
Mutex and Semaphores

Mutex

● The hardware-based solutions are complicated and not accessible to
application programmers

● We need to provide a higher level abstraction
● Achieved through mutexes, semaphores etc.

Mutex

● Variables -
○ A shared boolean variable named available

● Functions -
○ aquire() and release()

● Implementation:

Mutex
P1 P2

acquire()

available = false and
acquired critical section

acquire()
available = false and busy
waiting

release()
available = true

available = true
Break while loop
available = false and
acquired critical section

Mutex : Advantages and Disadvantages

● Disadvantage :
○ Busy waiting : Wastes CPU cycle

● Advantage :
○ Busy Waiting! : Reduces context switching time
○ Ideally critical sections have short duration
○ Hence, uninterrupted busy waiting can be ideal

Spinlock

● Type of locks where the waiting process spins (uses a loop) to wait
● Behaves differently for two types of process:

○ Kernel process : All kernel processes trust each other, so, all spinlocks are uninterrupted
○ User process : Should not be uninterrupted always as not trusted. Usually, most OS (like

Solaris, Mac OS X and FreeBSD) provide hybrid mechanism. Upto a time threshold, process
is uninterrupted but can be interrupted after that limit.

Semaphore

● Mutex enable mutual exclusion
● What if several processes (> n) want to access n resources and one process

can use one resource at a time?
● Cannot be achieved with binary mutex

Semaphore

● Two types -
○ Binary Semaphore : Works like mutex
○ Counting Semaphore : Used to control access to resources

● Implementation :

Semaphore : Example

● Consider two concurrently running processes: P1 with a statement S1 and P2
with a statement S2 . Suppose we require that S2 be executed only after S1
has completed.

● Solution -

Semaphore : Disadvantage

● Suffers from busy waiting
● Solution : Put waiting process to sleep, wake up a sleeping process only

when another process has relinquished the resource

Semaphore Implementation

Semaphore Implementation

● Number of processes : 4
● Number of resources : 2
● Consider FIFO waiting queue
● Consider the following order of processes to execute wait() : P1, P3, P2, P4
● P1, P2, P3 and P4 relinquish their resource after 3, 5, 3 and 2 timesteps

respectively
● Using a semaphore, how many timesteps does it take for all process to finish?

Semaphore Implementation

● Class task : Implement Mutex with compare and swap operation
● Class task : Implement semaphore for producer and consumer process (Hint:

You need three semaphores)

