Monitors

Semaphores : Disadvantages

e Semaphores Are Not Always Convenient

o Example (adopted from the slides by Kai Li, Computer Science Department, Princeton University)

o Ashared queue has Enqueue and Dequeue:

Enqueue (q, item) Dequeue (q)

{ {

Acquire (mutex) ; Acquire (mutex) ;

put item into q; take an item from q;

Release (mutex) ; Release (mutex) ;
return item;

}

Semaphores : Disadvantages

e Problem 1 : Itis a consumer and producer problem, Dequeue(q) should
block until q is not empty. Results in a lot of waits and signals

e Problem 2 : What happens when a programming error changes the order of
the wait and signal, or use duplicates wait or signal?

Solution - Monitors

Higher level solution than Semaphores

May use semaphore as a low level implementation
Main theme : hide mutual exclusion!

Main theme : provide concurrency support in compiler

Monitors

e Consists of -
o Shared Private Data— cannot be accessed from outside but shared among threads
o Procedures that operate on the data — Gateway to the resource — can only act on data local to
the monitor
o Synchronization primitives — among threads that access the procedures

Structure of a Monitor

Monitor monitor name For example
{
// shared variable declarations Monitor stack
{
procedure P1(. . . .) { int top;
void push(any t *) {
}
}
procedure P2(. . . .) {
any_t * pop() {
}
: }
procedure PN(. . . .) {
initialization code() {
}
}
initialization code(. . . .) { }
}

} **(adopted from CS 4410 of Cornell University)

Schematic View of a Monitor

entry queue

shared data

~

operations

initialization
code

Conditions

How to develop more complicated synchronization solution?
Solution : provide wait and signal capability to monitors

Condition variables can be defined inside monitors

Wait and signal can be called on these variables

Condition variables can be considered as a queue inside monitors

Monitors and Conditions Example

procedure Producer
begin
while true do
begin
produce an item
ProdCons.Enter() ;
end;
end;

procedure Consumer
begin
while true do
begin
ProdCons.Remove () ;
consume an item;
end;
end;

monitor ProdCons
condition full, empty;

procedure Enter;
begin
if (buffer is full)
wait (full);
put item into buffer;
if (only one item)
signal (empty) ;
end;

procedure Remove;
begin
if (buffer is empty)
wait (empty) ;
remove an item;
if (buffer was full)
signal (full);
end;

(adopted from the slides by Kai Li,
Computer Science Department,
Princeton University)

Schematic view of Monitor with Condition Variables

entry queue

shared data

queues associated with
X, y conditions

~

operations

initialization
code

Condition Variables - Wait and Signal Schemes

Consider P and Q processes using a condition variable x
e Q calls wait(x) and then P calls signal(x)

e Two scenarios can happen -
o Signal and wait. P either waits until Q leaves the monitor or waits for another condition
o Signal and continue. Q either waits until P leaves the monitor or waits for another condition

e P was already executing in the monitor, the signal and continue method
seems more reasonable

e But, if we allow thread P to continue, then by the time Q is resumed, the
logical condition for which Q was waiting may no longer hold

e Solution is to compromise - when thread P executes the signal operation, it
immediately leaves the monitor. Hence, Q is immediately resumed

Resuming Processes within a Monitor

FCFS order

More complicated ordering - conditional wait

Conditional wait - x.wait(c), where c is the priority number

When x.signal() is executed, the process with the smallest priority number is

resumed

Resuming Processes within a Monitor

monitor ResourceAllocator

{

boolean busy;
condition x;

void acquire(int time) { R.acquire(t);
if (busy) .
x.wait(time); access the resource;
busy = true; -
} R.release();

void release() {
busy = false;
x.signal(Q);

}

initialization _code() {
busy = false;

}
}

