
Introduction to Unix System
Programming

Introduction to Unix System Programming

 PROCESS MANAGEMENT

- When a process duplicates,
the parent and child processes are virtually identical
(except for aspects like PIDs, PPIDs, and runtimes);

the child’s code, data, and stack are a copy of the parent’s,
and the processes even continue to execute the same code.

- A child process may replace its code with that of another executable
file, there by differentiating itself from its parent.

- When “init” starts executing, it quickly duplicates several times.

Each of the duplicate child processes then replaces its code from
the executable file called “getty”,

which is responsible for handling user logins.

Introduction to Unix System Programming

 PROCESS MANAGEMENT

Name Function

fork duplicates a process
getpid obtains a process’ ID number
getppid obtains a parent process’ID number
exit terminates a process
wait waits for a child process
exec… replaces the code, data, and stack of a process.

fork()

 Creating a New Process: fork()

- A process may duplicate itself by using “fork()”, which works like this:

System Call: pid_t fork(void)

“fork()” causes a process to duplicate.
The child process is an almost-exact duplicate of the original parent
process;

it inherits a copy of its parent’s code, data, stack, open file descriptors,
and signal table.

the parent and child processes have different process ID numbers
and parent process ID numbers.

If “fork()” succeeds, it returns the PID of the child to the parent
process and returns a value of 0 to the child process.

fork()
 PROCESS MANAGEMENT

- A process may obtain its own process ID and parent process ID
numbers

by using the “getpid()” and “getppid()” system calls, respectively.

- Here’s a synopsis of these system calls:

System Call : pid_t getpid(void)
pid_t getppid(void)

“getpid()” and “getppid()” return a process’ID number and
parent process’ ID number, respectively.

The parent process ID number of PID 1 (i.e., “init”) is 1.
-fork() has no argument.
-It returns > 0 to parent as successful creation of child and < 0 when error
occurs.
-It returns 0 to child process.

fork()
PROCESS MANAGEMENT
#include <stdio.h>
main()
{ int pid;

printf(“I’m the original process with PID %d and PPID %d. \n”,
getpid(), getppid());

pid = fork(); /* Duplicate. Child and parent continue from here */
if (pid!= 0) /* pid is non-zero, so I must be the parent */

{
printf(“I’m the parent process with PID %d and PPID %d. \n”,

getpid(), getppid());
printf(“My child’s PID is %d \n”, pid);

}
else /* pid is zero, so I must be the child */

{
printf(“I’m the child process with PID %d and PPID %d. \n”,

getpid(), getppid());
}

fork()

 PROCESS MANAGEMENT

printf(“PID %d terminates. \n”, getpid()); /* Both processes */
/* execute this */

}

$ myfork ---> run the program.
I’m the original process with PID 13292 and PPID 13273.
I’m the parent process with PID 13292 and PPID 13273.
My child’s PID is 13293.
I’m the child process with PID 13293 and PPID 13292.
PID 13293 terminates. ---> child terminates.
PID 13292 terminates. ---> parent terminates.
$ _

fork: Creating New Processes

• pid_t fork(void)

– Creates a new “child” process that is identical to the calling “parent”
process, including all state (memory, registers, etc.)

– Returns 0 to the child process

– Returns child’s process ID (PID) to the parent process

• Child is almost identical to parent:
– Child gets an identical

(but separate) copy of the
parent’s virtual address
space

– Child has a different PID
than the parent

• fork is unique (and often confusing) because it is called once but
returns “twice”

8

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Understanding fork

9

Process X (parent)

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Process Y (child)

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Understanding fork

10

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

pid = Y pid = 0

Process X (parent)

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Process Y (child)

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Understanding fork

11

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

pid = Y pid = 0

Process X (parent)

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Process Y (child)

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

hello from parent hello from child

Which one appears first?

main()
{

fork()
fork ()
printf(“hello
from fork”);

}

Parent

process

main()
{

fork()
fork ()
printf(“hello
from fork”);

}

Child

process

main()
{

fork()
fork ()
printf(“hello
from fork”);

}

main()
{

fork()
fork ()
printf(“hello
from fork”);

}

Child of a child

process

Child

process

Understanding fork

How many times printf will be executed?

Fork Example: Possible Output

13

void fork1() {

int x = 1;

pid_t pid = fork();

if (pid == 0)

printf("Child has x = %d\n", ++x);

else

printf("Parent has x = %d\n", --x);

printf("Bye from process %d with x = %d\n", getpid(), x);

}

printf--x printffork

Child

Bye

x=1

printf printf++x

Bye

Parent

x=2

x=0

• The 'C' odyssey unix -The Open Boundless C

• Meeta Gandhi, Tilak Shetty, Rajiv Shah

Lab Exercise

Write a program to create 4 processes: parent

process and its child process which perform various

tasks :

• Parent process count the frequency of a number

• 1st child calculate the sum of even numbers in an
array

• 2nd child find total even number(s) in a given
array

• 3rd child sort the array

• Main()

• { int fp, pid;

• Char chr=‘A’;

• pid= fork();

• If (pid==0)

• { fp=

• }

