
Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Chapter 8: Deadlocks

8.2Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Chapter 8: Deadlocks

 System Model
 Deadlock in Multi-threaded Applications
 Deadlock Characterization
 Methods for Handling Deadlocks
 Deadlock Prevention
 Deadlock Avoidance
 Deadlock Detection
 Recovery from Deadlock

8.3Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Chapter Objectives

 Illustrate how deadlock can occur when mutex locks
are used

 Define the four necessary conditions that
characterize deadlock

 Identify a deadlock situation in a resource allocation
graph

 Evaluate the four different approaches for preventing
deadlocks

 Apply the banker’s algorithm for deadlock avoidance
 Apply the deadlock detection algorithm
 Evaluate approaches for recovering from deadlock

8.4Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

System Model

 System consists of a collection of m resource types and n
processes
 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
 Each resource type Ri has Wi instances.
 Each process utilizes a resource by executing a sequence of three

actions:
 request it
 use it
 release it

8.5Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Deadlock in Multithreaded Application

 Two mutex locks are created an initialized:

8.6Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Deadlock in Multithreaded Application

8.7Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Deadlock in Multithreaded Application

 Deadlock is possible if thread 1 acquires first_mutex and thread 2
acquires second_mutex. Thread 1 then waits for second_mutex and
thread 2 waits for first_mutex.

 Can be illustrated with a resource allocation graph:

8.8Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Deadlock Characterization

 Mutual exclusion: only one process at a time can use a
resource

 Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes

 No preemption: a resource can be released only voluntarily
by the process holding it, after that process has completed
its task

 Circular wait: there exists a set {P0, P1, …, Pn} of waiting
processes such that P0 is waiting for a resource that is held
by P1, P1 is waiting for a resource that is held by P2, …, Pn–1
is waiting for a resource that is held by Pn, and Pn is waiting
for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

8.9Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Resource-Allocation Graph

 V is partitioned into two types:
 P = {P1, P2, …, Pn}, the set consisting of all the processes

in the system

 R = {R1, R2, …, Rm}, the set consisting of all resource
types in the system

 request edge – directed edge Pi  Rj indicates Pi has
requested a unit of Rj

 assignment edge – directed edge Rj  Pi

A resource allocation graph is a set of vertices V and a set of edges E
such that:

8.10Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Resource Allocation Graph Example

 One instance of R1
 Two instances of R2
 One instance of R3
 Three instance of R4
 T1 holds one instance of R2 and is

waiting for an instance of R1
 T2 holds one instance of R1, one

instance of R2, and is waiting for an
instance of R3

 T3 is holds one instance of R3

8.11Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Resource Allocation Graph With A Deadlock

T3 requests one
unit of R2

resulting in
deadlock

8.12Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Graph With A Cycle But No Deadlock

Although this graph has a
cycle, it is not the graph of
a deadlock state.

T2 holds a unit of R1 and is
not waiting for another
resource, so it can release
it when it is finished with it
and T1 can acquire the unit.

8.13Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Resource Allocation Graph Facts

 If graph contains no cycles  no deadlock
 If graph contains a cycle 

 If each resource type has just a single instance of
the resource, then a cycle implies deadlock

 If there is at least one resource type that has multiple
instances, a cycle does not necessarily imply
deadlock.

8.14Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Methods for Handling Deadlocks

 Ensure that the system will never enter a deadlock
state:
 Deadlock prevention
 Deadlock avoidance

 Allow the system to enter a deadlock state and then
recover

 Ignore the problem and pretend that deadlocks never
occur in the system.

8.15Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Deadlock Prevention

 Mutual Exclusion – not required for shareable resources
(e.g., read-only files); must hold for non-shareable
resources. Cannot remove mutual exclusion for reusable
resources so this is not an option.

 Hold and Wait – must guarantee that whenever a process
requests a resource, it does not hold any other resources.
Two choices:
1. Require process to request and be allocated all of its

resources before it begins execution.
2. Allow process to request resources only when the

process has none allocated to it.
 Poor resource utilization; starvation possible

Invalidate one of the four necessary conditions for deadlock:

8.16Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Deadlock Prevention (Cont.)

 No Preemption – forcibly taking resources away from processes.
 If a process that is holding some resources requests another

resource that cannot be allocated immediately to it, then all
resources currently being held by that process are released.

 Preempted resources are added to the list of resources for
which the process is waiting

 Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

 On request, if unavailable, we preempt resources from a
process that holds them if that process is in a waiting state; if
the requested resources are not available or held only by
ready processes, the requesting process waits. Process may
lose resources while it waits. Process gets restarted only when
it is allocated new resources and recovers the preempted
ones.

8.17Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Deadlock Prevention (Cont.)

 Circular Wait – impose a total ordering of all resource types, and
require that each process requests resources in an increasing
order of enumeration.
 Proposed by Havender:

 A process can request resources only in increasing order
of its resource number.

 If process holds Ri it can only request Rj if j > i.
 If process wants Rj, it must first release all Ri such that i

>= j.
 If a process violates these rules, it is terminated.

 This makes circular waiting impossible, so deadlock
impossible.

 But results in poor resource utilization.

8.18Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Circular Wait

 Invalidating the circular wait condition is most common.
 Simply assign each resource (i.e. mutex locks) a unique number.
 Resources must be acquired in order.
 If:

first_mutex = 1
second_mutex = 5

code for thread_two could not be
written as follows:

8.19Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Deadlock Avoidance

 In deadlock prevention schemes, requests are constrained resulting in
poor utilization and throughput.

 Alternative is to use additional information to allow systems to decide
when and whether to grant requests. This is called deadlock
avoidance.

 Avoidance is a dynamic strategy.
 Requires that each process’s maximum claim for each resource type

is known in advance. A request is granted only if the resulting system
state is a safe state, meaning that there is a way to avoid deadlock in
this state while still continuing to allocate resources to each process.

8.20Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Deadlock Avoidance

 Simplest and most useful model requires that each process
declare the maximum number of resources of each type
that it may need

 The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can never
be a circular-wait condition

 Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes

Requires that the system has some additional a priori information
available

8.21Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Safe State

 When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state

 System is in safe state if there exists a sequence <P1, P2, …, Pn>
of ALL the processes in the systems such that for each Pi, the
resources that Pi can still request can be satisfied by currently
available resources + resources held by all the Pj, with j < i

 That is:
 If Pi ‘s resource needs are not immediately available, then Pi

can wait until all Pj have finished
 When Pj is finished, Pi can obtain needed resources, execute,

return allocated resources, and terminate
 When Pi terminates, Pi +1 can obtain its needed resources, and

so on

8.22Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

 Safe States and Unsafe States

 If a system is in safe state  it cannot be a deadlock state,
i.e., there is no deadlock in the current state.

 If a system is in unsafe state  possibility of deadlock – it
may not be possible to avoid deadlock.

 Avoidance algorithm  ensure that a system will never
enter an unsafe state.

8.23Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Safe, Unsafe, Deadlock State

8.24Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Avoidance Algorithms

 Single instance of a resource type
 Use a resource-allocation graph

 Multiple instances of a resource type
 Use the Banker’s Algorithm

8.25Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Resource-Allocation Graph Scheme

 Claim edge Pi  Rj indicated that process Pj may request
resource Rj; represented by a dashed line

 Claim edge converts to request edge when a process requests
a resource

 Request edge converted to an assignment edge when the
resource is allocated to the process

 When a resource is released by a process, assignment edge
reconverts to a claim edge

 Resources must be claimed a priori in the system

8.26Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Resource-Allocation Graph

8.27Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Unsafe State In Resource-Allocation Graph

8.28Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Resource-Allocation Graph Algorithm

 Suppose that process Pi requests a resource Rj

 The request can be granted only if converting the
request edge to an assignment edge does not result
in the formation of a cycle in the resource allocation
graph

8.29Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Banker’s Algorithm

 Multiple instances of resources

 Each process must a priori claim maximum use

 When a process requests a resource it may have to wait

 When a process gets all its resources it must return them in a
finite amount of time

8.30Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Data Structures for the Banker’s Algorithm

 Available: Vector of length m. If available [j] = k, there are k
instances of resource type Rj available

 Max: n x m matrix. If Max [i,j] = k, then process Pi may hold at
most k instances of resource type Rj

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently
allocated k instances of Rj

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k more
instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

8.31Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi  Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

8.32Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Resource-Request Algorithm for Process Pi

 Requesti = request vector for process Pi. If Requesti [j] = k then
process Pi wants k instances of resource type Rj

1. If Requesti  Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi must wait,
since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the
state as follows:

Available = Available – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

 If safe  the resources are allocated to Pi

 If unsafe  Pi must wait, and the old resource-allocation state
is restored

8.33Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Example of Banker’s Algorithm

 5 processes P0 through P4;
 3 resource types:
 A (10 instances), B (5instances), and C (7 instances)
 Snapshot at time T0:

Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
 P1 2 0 0 3 2 2
 P2 3 0 2 9 0 2
 P3 2 1 1 2 2 2
 P4 0 0 2 4 3 3

8.34Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Example (Cont.)

 The content of the matrix Need is defined to be Max – Allocation

Need
A B C

 P0 7 4 3
 P1 1 2 2
 P2 6 0 0
 P3 0 1 1
 P4 4 3 1

 The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

8.35Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Example: P1 Request (1,0,2)

 Check that Request  Available (that is, (1,0,2)  (3,3,2)  true
Allocation Need Available

A B C A B C A B C
P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 2 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

 Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>
satisfies safety requirement

 Can request for (3,3,0) by P4 be granted?

 Can request for (0,2,0) by P0 be granted?

8.36Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Deadlock Detection

 Allow system to enter deadlock state

 Detection algorithm

 Recovery scheme

8.37Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Single Instance of Each Resource Type

 Maintain wait-for graph
 Nodes are processes
 Pi  Pj if Pi is waiting for Pj

 Periodically invoke an algorithm that searches for a cycle in the
graph. If there is a cycle, there exists a deadlock

 An algorithm to detect a cycle in a graph requires an order of n2
operations, where n is the number of vertices in the graph

8.38Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

8.39Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Several Instances of a Resource Type

 Available: A vector of length m indicates the number of
available resources of each type

 Allocation: An n x m matrix defines the number of resources
of each type currently allocated to each process

 Request: An n x m matrix indicates the current request of
each process. If Request [i][j] = k, then process Pi is
requesting k more instances of resource type Rj.

8.40Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively
Initialize:
(a) Work = Available
(b) For i = 1,2, …, n, if Allocationi  0, then

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:
(a) Finish[i] == false
(b) Requesti  Work

If no such i exists, go to step 4

8.41Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1  i  n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked

Algorithm requires an order of O(m x n2) operations to detect
whether the system is in deadlocked state

8.42Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Example of Detection Algorithm

 Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances)

 Snapshot at time T0:
 Allocation Request Available

A B C A B C A B C
 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2
 P2 3 0 3 0 0 0
 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

 Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

8.43Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Example (Cont.)

 P2 requests an additional instance of type C
Request
A B C

 P0 0 0 0
 P1 2 0 2
 P2 0 0 1
 P3 1 0 0
 P4 0 0 2

 State of system?
 Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests
 Deadlock exists, consisting of processes P1, P2, P3, and P4

8.44Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Detection-Algorithm Usage

 When, and how often, to invoke depends on:
 How often a deadlock is likely to occur?
 How many processes will need to be rolled back?

 one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there may be many
cycles in the resource graph and so we would not be able to tell
which of the many deadlocked processes “caused” the deadlock.

8.45Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Recovery from Deadlock: Process Termination

 Abort all deadlocked processes

 Abort one process at a time until the deadlock cycle is eliminated

 In which order should we choose to abort?
1. Priority of the process
2. How long process has computed, and how much longer to

completion
3. Resources the process has used
4. Resources process needs to complete
5. How many processes will need to be terminated
6. Is process interactive or batch?

8.46Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Recovery from Deadlock: Resource Preemption

 Selecting a victim – minimize cost

 Rollback – return to some safe state, restart process for that
state

 Starvation – same process may always be picked as victim,
include number of rollback in cost factor

Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

End of Chapter 8

	Chapter 8: Deadlocks
	Slide 2
	Chapter Objectives
	System Model
	Deadlock in Multithreaded Application
	Slide 6
	Slide 7
	Deadlock Characterization
	Resource-Allocation Graph
	Resource Allocation Graph Example
	Resource Allocation Graph With A Deadlock
	Graph With A Cycle But No Deadlock
	Basic Facts
	Methods for Handling Deadlocks
	Deadlock Prevention
	Deadlock Prevention (Cont.)
	Slide 17
	Circular Wait
	Deadlock Avoidance
	Slide 20
	Safe State
	Slide 22
	Safe, Unsafe, Deadlock State
	Avoidance Algorithms
	Resource-Allocation Graph Scheme
	Slide 26
	Unsafe State In Resource-Allocation Graph
	Resource-Allocation Graph Algorithm
	Banker’s Algorithm
	Data Structures for the Banker’s Algorithm
	Safety Algorithm
	Resource-Request Algorithm for Process Pi
	Example of Banker’s Algorithm
	Example (Cont.)
	Example: P1 Request (1,0,2)
	Deadlock Detection
	Single Instance of Each Resource Type
	Resource-Allocation Graph and Wait-for Graph
	Several Instances of a Resource Type
	Detection Algorithm
	Detection Algorithm (Cont.)
	Example of Detection Algorithm
	Slide 43
	Detection-Algorithm Usage
	Recovery from Deadlock: Process Termination
	Recovery from Deadlock: Resource Preemption
	End of Chapter 8

