
1

CS 4410
Operating Systems

Synchronization
Classic Problems

Summer 2013

Cornell University

2

Today

● What practical problems can we solve with
semaphores?

● Bounded-Buffer Problem
● Producer-Consumer Problem

3

Producer-Consumer Problem

● Arises when two or more threads communicate with each
other.

● And, some threads “produce” data and other threads
“consume” this data.

● Real example: Production line

4

Producer-Consumer Problem

● Start by imagining an unbounded (infinite) buffer

● Producer process writes data to buffer
– Writes to In and moves rightwards

● Consumer process reads data from buffer
– Reads from Out and moves rightwards

– Should not try to consume if there is no data

Out In

5

Producer-Consumer Problem

● Bounded buffer: size ‘N’
● Access entry 0… N-1, then “wrap around” to 0 again

● Producer process writes data to buffer
● Must not write more than ‘N’ items more than consumer “ate”

● Consumer process reads data from buffer
● Should not try to consume if there is no data

0 1

In Out

N-1

6

Producer-Consumer Problem

● Multiple producer-threads.
● Multiple consumer-threads.
● One bounded buffer with N entries.
● All threads modify the same buffer.
● Requirements:

● No production when all N entries are full.
● No consumption when no entry is full.
● Only one thread should modify the buffer at any

time.

7

Producer-Consumer Problem

● Solving with semaphores:
● We’ll use counters to track how much data is in the buffer

– One counter counts as we add data and stops a producer if there are N
objects in the buffer.

– A second counter counts as we remove data and stops a consumer if there
are 0 in the buffer.

● Idea: since general semaphores can count for us, we don’t need a
separate counter variable.

● We'll use a mutex to protect the update of the buffer (“In” and “Out”
pointers).

8

Producer-Consumer Problem
Shared pointers: “In”, “Out”

Shared Semaphores: mutex, empty, full;

 mutex = 1; /* for mutual exclusion*/

 empty = N; /* number empty buf entries */

 full = 0; /* number full buf entries */

Producer

do {

 //produce item

 //update “In”

} while (true);

Consumer

do {

 //consume item

 //update “Out”

} while (true);

9

Producer-Consumer Problem
Shared pointers: “In”, “Out”

Shared Semaphores: mutex, empty, full;

 mutex = 1; /* for mutual exclusion*/

 empty = N; /* number empty buf entries */

 full = 0; /* number full buf entries */

Producer

do {

 wait(empty);

 //produce item

 //update “In”

 signal(full);

} while (true);

Consumer

do {

 wait(full);

 //consume item

 //update “Out”

 signal(empty);

} while (true);

10

Producer-Consumer Problem
Shared pointers: “In”, “Out”

Shared Semaphores: mutex, empty, full;

 mutex = 1; /* for mutual exclusion*/

 empty = N; /* number empty buf entries */

 full = 0; /* number full buf entries */

Producer

do {

 wait(empty);

 wait(mutex);

 //produce item

 //update “In”

 signal(mutex);

 signal(full);

} while (true);

Consumer

do {

 wait(full);

 wait(mutex);

 //consume item

 //update “Out”

 signal(mutex);
 signal(empty);

} while (true);

11

Readers and Writers

● In this problem, threads share data that some threads
“read” and other threads “write”.

● Goal: allow multiple concurrent readers but only a
single writer at a time, and if a writer is active,
readers wait for it to finish.

12

Readers-Writers Problem

● Access to a database
● A reader is a thread that needs to look at the database

but won’t change it.
● A writer is a thread that modifies the database.

● Making an airline reservation
● When you browse to look at flight schedules the web

site is acting as a reader on your behalf.
● When you reserve a seat, the web site has to write into

the database to make the reservation.

13

Readers-Writers Problem

● Many reader-threads.

● Many writer-threads.

● One piece of data.

● Multiple threads try to access that data.

● Requirements:
● Multiple readers may access the data at the same time.
● If a writer accesses the data, no other thread may access

the data.

● What happens when multiple readers and one writer
are waiting to access the data?

14

Readers-Writers Problem
mutex = Semaphore(1)

wrt = Semaphore(1)

readcount = 0;

Writer

do{

 /*writing is performed*/

}while(true)

Reader

do{

 /*reading is performed*/

}while(true)

15

Readers-Writers Problem
mutex = Semaphore(1)

wrt = Semaphore(1)

readcount = 0;

Writer

do{

 wait(wrt);

 /*writing is performed*/

 signal(wrt);

}while(true)

Reader

do{

 wait(wrt);

 /*reading is performed*/

 signal(wrt);

}while(true)

16

Readers-Writers Problem
mutex = Semaphore(1)

wrt = Semaphore(1)

readcount = 0;

Writer

do{

 wait(wrt);

 /*writing is performed*/

 signal(wrt);

}while(true)

Reader

do{

 wait(mutex);

 readcount++;

 if (reardcount == 1)

 wait(wrt);

 signal(mutex);

 /*reading is performed*/

 wait(mutex);

 readcount--;

 if (readcount == 0)

 signal(wrt);

 signal(mutex);

}while(true)

17

Readers-Writers Notes

● If there is a writer
● First reader blocks on wrl

● Other readers block on mutex

● Once a reader is active, all readers get to go through
● Which reader gets in first?

● The last reader to exit signals a writer
● If no writer, then readers can continue

● If readers and writers are waiting on wrl, and writer exits
● Who gets to go in first?

● Why doesn’t a writer need to use mutex?
● Is the previous solution fair?
● Readers can “starve” writers!
● Building a “fair” solution is tricky!

Today

● Which practical problems can we solve with
semaphores?

● Producers-Consumers Problem
● Readers-Writers Problem

