Angular 13

Moumita Asad

Lecturer
IIT, DU.

Traditional Page

| Initial Request

Client Server

Single Page Application

Initial Request

Client . Server

Angular 13

¢ An open-source JavaScript framework written in TypeScript
¢ Maintained by Google
¢ Primary purpose 1s to develop single-page applications

& As a platform, Angular includes:
« A component-based framework for building scalable web applications

» A collection of well-integrated libraries that cover a wide variety of
features, including routing, forms management, client-server
communication

« A suite of tools to develop, build, test, and update code

GENERAL MOTORS UPWORK

World Tech Giants
using Angular Google HB®

GOOGLE HBO

Forbes

FORBES

Angular Prerequisites

1. NodelJS
«+ Download URL: https://nodejs.org/en/download/

« Command to check installation: node -v
2. Angular CLI

» npm 1install -g @angular/cli

«+ Command to check installation: ng --version
3. Text Editor (Visual Studio Code)

+ Download URL: https://code.visualstudio.com/download

https://nodejs.org/en/download/
https://code.visualstudio.com/download

Creating The First Project!

& Create new project: ng new project-name
¢ Go to the workspace directory: cd project-name

¢ Build and run the project: ng serve

Troubleshoot: Running Scripts Is Disabled On This
System

¢ Execute the following 3 commands:
1. powershell set-ExecutionPolicy RemoteSigned -Scope CurrentUser
2. powershell Get-ExecutionPolicy

3. powershell Get-ExecutionPolicy -list

Component

¢ Fundamental building block of Angular applications
& Responsibility:
1. display data on the screen
2. listen for user input
3. take action based on that input
& Consists of 3 things:
1. A component class that handles data and functionality
2. An HTML template that determines the UI

3. Component-specific styles that define the look and feel

Example of Component

import { Component } from '@angular/core’;

@Component ({
selector: 'app-root’,
templateUrl: './app.component.html’,
styleUrls: ['./app.component.css']

Ziport class AppComponent {
title = 'example’;
}
<body>
<app-root></app-root>
</body>
</html>

10

Creating New Component

¢ Command: ng generate component component-name

Vv newcomponent

newcomponent.component.css
<> newcomponent.component.html
TS newcomponent.component.ts

TS newcomponent.component.spec.ts

11

Model-View-Controller (MVC)

& An architectural pattern that separates an application
into three main logical components:

Mampulates
1. model
2 VieEw

& Each of these components are built to handle specific !

3 controller

development aspects of an application.

112

Model-View-Controller (MVC)

Model: corresponds to all the data-related logic that
the user works with

View: presents data to the user or handles user
interaction

Controller: An interface between Model and View
components

13

Model (Class)

& TypeScript 1s object oriented JavaScript.
& A class 1s a blueprint for creating objects.
& A class encapsulates data for the object.

& Strict Class Initialization: checks to ensure that
each instance property of a class gets initialized in
the constructor body, or by a property initializer.

export class book {
id: number = ©;
name: string = "";
year: number = ©;
availability: boolean

true;

14

Service

Objective: organize and share business logic, models, or data and functions with different
components of an Angular application.

Get instantiated just once during the lifetime of an application.

¢ Contain methods that maintain data throughout the life of an application, 1.e., data 1s

available all the time.

Usually implemented through dependency injection.

¢ Command: ng generate service service-name

export class BookService {
books: Book[] =
[{id:1, name:"Megh boleche jabo jabo",year:2084,availability:true},
{id:2, name:"Debi",year:2002,availability:false}]
constructor() { }
getBooks(): Book[] {
return this.books; 15

}

Controller

& focuses on managing the attributes that are connected to the view (template) and invoking
the service.

export class BookListComponent implements OnInit {
constructor(private bookService: BookService) { }

books = this.bookService.getBooks();
ngOnInit(): void {
console.log("init!!");

}

16

View

<tbody>
<tr *ngFor ="let book of books">
<td>{{book.name}}</td>
<td>{{book.year}}</td>
<td *ngIf = "book.availability">available</td>
<td *ngIf = "!book.availability">borrowed</td>
</Er>
</tbody>

Angular Routing

& To handle the navigation from one view to the next, you use the Angular Router.

& The Router enables navigation by interpreting a browser URL as an instruction to change
the view.

const routes: Routes = [
{path: "', component: HomepageComponent},
{path: 'books', component: BookListComponent},
{path: 'home', component: HomepageComponent},
{path: "newbook®', component: NewbookComponent},
{path: 'updatebook®', component: UpdateBookComponent},

1;

Angular Routing

<div class="collapse navbar-collapse" id="navbarResponsive">
<ul class="navbar-nav ml-auto">
<li class="nav-item">
Home
</1li>

<li class="nav-item">
GEVE
View Books
</nav>
</1i>

</div>

19

Data Binding

¢ Interpolation Binding

< allows the user to bind a value to the user interface element

« data moves 1n one direction from the components to HTML elements

{{ Value }}

20

Data Binding

& Property Binding
« set the properties for HTML elements.

« 1nvolves updating a property value in the component and binding the value to an HTML element
in the same view

In the app.component.ts file:
public image = "/assets/Logo.png"

In the app.component.html file:

21

Data Binding

¢ Event Binding

« when information flows from the view to the component after an event is triggered.

2

Data Binding

& Two-way Data Binding
«» Wwhere data flows from the component to the view and back

« Any changes made on either end are immediately reflected on both

div class="form-group”
label for="name">Name</label
input type="text" class="form-control” id="name" [(ngModel)]="bookToBeUpdated.name” [ngModelOptions]="{standalone: true}”
div

23

Useful Resources

¢ https://angular.io/docs

& https://www.simplilearn.com/tutorials/angular-tutorial /what-is-
angular?source=sl frs nav playlist video clicked

24

https://angular.io/docs
https://www.simplilearn.com/tutorials/angular-tutorial/what-is-angular?source=sl_frs_nav_playlist_video_clicked

