCHED_RR\n");

else if (policy == SCHED_FIFO) printf("SCHED_FIFO\n");

}

6.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

POSIX Real-Time Scheduling API (Cont.)

/* set the scheduling policy - FIFO, RR, or OTHER */

if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) != 0)

fprintf(stderr, "Unable to set policy.\n");

/* create the threads */

for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i],&attr,runner,NULL);

/* now join on each thread */

for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

/* do some work ... */

pthread_exit(0);

}

6.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Examples

Linux scheduling

Windows scheduling

Solaris scheduling

6.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linux Scheduling Through Version 2.5

Prior to kernel version 2.5, ran variation of standard UNIX
scheduling algorithm

Version 2.5 moved to constant order O(1) scheduling time

Preemptive, priority based

Two priority ranges: time-sharing and real-time

Real-time range from 0 to 99 and nice value from 100 to 140

Map into global priority with numerically lower values indicating higher
priority

Higher priority gets larger q

Task run-able as long as time left in time slice (active)

If no time left (expired), not run-able until all other tasks use their slices

All run-able tasks tracked in per-CPU runqueue data structure

 Two priority arrays (active, expired)

 Tasks indexed by priority

 When no more active, arrays are exchanged

Worked well, but poor response times for interactive processes

6.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linux Scheduling in Version 2.6.23 +

Completely Fair Scheduler (CFS)

Scheduling classes

Each has specific priority

Scheduler picks highest priority task in highest scheduling class

Rather than quantum based on fixed time allotments, based on proportion of CPU
time

2 scheduling classes included, others can be added

1. default

2. real-time

Quantum calculated based on nice value from -20 to +19

Lower value is higher priority

Calculates target latency – interval of time during which task should run at least
once

Target latency can increase if say number of active tasks increases

CFS scheduler maintains per task virtual run time in variable vruntime

Associated with decay factor based on priority of task – lower priority is higher
decay rate

Normal default priority yields virtual run time = actual run time

To decide next task to run, scheduler picks task with lowest virtual run time

6.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CFS Performance

6.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linux Scheduling (Cont.)

Real-time scheduling according to POSIX.1b

Real-time tasks have static priorities

Real-time plus normal map into global priority scheme

Nice value of -20 maps to global priority 100

Nice value of +19 maps to priority 139

6.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Scheduling

Windows uses priority-based preemptive scheduling

Highest-priority thread runs next

Dispatcher is scheduler

Thread runs until (1) blocks, (2) uses time slice, (3)

preempted by higher-priority thread

Real-time threads can preempt non-real-time

32-level priority scheme

Variable class is 1-15, real-time class is 16-31

Priority 0 is memory-management thread

Queue for each priority

If no run-able thread, runs idle thread

6.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Priority Classes

Win32 API identifies several priority classes to which a process can belong

REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,

BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

All are variable except REALTIME

A thread within a given priority class has a relative priority

TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL,

LOWEST, IDLE

Priority class and relative priority combine to give numeric priority

Base priority is NORMAL within the class

If quantum expires, priority lowered, but never below base

6.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Priority Classes (Cont.)

If wait occurs, priority boosted depending on what was waited for

Foreground window given 3x priority boost

Windows 7 added user-mode scheduling (UMS)

Applications create and manage threads independent of kernel

For large number of threads, much more efficient

UMS schedulers come from programming language libraries like

C++ Concurrent Runtime (ConcRT) framework

6.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows Priorities

6.57 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solaris

Priority-based scheduling

Six classes available

Time sharing (default) (TS)

Interactive (IA)

Real time (RT)

System (SYS)

Fair Share (FSS)

Fixed priority (FP)

Given thread can be in one class at a time

Each class has its own scheduling algorithm

Time sharing is multi-level feedback queue

Loadable table configurable by sysadmin

6.58 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solaris Dispatch Table

6.59 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solaris Scheduling

6.60 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solaris Scheduling (Cont.)

Scheduler converts class-specific priorities into a per-thread global

priority

Thread with highest priority runs next

Runs until (1) blocks, (2) uses time slice, (3) preempted by

higher-priority thread

Multiple threads at same priority selected via RR

6.61 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm Evaluation

How to select CPU-scheduling algorithm for an OS?

Determine criteria, then evaluate algorithms

Deterministic modeling

Type of analytic evaluation

Takes a particular predetermined workload and defines the

performance of each algorithm for that workload

Consider 5 processes arriving at time 0:

6.62 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deterministic Evaluation

For each algorithm, calculate minimum average waiting time

Simple and fast, but requires exact numbers for input, applies only to

those inputs

FCS is 28ms:

Non-preemptive SFJ is 13ms:

RR is 23ms:

6.63 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Queueing Models

Describes the arrival of processes, and CPU and I/O bursts

probabilistically

Commonly exponential, and described by mean

Computes average throughput, utilization, waiting time, etc

Computer system described as network of servers, each with

queue of waiting processes

Knowing arrival rates and service rates

Computes utilization, average queue length, average wait

time, etc

6.64 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Little’s Formula

n = average queue length

W = average waiting time in queue

λ = average arrival rate into queue

Little’s law – in steady state, processes leaving queue must equal

processes arriving, thus:

n = λ x W

Valid for any scheduling algorithm and arrival distribution

For example, if on average 7 processes arrive per second, and

normally 14 processes in queue, then average wait time per

process = 2 seconds

6.65 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Simulations

Queueing models limited

Simulations more accurate

Programmed model of computer system

Clock is a variable

Gather statistics indicating algorithm performance

Data to drive simulation gathered via

 Random number generator according to probabilities

 Distributions defined mathematically or empirically

 Trace tapes record sequences of real events in real systems

6.66 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Evaluation of CPU Schedulers by Simulation

6.67 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation

Even simulations have limited accuracy

Just implement new scheduler and test in real systems

High cost, high risk

Environments vary

Most flexible schedulers can be modified per-site or per-system

Or APIs to modify priorities

But again environments vary

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 6

