
Monitors

Semaphores : Disadvantages

● Semaphores Are Not Always Convenient
● Example (adopted from the slides by Kai Li, Computer Science Department, Princeton University)

○ A shared queue has Enqueue and Dequeue:

Semaphores : Disadvantages

● Problem 1 : It is a consumer and producer problem, Dequeue(q) should
block until q is not empty. Results in a lot of waits and signals

● Problem 2 : What happens when a programming error changes the order of
the wait and signal, or use duplicates wait or signal?

Solution - Monitors

● Higher level solution than Semaphores
● May use semaphore as a low level implementation
● Main theme : hide mutual exclusion!
● Main theme : provide concurrency support in compiler

Monitors

● Consists of -
○ Shared Private Data– cannot be accessed from outside but shared among threads
○ Procedures that operate on the data – Gateway to the resource – can only act on data local to

the monitor
○ Synchronization primitives – among threads that access the procedures

Structure of a Monitor

**(adopted from CS 4410 of Cornell University)

Schematic View of a Monitor

Conditions

● How to develop more complicated synchronization solution?
● Solution : provide wait and signal capability to monitors
● Condition variables can be defined inside monitors
● Wait and signal can be called on these variables
● Condition variables can be considered as a queue inside monitors

Monitors and Conditions Example

(adopted from the slides by Kai Li,
Computer Science Department,
Princeton University)

Schematic view of Monitor with Condition Variables

Condition Variables - Wait and Signal Schemes

● Consider P and Q processes using a condition variable x
● Q calls wait(x) and then P calls signal(x)
● Two scenarios can happen -

○ Signal and wait. P either waits until Q leaves the monitor or waits for another condition
○ Signal and continue. Q either waits until P leaves the monitor or waits for another condition

● P was already executing in the monitor, the signal and continue method
seems more reasonable

● But, if we allow thread P to continue, then by the time Q is resumed, the
logical condition for which Q was waiting may no longer hold

● Solution is to compromise - when thread P executes the signal operation, it
immediately leaves the monitor. Hence, Q is immediately resumed

Resuming Processes within a Monitor

● FCFS order
● More complicated ordering - conditional wait
● Conditional wait - x.wait(c), where c is the priority number
● When x.signal() is executed, the process with the smallest priority number is

resumed

Resuming Processes within a Monitor

