
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 15: File System

Internals

15.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Outline

▪ File Systems

▪ File-System Mounting

▪ Partitions and Mounting

▪ File Sharing

▪ Virtual File Systems

▪ Remote File Systems

▪ Consistency Semantics

▪ NFS

15.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

▪ Delve into the details of file systems and their implementation

▪ Explore booting and file sharing

▪ Describe remote file systems, using NFS as an example

15.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

File System

▪ General-purpose computers can have multiple storage devices

• Devices can be sliced into partitions, which hold volumes

• Volumes can span multiple partitions

• Each volume usually formatted into a file system

• # of file systems varies, typically dozens available to choose from

Typical storage device organization:

15.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example Mount Points and File Systems - Solaris

15.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Partitions and Mounting

▪ Partition can be a volume containing a file system (“cooked”) or

raw – just a sequence of blocks with no file system

▪ Boot block can point to boot volume or boot loader set of blocks that

contain enough code to know how to load the kernel from the file

system

• Or a boot management program for multi-os booting

▪ Root partition contains the OS, other partitions can hold other

OSes, other file systems, or be raw

• Mounted at boot time

• Other partitions can mount automatically or manually on mount

points – location at which they can be accessed

▪ At mount time, file system consistency checked

• Is all metadata correct?

 If not, fix it, try again

 If yes, add to mount table, allow access

15.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

File Systems and Mounting

(a)Unix-like file
system
directory tree

(b)Unmounted
file system

After mounting
(b) into the
existing directory
tree

15.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

File Sharing

▪ Allows multiple users / systems access to the same files

▪ Permissions / protection must be implement and accurate

• Most systems provide concepts of owner, group member

• Must have a way to apply these between systems

15.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual File Systems

▪ Virtual File Systems (VFS) on Unix provide an object-oriented way

of implementing file systems

▪ VFS allows the same system call interface (the API) to be used for

different types of file systems

• Separates file-system generic operations from implementation

details

• Implementation can be one of many file systems types, or

network file system

 Implements vnodes which hold inodes or network file details

• Then dispatches operation to appropriate file system

implementation routines

15.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual File Systems (Cont.)

▪ The API is to the VFS interface, rather than any specific type of file

system

15.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual File System Implementation

▪ For example, Linux has four object types:

• inode, file, superblock, dentry

▪ VFS defines set of operations on the objects that must be

implemented

• Every object has a pointer to a function table

 Function table has addresses of routines to implement that

function on that object

 For example:

 • int open(. . .)—Open a file

 • int close(. . .)—Close an already-open file

 • ssize t read(. . .)—Read from a file

 • ssize t write(. . .)—Write to a file

 • int mmap(. . .)—Memory-map a file

15.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Remote File Systems

▪ Sharing of files across a network

▪ First method involved manually sharing each file – programs like ftp

▪ Second method uses a distributed file system (DFS)

• Remote directories visible from local machine

▪ Third method – World Wide Web

• A bit of a revision to first method

• Use browser to locate file/files and download /upload

• Anonymous access doesn’t require authentication

15.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Client-Server Model

▪ Sharing between a server (providing access to a file system via a

network protocol) and a client (using the protocol to access the remote

file system)

▪ Identifying each other via network ID can be spoofed, encryption can

be performance expensive

▪ NFS an example

• User auth info on clients and servers must match (UserIDs for

example)

• Remote file system mounted, file operations sent on behalf of user

across network to server

• Server checks permissions, file handle returned

• Handle used for reads and writes until file closed

15.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Distributed Information Systems

▪ Aka distributed naming services, provide unified access to info

needed for remote computing

▪ Domain name system (DNS) provides host-name-to-network-address

translations for the Internet

▪ Others like network information service (NIS) provide user-name,

password, userID, group information

▪ Microsoft’s common Internet file system (CIFS) network info used

with user auth to create network logins that server uses to allow to

deny access

• Active directory distributed naming service

• Kerberos-derived network authentication protocol

▪ Industry moving toward lightweight directory-access protocol

(LDAP) as secure distributed naming mechanism

15.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Consistency Semantics

▪ Important criteria for evaluating file sharing-file systems

▪ Specify how multiple users are to access shared file simultaneously

• When modifications of data will be observed by other users

• Directly related to process synchronization algorithms, but atomicity

across a network has high overhead (see Andrew File System)

▪ The series of accesses between file open and closed called file session

▪ UNIX semantics

• Writes to open file immediately visible to others with file open

• One mode of sharing allows users to share pointer to current I/O

location in file

• Single physical image, accessed exclusively, contention causes

process delays

▪ Session semantics (Andrew file system (OpenAFS))

• Writes to open file not visible during session, only at close

• Can be several copies, each changed independently

15.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The Sun Network File System (NFS)

▪ An implementation and a specification of a software system for

accessing remote files across LANs (or WANs)

▪ The implementation originally part of SunOS operating system, now

industry standard / very common

▪ Can use unreliable datagram protocol (UDP/IP) or TCP/IP, over

Ethernet or other network

15.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS (Cont.)

▪ Interconnected workstations viewed as a set of independent
machines with independent file systems, which allows sharing among
these file systems in a transparent manner

• A remote directory is mounted over a local file system directory

 The mounted directory looks like an integral subtree of the
local file system, replacing the subtree descending from the
local directory

• Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to be
provided

 Files in the remote directory can then be accessed in a
transparent manner

• Subject to access-rights accreditation, potentially any file system
(or directory within a file system), can be mounted remotely on top
of any local directory

15.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS (Cont.)

▪ NFS is designed to operate in a heterogeneous environment of

different machines, operating systems, and network architectures;

the NFS specifications independent of these media

▪ This independence is achieved through the use of RPC primitives

built on top of an External Data Representation (XDR) protocol used

between two implementation-independent interfaces

▪ The NFS specification distinguishes between the services provided

by a mount mechanism and the actual remote-file-access services

15.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Three Independent File Systems

15.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Mounting in NFS

Mounts Cascading mounts

15.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS Mount Protocol

▪ Establishes initial logical connection between server and client

▪ Mount operation includes name of remote directory to be mounted

and name of server machine storing it

• Mount request is mapped to corresponding RPC and forwarded to

mount server running on server machine

• Export list – specifies local file systems that server exports for

mounting, along with names of machines that are permitted to

mount them

▪ Following a mount request that conforms to its export list, the server

returns a file handle—a key for further accesses

▪ File handle – a file-system identifier, and an inode number to identify

the mounted directory within the exported file system

▪ The mount operation changes only the user’s view and does not

affect the server side

15.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS Protocol

▪ Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:

• searching for a file within a directory

• reading a set of directory entries

• manipulating links and directories

• accessing file attributes

• reading and writing files

▪ NFS servers are stateless; each request has to provide a full set of
arguments (NFS V4 is newer, less used – very different, stateful)

▪ Modified data must be committed to the server’s disk before results
are returned to the client (lose advantages of caching)

▪ The NFS protocol does not provide concurrency-control mechanisms

15.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Three Major Layers of NFS Architecture

▪ UNIX file-system interface (based on the open, read, write, and close

calls, and file descriptors)

▪ Virtual File System (VFS) layer – distinguishes local files from remote

ones, and local files are further distinguished according to their file-

system types

• The VFS activates file-system-specific operations to handle local

requests according to their file-system types

• Calls the NFS protocol procedures for remote requests

▪ NFS service layer – bottom layer of the architecture

• Implements the NFS protocol

15.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Schematic View of NFS Architecture

15.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS Path-Name Translation

▪ Performed by breaking the path into component names and performing

a separate NFS lookup call for every pair of component name and

directory vnode

▪ To make lookup faster, a directory name lookup cache on the client’s

side holds the vnodes for remote directory names

15.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS Remote Operations

▪ Nearly one-to-one correspondence between regular UNIX system

calls and the NFS protocol RPCs (except opening and closing files)

▪ NFS adheres to the remote-service paradigm, but employs buffering

and caching techniques for the sake of performance

▪ File-blocks cache – when a file is opened, the kernel checks with the

remote server whether to fetch or revalidate the cached attributes

• Cached file blocks are used only if the corresponding cached

attributes are up to date

▪ File-attribute cache – the attribute cache is updated whenever new

attributes arrive from the server

▪ Clients do not free delayed-write blocks until the server confirms that

the data have been written to disk

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 15

