
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 18: Virtual Machines

18.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 18: Virtual Machines

 Overview

 History

 Benefits and Features

 Building Blocks

 Types of Virtual Machines and Their Implementations

 Virtualization and Operating-System Components

 Examples

18.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter Objectives

 Explore the history and benefits of virtual machines

 Discuss the various virtual machine technologies

 Describe the methods used to implement virtualization

 Show the most common hardware features that support virtualization

and explain how they are used by operating-system modules

 Discuss current virtualization research areas

18.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Overview

 Fundamental idea – abstract hardware of a single computer into

several different execution environments

• Similar to layered approach

• But layer creates virtual system (virtual machine, or VM) on

which operation systems or applications can run

 Several components

• Host – underlying hardware system

• Virtual machine manager (VMM) or hypervisor – creates and

runs virtual machines by providing interface that is identical to the

host

 (Except in the case of paravirtualization)

• Guest – process provided with virtual copy of the host

 Usually an operating system

 Single physical machine can run multiple operating systems

concurrently, each in its own virtual machine

18.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

System Models

Non-virtual machine Virtual machine

18.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation of VMMs

 Vary greatly, with options including:

• Type 0 hypervisors - Hardware-based solutions that provide

support for virtual machine creation and management via firmware

 IBM LPARs and Oracle LDOMs are examples

• Type 1 hypervisors - Operating-system-like software built to

provide virtualization

 Including VMware ESX, Joyent SmartOS, and Citrix XenServer

• Type 1 hypervisors – Also includes general-purpose operating

systems that provide standard functions as well as VMM functions

 Including Microsoft Windows Server with HyperV and RedHat

Linux with KVM

• Type 2 hypervisors - Applications that run on standard operating

systems but provide VMM features to guest operating systems

 Including VMware Workstation and Fusion, Parallels Desktop,

and Oracle VirtualBox

18.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation of VMMs (Cont.)

 Other variations include:

• Paravirtualization - Technique in which the guest operating

system is modified to work in cooperation with the VMM to

optimize performance

• Programming-environment virtualization - VMMs do not

virtualize real hardware but instead create an optimized virtual

system

 Used by Oracle Java and Microsoft.Net

• Emulators – Allow applications written for one hardware

environment to run on a very different hardware environment, such

as a different type of CPU

18.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation of VMMs (Cont.)

• Application containment - Not virtualization at all but rather

provides virtualization-like features by segregating applications

from the operating system, making them more secure,

manageable

 Including Oracle Solaris Zones, BSD Jails, and IBM AIX

WPARs

 Much variation due to breadth, depth and importance of virtualization

in modern computing

18.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

History

 First appeared in IBM mainframes in 1972

 Allowed multiple users to share a batch-oriented system

 Formal definition of virtualization helped move it beyond IBM

1. A VMM provides an environment for programs that is essentially

identical to the original machine

2. Programs running within that environment show only minor

performance decreases

3. The VMM is in complete control of system resources

 In late 1990s Intel CPUs fast enough for researchers to try virtualizing

on general purpose PCs

• Xen and VMware created technologies, still used today

• Virtualization has expanded to many OSes, CPUs, VMMs

18.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Benefits and Features

 Host system protected from VMs, VMs protected from each other

• i.e., A virus less likely to spread

• Sharing is provided though via shared file system volume, network

communication

 Freeze, suspend, running VM

• Then can move or copy somewhere else and resume

• Snapshot of a given state, able to restore back to that state

 Some VMMs allow multiple snapshots per VM

• Clone by creating copy and running both original and copy

 Great for OS research, better system development efficiency

 Run multiple, different OSes on a single machine

• Consolidation, app dev, …

18.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Benefits and Features (Cont.)

 Templating – create an OS + application VM, provide it to customers,

use it to create multiple instances of that combination

 Live migration – move a running VM from one host to another!

• No interruption of user access

 All those features taken together -> cloud computing

• Using APIs, programs tell cloud infrastructure (servers,

networking, storage) to create new guests, VMs, virtual desktops

18.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Building Blocks

 Generally difficult to provide an exact duplicate of underlying machine

• Especially if only dual-mode operation available on CPU

• But getting easier over time as CPU features and support for

VMM improves

• Most VMMs implement virtual CPU (VCPU) to represent state of

CPU per guest as guest believes it to be

 When guest context switched onto CPU by VMM, information

from VCPU loaded and stored

• Several techniques, as described in next slides

18.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Building Block – Trap and Emulate

 Dual mode CPU means guest executes in user mode

• Kernel runs in kernel mode

• Not safe to let guest kernel run in kernel mode too

• So VM needs two modes – virtual user mode and virtual kernel

mode

 Both of which run in real user mode

• Actions in guest that usually cause switch to kernel mode must

cause switch to virtual kernel mode

18.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Trap-and-Emulate (Cont.)

 How does switch from virtual user mode to virtual kernel mode

occur?

• Attempting a privileged instruction in user mode causes an error -

> trap

• VMM gains control, analyzes error, executes operation as

attempted by guest

• Returns control to guest in user mode

• Known as trap-and-emulate

• Most virtualization products use this at least in part

 User mode code in guest runs at same speed as if not a guest

 But kernel mode privilege mode code runs slower due to trap-and-

emulate

• Especially a problem when multiple guests running, each needing

trap-and-emulate

 CPUs adding hardware support, mode CPU modes to improve

virtualization performance

18.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Trap-and-Emulate

Virtualization Implementation

18.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Building Block – Binary Translation

 Some CPUs don’t have clean separation between privileged and

nonprivileged instructions

• Earlier Intel x86 CPUs are among them

 Earliest Intel CPU designed for a calculator

• Backward compatibility means difficult to improve

• Consider Intel x86 popf instruction

 Loads CPU flags register from contents of the stack

 If CPU in privileged mode -> all flags replaced

 If CPU in user mode -> on some flags replaced

– No trap is generated

18.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Binary Translation (Cont.)

 Other similar problem instructions we will call special instructions

• Caused trap-and-emulate method considered impossible until

1998

 Binary translation solves the problem

1. Basics are simple, but implementation very complex

2. If guest VCPU is in user mode, guest can run instructions

natively

3. If guest VCPU in kernel mode (guest believes it is in kernel

mode)

a) VMM examines every instruction guest is about to execute by

reading a few instructions ahead of program counter

b) Non-special-instructions run natively

c) Special instructions translated into new set of instructions that

perform equivalent task (for example changing the flags in the

VCPU)

18.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Binary Translation (Cont.)

 Implemented by translation of code within VMM

 Code reads native instructions dynamically from guest, on demand,

generates native binary code that executes in place of original code

 Performance of this method would be poor without optimizations

• Products like VMware use caching

 Translate once, and when guest executes code containing

special instruction cached translation used instead of

translating again

 Testing showed booting Windows XP as guest caused

950,000 translations, at 3 microseconds each, or 3 second (5

%) slowdown over native

18.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Binary Translation

Virtualization Implementation

18.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Nested Page Tables

 Memory management another general challenge to VMM

implementations

 How can VMM keep page-table state for both guests believing they

control the page tables and VMM that does control the tables?

 Common method (for trap-and-emulate and binary translation) is

nested page tables (NPTs)

• Each guest maintains page tables to translate virtual to physical

addresses

• VMM maintains per guest NPTs to represent guest’s page-table

state

 Just as VCPU stores guest CPU state

• When guest on CPU -> VMM makes that guest’s NPTs the active

system page tables

• Guest tries to change page table -> VMM makes equivalent

change to NPTs and its own page tables

• Can cause many more TLB misses -> much slower performance

18.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Building Blocks – Hardware Assistance

 All virtualization needs some HW support

 More support -> more feature rich, stable, better performance of

guests

 Intel added new VT-x instructions in 2005 and AMD the AMD-V

instructions in 2006

• CPUs with these instructions remove need for binary translation

• Generally define more CPU modes – “guest” and “host”

• VMM can enable host mode, define characteristics of each guest VM,

switch to guest mode and guest(s) on CPU(s)

• In guest mode, guest OS thinks it is running natively, sees devices (as

defined by VMM for that guest)

 Access to virtualized device, priv instructions cause trap to VMM

 CPU maintains VCPU, context switches it as needed

 HW support for Nested Page Tables, DMA, interrupts as well over

time

18.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Nested Page Tables

18.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Types of Virtual Machines

and Implementations

 Many variations as well as HW details

• Assume VMMs take advantage of HW features

 HW features can simplify implementation, improve

performance

 Whatever the type, a VM has a lifecycle

• Created by VMM

• Resources assigned to it (number of cores, amount of memory,

networking details, storage details)

• In type 0 hypervisor, resources usually dedicated

• Other types dedicate or share resources, or a mix

• When no longer needed, VM can be deleted, freeing resources

 Steps simpler, faster than with a physical machine install

• Can lead to virtual machine sprawl with lots of VMs, history and

state difficult to track

18.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Types of VMs – Type 0 Hypervisor

 Old idea, under many names by HW manufacturers

• “partitions”, “domains”

• A HW feature implemented by firmware

• OS need to nothing special, VMM is in firmware

• Smaller feature set than other types

• Each guest has dedicated HW

 I/O a challenge as difficult to have enough devices, controllers to

dedicate to each guest

 Sometimes VMM implements a control partition running daemons

that other guests communicate with for shared I/O

 Can provide virtualization-within-virtualization (guest itself can be a

VMM with guests

• Other types have difficulty doing this

18.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Type 0 Hypervisor

18.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Types of VMs – Type 1 Hypervisor

 Commonly found in company datacenters

• In a sense becoming “datacenter operating systems”

 Datacenter managers control and manage OSes in new,

sophisticated ways by controlling the Type 1 hypervisor

 Consolidation of multiple OSes and apps onto less HW

 Move guests between systems to balance performance

 Snapshots and cloning

18.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Types of VMs – Type 1 Hypervisor (Cont.)

 Special purpose operating systems that run natively on HW

• Rather than providing system call interface, create run and

manage guest OSes

• Can run on Type 0 hypervisors but not on other Type 1s

• Run in kernel mode

• Guests generally don’t know they are running in a VM

• Implement device drivers for host HW because no other

component can

• Also provide other traditional OS services like CPU and memory

management

18.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

 Another variation is a general purpose OS that also provides VMM

functionality

• RedHat Enterprise Linux with KVM, Windows with Hyper-V,

Oracle Solaris

• Perform normal duties as well as VMM duties

• Typically less feature rich than dedicated Type 1 hypervisors

 In many ways, treat guests OSes as just another process

• Albeit with special handling when guest tries to execute special

instructions

Types of VMs – Type 1 Hypervisor (Cont.)

18.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Types of VMs – Type 2 Hypervisor

 Less interesting from an OS perspective

• Very little OS involvement in virtualization

• VMM is simply another process, run and managed by host

 Even the host doesn’t know they are a VMM running guests

• Tend to have poorer overall performance because can’t take

advantage of some HW features

• But also a benefit because require no changes to host OS

 Student could have Type 2 hypervisor on native host, run

multiple guests, all on standard host OS such as Windows,

Linux, MacOS

18.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Types of VMs – Paravirtualization

 Does not fit the definition of virtualization – VMM not presenting an

exact duplication of underlying hardware

• But still useful!

• VMM provides services that guest must be modified to use

• Leads to increased performance

• Less needed as hardware support for VMs grows

 Xen, leader in paravirtualized space, adds several techniques

• For example, clean and simple device abstractions

 Efficient I/O

 Good communication between guest and VMM about device

I/O

 Each device has circular buffer shared by guest and VMM via

shared memory

18.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Xen I/O via Shared Circular Buffer

18.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Types of VMs – Paravirtualization (Cont.)

 Xen, leader in paravirtualized space, adds several techniques (Cont.)

• Memory management does not include nested page tables

 Each guest has own read-only tables

 Guest uses hypercall (call to hypervisor) when page-table

changes needed

 Paravirtualization allowed virtualization of older x86 CPUs (and

others) without binary translation

 Guest had to be modified to use run on paravirtualized VMM

 But on modern CPUs Xen no longer requires guest modification -> no

longer paravirtualization

18.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Types of VMs –

Programming Environment Virtualization

 Also not-really-virtualization but using same techniques, providing

similar features

 Programming language is designed to run within custom-built

virtualized environment

• For example Oracle Java has many features that depend on

running in Java Virtual Machine (JVM)

 In this case virtualization is defined as providing APIs that define a set

of features made available to a language and programs written in that

language to provide an improved execution environment

 JVM compiled to run on many systems (including some smart phones

even)

 Programs written in Java run in the JVM no matter the underlying

system

 Similar to interpreted languages

18.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Types of VMs – Emulation

 Another (older) way for running one operating system on a different

operating system

• Virtualization requires underlying CPU to be same as guest was

compiled for

• Emulation allows guest to run on different CPU

 Necessary to translate all guest instructions from guest CPU to native

CPU

• Emulation, not virtualization

 Useful when host system has one architecture, guest compiled for other

architecture

• Company replacing outdated servers with new servers containing

different CPU architecture, but still want to run old applications

 Performance challenge – order of magnitude slower than native code

• New machines faster than older machines so can reduce slowdown

 Very popular – especially in gaming where old consoles emulated on new

18.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Types of VMs –

Application Containment

 Some goals of virtualization are segregation of apps, performance

and resource management, easy start, stop, move, and management

of them

 Can do those things without full-fledged virtualization

• If applications compiled for the host operating system, don’t need

full virtualization to meet these goals

 Oracle containers / zones for example create virtual layer between

OS and apps

• Only one kernel running – host OS

• OS and devices are virtualized, providing resources within zone

with impression that they are only processes on system

• Each zone has its own applications; networking stack, addresses,

and ports; user accounts, etc

• CPU and memory resources divided between zones

 Zone can have its own scheduler to use those resources

18.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Solaris 10 with Two Zones

18.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtualization and

Operating-System Components

 Now look at operating system aspects of virtualization

• CPU scheduling, memory management, I/O, storage, and unique

VM migration feature

 How do VMMs schedule CPU use when guests believe they

have dedicated CPUs?

 How can memory management work when many guests

require large amounts of memory?

18.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

OS Component – CPU Scheduling

 Even single-CPU systems act like multiprocessor ones when

virtualized

• One or more virtual CPUs per guest

 Generally VMM has one or more physical CPUs and number of

threads to run on them

• Guests configured with certain number of VCPUs

 Can be adjusted throughout life of VM

• When enough CPUs for all guests -> VMM can allocate dedicated

CPUs, each guest much like native operating system managing its

CPUs

• Usually not enough CPUs -> CPU overcommitment

 VMM can use standard scheduling algorithms to put threads on

CPUs

 Some add fairness aspect

18.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

OS Component –

CPU Scheduling (Cont.)

 Cycle stealing by VMM and oversubscription of CPUs means guests

don’t get CPU cycles they expect

• Consider timesharing scheduler in a guest trying to schedule

100ms time slices -> each may take 100ms, 1 second, or longer

 Poor response times for users of guest

 Time-of-day clocks incorrect

• Some VMMs provide application to run in each guest to fix time-of-

day and provide other integration features

18.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

OS Component – Memory Management

 Also suffers from oversubscription -> requires extra management

efficiency from VMM

 For example, VMware ESX guests have a configured amount of

physical memory, then ESX uses 3 methods of memory management

1. Double-paging, in which the guest page table indicates a page is

in a physical frame but the VMM moves some of those pages to

backing store

2. Install a pseudo-device driver in each guest (it looks like a

device driver to the guest kernel but really just adds kernel-mode

code to the guest)

 Balloon memory manager communicates with VMM and is

told to allocate or de-allocate memory to decrease or increase

physical memory use of guest, causing guest OS to free or

have more memory available

3. De-duplication by VMM determining if same page loaded more

than once, memory mapping the same page into multiple guests

18.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

OS Component – I/O

 Easier for VMMs to integrate with guests because I/O has lots of

variation

• Already somewhat segregated / flexible via device drivers

• VMM can provide new devices and device drivers

 But overall I/O is complicated for VMMs

• Many short paths for I/O in standard OSes for improved performance

• Less hypervisor needs to do for I/O for guests, the better

• Possibilities include direct device access, DMA pass-through, direct

interrupt delivery

 Again, HW support needed for these

 Networking also complex as VMM and guests all need network access

• VMM can bridge guest to network (allowing direct access)

• And / or provide network address translation (NAT)

 NAT address local to machine on which guest is running, VMM

provides address translation to guest to hide its address

18.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

OS Component – Storage Management

 Both boot disk and general data access need be provided by VMM

 Need to support potentially dozens of guests per VMM (so standard

disk partitioning not sufficient)

 Type 1 – storage guest root disks and config information within file

system provided by VMM as a disk image

 Type 2 – store as files in file system provided by host OS

 Duplicate file -> create new guest

 Move file to another system -> move guest

 Physical-to-virtual (P-to-V) convert native disk blocks into VMM

format

 Virtual-to-physical (V-to-P) convert from virtual format to native or

disk format

 VMM also needs to provide access to network attached storage (just

networking) and other disk images, disk partitions, disks, etc.

18.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

OS Component – Live Migration

 Taking advantage of VMM features leads to new functionality not found on

general operating systems such as live migration

 Running guest can be moved between systems, without interrupting user

access to the guest or its apps

 Very useful for resource management, maintenance downtime windows,

etc.

1. The source VMM establishes a connection with the target VMM

2. The target creates a new guest by creating a new VCPU, etc.

3. The source sends all read-only guest memory pages to the target

4. The source sends all read-write pages to the target, marking them as

clean

5. The source repeats step 4, as during that step some pages were

probably modified by the guest and are now dirty

6. When cycle of steps 4 and 5 becomes very short, source VMM freezes

guest, sends VCPU’s final state, sends other state details, sends final

dirty pages, and tells target to start running the guest

 Once target acknowledges that guest running, source terminates

guest

18.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Live Migration of Guest Between Servers

18.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Examples - VMware

 VMware Workstation runs on x86, provides VMM for guests

 Runs as application on other native, installed host operating system -

> Type 2

 Lots of guests possible, including Windows, Linux, etc. all runnable

concurrently (as resources allow)

 Virtualization layer abstracts underlying HW, providing guest with is

own virtual CPUs, memory, disk drives, network interfaces, etc.

 Physical disks can be provided to guests, or virtual physical disks (just

files within host file system)

18.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

VMware Workstation Architecture

18.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Examples – Java Virtual Machine

 Example of programming-environment virtualization

 Very popular language / application environment invented by Sun

Microsystems in 1995

 Write once, run anywhere

 Includes language specification (Java), API library, Java virtual

machine (JVM)

 Java objects specified by class construct, Java program is one or

more objects

 Each Java object compiled into architecture-neutral bytecode output
(.class) which JVM class loader loads

 JVM compiled per architecture, reads bytecode and executes

 Includes garbage collection to reclaim memory no longer in use

 Made faster by just-in-time (JIT) compiler that turns bytecodes into

native code and caches them

18.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The Java Virtual Machine

18.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtualization Research

 Very popular technology with active research

 Driven by uses such as server consolidation

 Unikernels, built on library operating systems

• Aim to improve efficiency and security

• Specialized machine images using one address space, shrinking

attack surface and resource footprint of deployed applications

• In essence, compile application, libraries called, and used kernel

services into single binary that runs in a virtual environment

 Better control of processes available via projects like Quest-V

• Real time execution and fault tolerance via virtualization

instructions

• Partitioning hypervisors partition physical resources amongst

guests, fully-committing all resources (rather than

overcommitting)

• For example a Linux system that lacks real-time capabilities for

safety- and security-critical tasks can be extended with a

lightweight real-time OS running in its own VM

18.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtualization Research (Cont.)

 Separation hypervisors like Quest-V, each task runs in a virtual

machine

• Hypervisor initializes system and starts tasks but not involved in

continuing operation

• Each VM has its own resources the task manages

• Tasks can be real time and more secure

• Other examples are Xtratum, Siemens Jailhouse

• Can build chip-level distributed system

• Secure shared memory channels implemented via extended page

tables for inter-task communication

• Project targets include robotics, self-driving cars, Internet of Things

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 18

