
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

Process Concept

Process Scheduling

Operations on Processes

Interprocess Communication

Examples of IPC Systems

Communication in Client-Server Systems

3.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

To introduce the notion of a process -- a program in

execution, which forms the basis of all computation

To describe the various features of processes, including

scheduling, creation and termination, and communication

To explore interprocess communication using shared memory

and message passing

To describe communication in client-server systems

3.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept

An operating system executes a variety of programs:

Batch system – jobs

Time-shared systems – user programs or tasks

Textbook uses the terms job and process almost interchangeably

Process – a program in execution; process execution must
progress in sequential fashion

Multiple parts

The program code, also called text section

Current activity including program counter, processor

registers

Stack containing temporary data

 Function parameters, return addresses, local variables

Data section containing global variables

Heap containing memory dynamically allocated during run time

3.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept (Cont.)

Program is passive entity stored on disk (executable file),

process is active

Program becomes process when executable file loaded into

memory

Execution of program started via GUI mouse clicks, command

line entry of its name, etc

One program can be several processes

Consider multiple users executing the same program

3.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process in Memory

3.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process State

As a process executes, it changes state

new: The process is being created

running: Instructions are being executed

waiting: The process is waiting for some event to occur

ready: The process is waiting to be assigned to a processor

terminated: The process has finished execution

3.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Process State

3.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

Information associated with each process

(also called task control block)

Process state – running, waiting, etc

Program counter – location of

instruction to next execute

CPU registers – contents of all process-

centric registers

CPU scheduling information- priorities,

scheduling queue pointers

Memory-management information –

memory allocated to the process

Accounting information – CPU used,

clock time elapsed since start, time

limits

I/O status information – I/O devices

allocated to process, list of open files

3.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Switch From Process to Process

3.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Threads

So far, process has a single thread of execution

Consider having multiple program counters per process

Multiple locations can execute at once

 Multiple threads of control -> threads

Must then have storage for thread details, multiple program

counters in PCB

See next chapter

3.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */

struct mm_struct *mm; /* address space of this process */

3.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Scheduling

Maximize CPU use, quickly switch processes onto CPU for

time sharing

Process scheduler selects among available processes for

next execution on CPU

Maintains scheduling queues of processes

Job queue – set of all processes in the system

Ready queue – set of all processes residing in main

memory, ready and waiting to execute

Device queues – set of processes waiting for an I/O device

Processes migrate among the various queues

3.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ready Queue And Various I/O Device Queues

3.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

Queueing diagram represents queues, resources, flows

3.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulers

Short-term scheduler (or CPU scheduler) – selects which process should

be executed next and allocates CPU

Sometimes the only scheduler in a system

Short-term scheduler is invoked frequently (milliseconds) (must be

fast)

Long-term scheduler (or job scheduler) – selects which processes should

be brought into the ready queue

Long-term scheduler is invoked infrequently (seconds, minutes)

(may be slow)

The long-term scheduler controls the degree of multiprogramming

Processes can be described as either:

I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts

CPU-bound process – spends more time doing computations; few very

long CPU bursts

Long-term scheduler strives for good process mix

3.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Addition of Medium Term Scheduling

Medium-term scheduler can be added if degree of multiple

programming needs to decrease

Remove process from memory, store on disk, bring back in

from disk to continue execution: swapping

3.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multitasking in Mobile Systems

Some mobile systems (e.g., early version of iOS) allow only one

process to run, others suspended

Due to screen real estate, user interface limits iOS provides for a

Single foreground process- controlled via user interface

Multiple background processes– in memory, running, but not

on the display, and with limits

Limits include single, short task, receiving notification of events,

specific long-running tasks like audio playback

Android runs foreground and background, with fewer limits

Background process uses a service to perform tasks

Service can keep running even if background process is

suspended

Service has no user interface, small memory use

3.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Context Switch

When CPU switches to another process, the system must save

the state of the old process and load the saved state for the

new process via a context switch

Context of a process represented in the PCB

Context-switch time is overhead; the system does no useful

work while switching

The more complex the OS and the PCB ➔ the longer the

context switch

Time dependent on hardware support

Some hardware provides multiple sets of registers per CPU

➔ multiple contexts loaded at once

3.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operations on Processes

System must provide mechanisms for:

process creation,

process termination,

and so on as detailed next

3.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation

Parent process create children processes, which, in turn

create other processes, forming a tree of processes

Generally, process identified and managed via a process

identifier (pid)

Resource sharing options

Parent and children share all resources

Children share subset of parent’s resources

Parent and child share no resources

Execution options

Parent and children execute concurrently

Parent waits until children terminate

3.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Tree of Processes in Linux

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

3.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

Address space

Child duplicate of parent

Child has a program loaded into it

UNIX examples

fork() system call creates new process

exec() system call used after a fork() to replace the

process’ memory space with a new program

3.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

C Program Forking Separate Process

3.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Creating a Separate Process via Windows API

3.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

Process executes last statement and then asks the operating
system to delete it using the exit() system call.

Returns status data from child to parent (via wait())

Process’ resources are deallocated by operating system

Parent may terminate the execution of children processes using
the abort() system call. Some reasons for doing so:

Child has exceeded allocated resources

Task assigned to child is no longer required

The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates

3.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

Some operating systems do not allow child to exists if its parent

has terminated. If a process terminates, then all its children must

also be terminated.

cascading termination. All children, grandchildren, etc. are

terminated.

The termination is initiated by the operating system.

The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information

and the pid of the terminated process

pid = wait(&status);

If no parent waiting (did not invoke wait()) process is a zombie

If parent terminated without invoking wait , process is an orphan

3.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiprocess Architecture – Chrome Browser

Many web browsers ran as single process (some still do)

If one web site causes trouble, entire browser can hang or crash

Google Chrome Browser is multiprocess with 3 different types of

processes:

Browser process manages user interface, disk and network I/O

Renderer process renders web pages, deals with HTML,

Javascript. A new renderer created for each website opened

 Runs in sandbox restricting disk and network I/O, minimizing

effect of security exploits

Plug-in process for each type of plug-in

3.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication

Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes,

including sharing data

Reasons for cooperating processes:

Information sharing

Computation speedup

Modularity

Convenience

Cooperating processes need interprocess communication (IPC)

Two models of IPC

Shared memory

Message passing

3.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications Models

(a) Message passing. (b) shared memory.

3.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Cooperating Processes

Independent process cannot affect or be affected by the execution

of another process

Cooperating process can affect or be affected by the execution of

another process

Advantages of process cooperation

Information sharing

Computation speed-up

Modularity

Convenience

3.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer-Consumer Problem

Paradigm for cooperating processes, producer process

produces information that is consumed by a consumer

process

unbounded-buffer places no practical limit on the size

of the buffer

bounded-buffer assumes that there is a fixed buffer

size

3.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Shared-Memory Solution

Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

Solution is correct, but can only use BUFFER_SIZE-1 elements

3.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Producer

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

3.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer – Consumer

item next_consumed;

while (true) {

while (in == out)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

3.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Shared Memory

An area of memory shared among the processes that wish
to communicate

The communication is under the control of the users
processes not the operating system.

Major issues is to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

Synchronization is discussed in great details in Chapter 5.

3.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Message Passing

Mechanism for processes to communicate and to synchronize
their actions

Message system – processes communicate with each other
without resorting to shared variables

IPC facility provides two operations:

send(message)

receive(message)

The message size is either fixed or variable

3.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Message Passing (Cont.)

If processes P and Q wish to communicate, they need to:

Establish a communication link between them

Exchange messages via send/receive

Implementation issues:

How are links established?

Can a link be associated with more than two processes?

How many links can there be between every pair of

communicating processes?

What is the capacity of a link?

Is the size of a message that the link can accommodate fixed or

variable?

Is a link unidirectional or bi-directional?

3.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Message Passing (Cont.)

Implementation of communication link

Physical:

 Shared memory

 Hardware bus

 Network

Logical:

 Direct or indirect

 Synchronous or asynchronous

 Automatic or explicit buffering

3.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Direct Communication

Processes must name each other explicitly:

send (P, message) – send a message to process P

receive(Q, message) – receive a message from process Q

Properties of communication link

Links are established automatically

A link is associated with exactly one pair of communicating

processes

Between each pair there exists exactly one link

The link may be unidirectional, but is usually bi-directional

3.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

Messages are directed and received from mailboxes (also referred

to as ports)

Each mailbox has a unique id

Processes can communicate only if they share a mailbox

Properties of communication link

Link established only if processes share a common mailbox

A link may be associated with many processes

Each pair of processes may share several communication links

Link may be unidirectional or bi-directional

3.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

Operations

create a new mailbox (port)

send and receive messages through mailbox

destroy a mailbox

Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

3.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

Mailbox sharing

P1, P2, and P3 share mailbox A

P1, sends; P2 and P3 receive

Who gets the message?

Solutions

Allow a link to be associated with at most two processes

Allow only one process at a time to execute a receive

operation

Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

3.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization

Message passing may be either blocking or non-blocking

Blocking is considered synchronous

Blocking send -- the sender is blocked until the message is

received

Blocking receive -- the receiver is blocked until a message

is available

Non-blocking is considered asynchronous

Non-blocking send -- the sender sends the message and

continue

Non-blocking receive -- the receiver receives:

A valid message, or

Null message

Different combinations possible

If both send and receive are blocking, we have a rendezvous

3.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization (Cont.)

Producer-consumer becomes trivial

message next_produced;

while (true) {

/* produce an item in next produced */

send(next_produced);

}

message next_consumed;

while (true) {

receive(next_consumed);

/* consume the item in next consumed */

}

3.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Buffering

Queue of messages attached to the link.

implemented in one of three ways

1. Zero capacity – no messages are queued on a link.

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

Sender must wait if link full

3. Unbounded capacity – infinite length

Sender never waits

3.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of IPC Systems - POSIX

POSIX Shared Memory

Process first creates shared memory segment
shm_fd = shm_open(name, O CREAT | O RDWR, 0666);

Also used to open an existing segment to share it

Set the size of the object

ftruncate(shm fd, 4096);

Now the process could write to the shared memory

sprintf(shared memory, "Writing to shared

memory");

3.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

IPC POSIX Producer

3.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

IPC POSIX Consumer

3.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of IPC Systems - Mach

Mach communication is message based

Even system calls are messages

Each task gets two mailboxes at creation- Kernel and Notify

Only three system calls needed for message transfer

msg_send(), msg_receive(), msg_rpc()

Mailboxes needed for commuication, created via

port_allocate()

Send and receive are flexible, for example four options if mailbox full:

 Wait indefinitely

 Wait at most n milliseconds

 Return immediately

 Temporarily cache a message

3.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of IPC Systems – Windows

Message-passing centric via advanced local procedure call

(LPC) facility

Only works between processes on the same system

Uses ports (like mailboxes) to establish and maintain

communication channels

Communication works as follows:

 The client opens a handle to the subsystem’s

connection port object.

 The client sends a connection request.

 The server creates two private communication ports

and returns the handle to one of them to the client.

 The client and server use the corresponding port handle

to send messages or callbacks and to listen for replies.

3.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Local Procedure Calls in Windows

3.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications in Client-Server Systems

Sockets

Remote Procedure Calls

Pipes

Remote Method Invocation (Java)

3.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Sockets

A socket is defined as an endpoint for communication

Concatenation of IP address and port – a number included at

start of message packet to differentiate network services on a

host

The socket 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8

Communication consists between a pair of sockets

All ports below 1024 are well known, used for standard

services

Special IP address 127.0.0.1 (loopback) to refer to system on

which process is running

3.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Socket Communication

3.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Sockets in Java

Three types of sockets

Connection-oriented

(TCP)

Connectionless (UDP)

MulticastSocket

class– data can be sent

to multiple recipients

Consider this “Date” server:

3.57 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Remote Procedure Calls

Remote procedure call (RPC) abstracts procedure calls

between processes on networked systems

Again uses ports for service differentiation

Stubs – client-side proxy for the actual procedure on the

server

The client-side stub locates the server and marshalls the

parameters

The server-side stub receives this message, unpacks the

marshalled parameters, and performs the procedure on the

server

On Windows, stub code compile from specification written in

Microsoft Interface Definition Language (MIDL)

3.58 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Remote Procedure Calls (Cont.)

Data representation handled via External Data

Representation (XDL) format to account for different

architectures

Big-endian and little-endian

Remote communication has more failure scenarios than local

Messages can be delivered exactly once rather than at

most once

OS typically provides a rendezvous (or matchmaker) service

to connect client and server

3.59 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Execution of RPC

3.60 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Pipes

Acts as a conduit allowing two processes to communicate

Issues:

Is communication unidirectional or bidirectional?

In the case of two-way communication, is it half or full-

duplex?

Must there exist a relationship (i.e., parent-child) between

the communicating processes?

Can the pipes be used over a network?

Ordinary pipes – cannot be accessed from outside the process

that created it. Typically, a parent process creates a pipe and

uses it to communicate with a child process that it created.

Named pipes – can be accessed without a parent-child

relationship.

3.61 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ordinary Pipes

Ordinary Pipes allow communication in standard producer-consumer

style

Producer writes to one end (the write-end of the pipe)

Consumer reads from the other end (the read-end of the pipe)

Ordinary pipes are therefore unidirectional

Require parent-child relationship between communicating processes

Windows calls these anonymous pipes

See Unix and Windows code samples in textbook

3.62 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Named Pipes

Named Pipes are more powerful than ordinary pipes

Communication is bidirectional

No parent-child relationship is necessary between the

communicating processes

Several processes can use the named pipe for communication

Provided on both UNIX and Windows systems

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 3

