
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 19:

Network and Distributed

Systems

19.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 19: Distributed Systems

▪ Advantages of Distributed Systems

▪ Network Structure

▪ Communication Structure

▪ Network and Distributed Operating Systems

▪ Design Issues of Distributed Systems

▪ Distributed File Systems

19.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter Objectives

▪ Explain the advantages of networked and distributed systems

▪ Provide a high-level overview of the networks that interconnect

distributed systems

▪ Define the roles and types of distributed systems in use today

▪ Discuss issues concerning the design of distributed file systems

19.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Overview

▪ A distributed system is a collection of loosely coupled nodes

interconnected by a communications network

▪ Nodes variously called processors, computers, machines, hosts

• Site is location of the machine, node refers to specific system

• Generally a server has a resource a client node at a different site

wants to use

19.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Overview (Cont.)

▪ Nodes may exist in a client-server, peer-to-peer, or hybrid

configuration.

• In client-server configuration, server has a resource that a client

would like to use

• In peer-to-peer configuration, each node shares equal

responsibilities and can act as both clients and servers

▪ Communication over a network occurs through message passing

• All higher-level functions of a standalone system can be expanded

to encompass a distributed system

19.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Reasons for Distributed Systems

▪ Resource sharing

• Sharing files or printing at remote sites

• Processing information in a distributed database

• Using remote specialized hardware devices such as graphics

processing units (GPUs)

▪ Computation speedup

• Distribute subcomputations among various sites to run

concurrently

• Load balancing – moving jobs to more lightly-loaded sites

▪ Reliability

• Detect and recover from site failure, function transfer, reintegrate

failed site

19.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Network Structure

▪ Local-Area Network (LAN) – designed to cover small geographical

area

• Consists of multiple computers (workstations, laptops, mobile

devices), peripherals (printers, storage arrays), and routers

providing access to other networks

• Ethernet and/or Wireless (WiFi) most common way to construct

LANs

 Ethernet defined by standard IEEE 802.3 with speeds typically

varying from 10Mbps to over 10Gbps

 WiFi defined by standard IEEE 802.11 with speeds typically

varying from 11Mbps to over 400Mbps.

 Both standards constantly evolving

19.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Local-Area Network (LAN)

19.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Network Structure (Cont.)

▪ Wide-Area Network (WAN) – links geographically separated sites

• Point-to-point connections via links

 Telephone lines, leased (dedicated data) lines, optical cable,

microwave links, radio waves, and satellite channels

• Implemented via routers to direct traffic from one network to another

• Internet (World Wide Web) WAN enables hosts world wide to

communicate

• Speeds vary

 Many backbone providers have speeds at 40-100Gbps

 Local Internet Service Providers (ISPs) may be slower

 WAN links constantly being upgraded

• WANs and LANs interconnect, similar to cell phone network:

 Cell phones use radio waves to cell towers

 Towers connect to other towers and hubs

19.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Wide-Area Network (WAN)

19.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Naming and Name Resolution

▪ Each computer system in the network has a unique name

▪ Each process in a given system has a unique name (process-id)

▪ Identify processes on remote systems by

<host-name, identifier> pair

▪ Domain name system (DNS) – specifies the naming structure of the

hosts, as well as name to address resolution (Internet)

19.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ Layer 1: Physical layer – handles the mechanical and electrical

details of the physical transmission of a bit stream

▪ Layer 2: Data-link layer – handles the frames, or fixed-length

parts of packets, including any error detection and recovery that

occurred in the physical layer

▪ Layer 3: Network layer – provides connections and routes

packets in the communication network, including handling the

address of outgoing packets, decoding the address of incoming

packets, and maintaining routing information for proper response to

changing load levels

The communication network is partitioned into the following multiple

layers:

Communication Protocol

19.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ Layer 4: Transport layer – responsible for low-level network

access and for message transfer between clients, including

partitioning messages into packets, maintaining packet order,

controlling flow, and generating physical addresses

▪ Layer 5: Session layer – implements sessions, or process-to-

process communications protocols

▪ Layer 6: Presentation layer – resolves the differences in formats

among the various sites in the network, including character

conversions, and half duplex/full duplex (echoing)

▪ Layer 7: Application layer – interacts directly with the users, deals

with file transfer, remote-login protocols and electronic mail, as well

as schemas for distributed databases

Communication Protocol (Cont.)

19.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Logical communication between two computers, with the three lowest-

level layers implemented in hardware

OSI Network Model

19.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

OSI Protocol Stack

19.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

OSI Network Message

19.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The OSI model

▪ The OSI model formalizes some of the earlier work done in network

protocols but was developed in the late 1970s and is currently not in

widespread use

▪ The most widely adopted protocol stack is the TCP/IP model, which

has been adopted by virtually all Internet sites

▪ The TCP/IP protocol stack has fewer layers than the OSI model.

Theoretically, because it combines several functions in each layer, it is

more difficult to implement but more efficient than OSI networking

▪ The relationship between the OSI and TCP/IP models is shown in the

next slide

19.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The OSI and TCP/IP Protocol Stacks

19.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

TCP/IP Example

▪ Every host has a name and an associated IP address (host-id)

• Hierarchical and segmented

▪ Sending system checks routing tables and locates a router to send

packet

▪ Router uses segmented network part of host-id to determine where to

transfer packet

• This may repeat among multiple routers

▪ Destination system receives the packet

• Packet may be complete message, or it may need to be

reassembled into larger message spanning multiple packets

19.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

TCP/IP Example (Cont.)

▪ Within a network, how does a packet move from sender (host or router)

to receiver?

• Every Ethernet/WiFi device has a medium access control (MAC)

address

• Two devices on same LAN communicate via MAC address

• If a system needs to send data to another system, it needs to

discover the IP to MAC address mapping

 Uses address resolution protocol (ARP)

• A broadcast uses a special network address to signal that all hosts

should receive and process the packet

 Not forwarded by routers to different networks

19.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Ethernet Packet

19.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Transport Protocols UDP and TCP

▪ Once a host with a specific IP address receives a packet, it must

somehow pass it to the correct waiting process

▪ Transport protocols TCP and UDP identify receiving and sending

processes through the use of a port number

• Allows host with single IP address to have multiple server/client

processes sending/receiving packets

• Well-known port numbers are used for many services

 FTP – port 21

 ssh – port 22

 SMTP – port 25

 HTTP – port 80

▪ Transport protocol can be simple or can add reliability to network

packet stream

19.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

User Datagram Protocol

▪ UDP is unreliable – bare-bones extension to IP with addition of port

number

• Since there are no guarantees of delivery in the lower network (IP)

layer, packets may become lost

• Packets may also be received out-out-order

▪ UDP is also connectionless – no connection setup at the beginning of

the transmission to set up state

• Also no connection tear-down at the end of transmission

▪ UDP packets are also called datagrams

19.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

UDP Dropped Packet Example

19.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Transmission Control Protocol

▪ TCP is both reliable and connection-oriented

▪ In addition to port number, TCP provides abstraction to allow in-order,

uninterrupted byte-stream across an unreliable network

• Whenever host sends packet, the receiver must send an

acknowledgement packet (ACK). If ACK not received before a

timer expires, sender will resend.

• Sequence numbers in TCP header allow receiver to put packets

in order and notice missing packets

• Connections are initiated with series of control packets called a

three-way handshake

 Connections also closed with series of control packets

19.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

TCP Data Transfer Scenario

19.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Transmission Control Protocol (Cont.)

▪ Receiver can send a cumulative ACK to acknowledge series of

packets

• Server can also send multiple packets before waiting for ACKs

• Takes advantage of network throughput

▪ Flow of packets regulated through flow control and congestion

control

• Flow control – prevents sender from overrunning capacity of

receiver

• Congestion control – approximates congestion of the network to

slow down or speed up packet sending rate

19.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Network-oriented Operating Systems

▪ Two main types

▪ Network Operating Systems

• Users are aware of multiplicity of machines

▪ Distributed Operating Systems

• Users not aware of multiplicity of machines

19.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Network Operating Systems

▪ Users are aware of multiplicity of machines

▪ Access to resources of various machines is done explicitly by:

• Remote logging into the appropriate remote machine (ssh)

• ssh kristen.cs.yale.edu

• Transferring data from remote machines to local machines, via the

File Transfer Protocol (FTP) mechanism

• Upload, download, access, or share files through cloud storage

▪ Users must change paradigms – establish a session, give network-

based commands, use a web browser

• More difficult for users

19.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Distributed Operating Systems

▪ Users not aware of multiplicity of machines

• Access to remote resources similar to access to local resources

▪ Data Migration – transfer data by transferring entire file, or

transferring only those portions of the file necessary for the immediate

task

▪ Computation Migration – transfer the computation, rather than the

data, across the system

• Via remote procedure calls (RPCs)

• Via messaging system

19.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Distributed-Operating Systems (Cont.)

▪ Process Migration – execute an entire process, or parts of it, at

different sites

• Load balancing – distribute processes across network to even the

workload

• Computation speedup – subprocesses can run concurrently on

different sites

• Hardware preference – process execution may require

specialized processor

• Software preference – required software may be available at only

a particular site

• Data access – run process remotely, rather than transfer all data

locally

▪ Consider the World Wide Web

19.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Design Issues of Distributed Systems

▪ We investigate three design questions:

• Robustness – Can the distributed system withstand failures?

• Transparency – Can the distributed system be transparent to the

user both in terms of where files are stored and user mobility?

• Scalability – Can the distributed system be scalable to allow

addition of more computation power, storage, or users?

19.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Robustness

▪ Hardware failures can include failure of a link, failure of a site, and loss

of a message.

▪ A fault-tolerant system can tolerate a certain level of failure

• Degree of fault tolerance depends on design of system and the

specific fault

• The more fault tolerance, the better!

▪ Involves failure detection, reconfiguration, and recovery

19.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Failure Detection

▪ Detecting hardware failure is difficult

▪ To detect a link failure, a heartbeat protocol can be used

▪ Assume Site A and Site B have established a link

• At fixed intervals, each site will exchange an I-am-up message

indicating that they are up and running

▪ If Site A does not receive a message within the fixed interval, it

assumes either (a) the other site is not up or (b) the message was lost

▪ Site A can now send an Are-you-up? message to Site B

▪ If Site A does not receive a reply, it can repeat the message or try an

alternate route to Site B

19.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Failure Detection (Cont.)

▪ If Site A does not ultimately receive a reply from Site B, it concludes

some type of failure has occurred

▪ Types of failures:

- Site B is down

- The direct link between A and B is down

- The alternate link from A to B is down

- The message has been lost

▪ However, Site A cannot determine exactly why the failure has occurred

19.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Reconfiguration and Recovery

▪ When Site A determines a failure has occurred, it must reconfigure the

system:

• If the link from A to B has failed, this must be broadcast to every

site in the system

• If a site has failed, every other site must also be notified indicating

that the services offered by the failed site are no longer available

▪ When the link or the site becomes available again, this information

must again be broadcast to all other sites

19.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Transparency

▪ The distributed system should appear as a conventional, centralized

system to the user

• User interface should not distinguish between local and remote

resources

 Example: NFS

• User mobility allows users to log into any machine in the

environment and see his/her environment

 Example: LDAP plus desktop virtualization

19.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Scalability

▪ As demands increase, the system should easily accept the addition of

new resources to accommodate the increased demand

• Reacts gracefully to increased load

• Adding more resources may generate additional indirect load on

other resources if not careful

• Data compression or deduplication can cut down on storage and

network resources used

19.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Distributed File System

▪ Distributed file system (DFS) – a file system whose clients, servers,

and storage devices are dispersed among the machines of a

distributed system

• Should appear to its clients as a conventional, centralized file

system

▪ Key distinguishing feature is management of dispersed storage

devices

19.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Distributed File System (Cont.)

▪ Service – software entity running on one or more machines and

providing a particular type of function to a priori unknown clients

▪ Server – service software running on a single machine

▪ Client – process that can invoke a service using a set of operations

that forms its client interface

▪ A client interface for a file service is formed by a set of primitive file

operations (create, delete, read, write)

▪ Client interface of a DFS should be transparent; i.e., not distinguish

between local and remote files

▪ Sometimes lower level inter-machine interface need for cross-

machine interaction

19.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Distributed File System (Cont.)

▪ Two widely-used architectural models include client-server model

and cluster-based model

▪ Challenges include:

• Naming and transparency

• Remote file access

• Caching and cache consistency

19.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Client-Server DFS Model

▪ Server(s) store both files and metadata on attached storage

• Clients contact the server to request files

• Sever responsible for authentication, checking file permissions,

and delivering the file

• Changes client makes to file must be propagated back to the

server

▪ Popular examples include NFS and OpenAFS

▪ Design suffers from single point of failure if server crashes

▪ Server presents a bottleneck for all requests of data and metadata

• Could pose problems with scalability and bandwidth

19.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Client-Server DFS Model (Cont.)

19.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Cluster-based DFS Model

▪ Built to be more fault-tolerant and scalable than client-server DFS

▪ Examples include the Google File System (GFS) and Hadoop

Distributed File System (HDFS)

• Clients connected to master metadata server and several data

servers that hold “chunks” (portions) of files

• Metadata server keeps mapping of which data servers hold chunks

of which files

 As well as hierarchical mapping of directories and files

• File chunks replicated n times

19.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Cluster-based DFS Model (Cont.)

19.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Cluster-based DFS Model (Cont.)

▪ GFS design was influenced by following observations:

• Hardware component failures are the norm rather than the

exception and should be routinely expected.

• Files stored on such a system are very large.

• Most files are changed by appending new data to the end rather

than overwriting existing data.

• Redesigning the applications and file system API increases system

flexibility

➢ Requires applications to be programmed specially with new

API

▪ Modularized software layer MapReduce can sit on top of GFS to carry

out large-scale parallel computations while utilizing benefits of GFS

• Hadoop framework also stackable and modularized

19.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Naming and Transparency

▪ Naming – mapping between logical and physical objects

▪ Multilevel mapping – abstraction of a file that hides the details of how

and where on the disk the file is actually stored

▪ A transparent DFS hides the location where in the network the file is

stored

▪ For a file being replicated in several sites, the mapping returns a set of

the locations of this file’s replicas; both the existence of multiple copies

and their location are hidden

19.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Naming Structures

▪ Location transparency – file name does not reveal the file’s physical

storage location

▪ Location independence – file name does not need to be changed

when the file’s physical storage location changes

▪ In practice most DFSs use static, location-transparent mapping for

user-level names

• Some support file migration (e.g. OpenAFS)

• Hadoop supports file migration but without following POSIX

standards; hides information from clients

• Amazon S3 provides blocks of storage on demand via APIs,

placing storage dynamically and moving data as necessary

19.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Naming Schemes

▪ Three approaches:

• Files named by combination of their host name and local name;

guarantees a unique system-wide name. This naming scheme is

neither location transparent nor location independent.

• Attach remote directories to local directories, giving the

appearance of a coherent directory tree; only previously mounted

remote directories can be accessed transparently

• Single global name structures spans all files in the system. If a

server is unavailable, some arbitrary set of directories on different

machines also becomes unavailable

19.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Remote File Access

▪ Consider a user who requests access to a remote file. The server

storing the file has been located by the naming scheme, and now the

actual data transfer must take place.

▪ Remote-service mechanism is one transfer approach.

• A requests for accesses are delivered to the server, the server

machine performs the accesses, and their results are forwarded

back to the user.

• One of the most common ways of implementing remote service is

the RPC paradigm

19.51 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Remote File Access (Cont.)

▪ Reduce network traffic by retaining recently accessed disk blocks in a

cache, so that repeated accesses to the same information can be

handled locally

• If needed data not already cached, a copy of data is brought from

the server to the user

• Accesses are performed on the cached copy

• Files identified with one master copy residing at the server

machine, but copies of (parts of) the file are scattered in different

caches

▪ Cache-consistency problem – keeping the cached copies consistent

with the master file

• Could be called network virtual memory

19.52 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Cache Location –

Disk vs. Main Memory

▪ Advantages of disk caches

• More reliable

• Cached data kept on disk are still there during recovery and don’t

need to be fetched again

▪ Advantages of main-memory caches:

• Permit workstations to be diskless

• Data can be accessed more quickly

• Performance speedup in bigger memories

• Server caches (used to speed up disk I/O) are in main memory

regardless of where user caches are located; using main-memory

caches on the user machine permits a single caching mechanism

for servers and users

19.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Cache Update Policy

▪ Write-through – write data through to disk as soon as they are placed

on any cache

• Reliable, but poor performance

▪ Delayed-write (write-back) – modifications are written to the cache

and then written through to the server later

• Write accesses complete quickly; some data may be overwritten

before they are written back, and so need never be written at all

• Poor reliability; unwritten data will be lost whenever a user

machine crashes

• Variation – scan cache at regular intervals and flush blocks that

have been modified since the last scan

• Variation – write-on-close, writes data back to the server when

the file is closed

 Best for files that are open for long periods and frequently

modified

19.54 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Consistency

▪ Is locally cached copy of the data consistent with the master copy?

▪ Client-initiated approach

• Client initiates a validity check

• Server checks whether the local data are consistent with the

master copy

▪ Server-initiated approach

• Server records, for each client, the (parts of) files it caches

• When server detects a potential inconsistency, it must react

19.55 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Consistency (Cont.)

▪ In cluster-based DFS, cache-consistency issue more complicated due

to presence of metadata server and replicated file data chunks

• HDFS allows append-only write operations (no random writes) and

a single file writer

• GFS allows random writes with concurrent writers

▪ Complicates write consistency guarantees for GFS while simplifying it

for HDFS

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 19

