
Classification: Basic Concepts and 

Decision Trees



A programming task



Classification: Definition

 Given a collection of records (training 
set )
 Each record contains a set of attributes, one of the 

attributes is the class.

 Find a model for class attribute as a 
function of the values of other 
attributes.

 Goal: previously unseen records should 
be assigned a class as accurately as 
possible.
 A test set is used to determine the accuracy of the 

model. Usually, the given data set is divided into 
training and test sets, with training set used to build 
the model and test set used to validate it.



Illustrating Classification Task

Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Learning

algorithm

Training Set



Examples of  Classification Task

 Predicting tumor cells as benign or malignant

 Classifying credit card transactions 
as legitimate or fraudulent

 Classifying secondary structures of protein 
as alpha-helix, beta-sheet, or random 
coil

 Categorizing news stories as finance, 
weather, entertainment, sports, etc



Classification Using Distance
 Place items in class to which  they are 

“closest”.

 Must determine distance between an 
item and a class.

 Classes represented by

 Centroid: Central value.

Medoid: Representative point.

 Individual points

Algorithm: KNN



K Nearest Neighbor (KNN):

 Training set includes classes.

 Examine K items near item to be 
classified.

 New item placed in class with the most 
number of close items.

 O(q) for each tuple to be classified.  
(Here q is the size of the training set.)



KNN



Classification Techniques

 Decision Tree based Methods

 Rule-based Methods

 Memory based reasoning

 Neural Networks

 Naïve Bayes and Bayesian Belief Networks

 Support Vector Machines



Example of  a Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model:  Decision Tree



Another Example of  Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

MarSt

Refund

TaxInc

YESNO

NO

NO

Yes No

Married
Single, 

Divorced

< 80K > 80K

There could be more than one tree that 

fits the same data!



Decision Tree Classification Task

Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Tree

Induction

algorithm

Training Set

Decision 

Tree



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data

Start from the root of tree.



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data

Assign Cheat to “No”



Decision Tree Classification Task

Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Tree

Induction

algorithm

Training Set

Decision 

Tree



Decision Tree Induction

 Many Algorithms:

 Hunt’s Algorithm (one of the earliest)

 CART

 ID3, C4.5

 SLIQ,SPRINT



General Structure of  Hunt’s 

Algorithm

 Let Dt be the set of training 
records that reach a node t

 General Procedure:
 If Dt contains records that 

belong the same class yt, then 
t is a leaf node labeled as yt

 If Dt is an empty set, then t is 
a leaf node labeled by the 
default class, yd

 If Dt contains records that 
belong to more than one 
class, use an attribute test to 
split the data into smaller 
subsets. Recursively apply the 
procedure to each subset.

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Dt

?



Hunt’s Algorithm

Don’t 

Cheat

Refund

Don’t 

Cheat

Don’t 

Cheat

Yes No

Refund

Don’t 

Cheat

Yes No

Marital

Status

Don’t 

Cheat

Cheat

Single,

Divorced
Married

Taxable

Income

Don’t 

Cheat

< 80K >= 80K

Refund

Don’t 

Cheat

Yes No

Marital

Status

Don’t 

Cheat
Cheat

Single,

Divorced
Married

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10



Tree Induction

 Greedy strategy.

 Split the records based on an attribute test 
that optimizes certain criterion.

 Issues

 Determine how to split the records

 How to specify the attribute test condition?

 How to determine the best split?

 Determine when to stop splitting



Tree Induction

 Greedy strategy.

 Split the records based on an attribute test 
that optimizes certain criterion.

 Issues

 Determine how to split the records

 How to specify the attribute test condition?

 How to determine the best split?

 Determine when to stop splitting



How to Specify Test Condition?

 Depends on attribute types

 Nominal

 Ordinal

 Continuous

 Depends on number of ways to split

 2-way split

 Multi-way split



Splitting Based on Nominal Attributes
 Multi-way split: Use as many partitions as distinct 

values. 

 Binary split: Divides values into two subsets. 
Need to find optimal partitioning.

CarType
Family

Sports

Luxury

CarType
{Family, 

Luxury} {Sports}

CarType
{Sports, 

Luxury} {Family}
OR



 Multi-way split: Use as many partitions as distinct 
values. 

 Binary split: Divides values into two subsets. 
Need to find optimal partitioning.

 What about this split?

Splitting Based on Ordinal 

Attributes

Size
Small

Medium

Large

Size
{Medium, 

Large} {Small}

Size
{Small, 

Medium} {Large}
OR

Size
{Small, 

Large} {Medium}



Splitting Based on Continuous 

Attributes

 Different ways of handling

 Discretization to form an ordinal categorical 
attribute

 Static – discretize once at the beginning

 Dynamic – ranges can be found by equal interval 
bucketing, equal frequency bucketing
(percentiles), or clustering.

 Binary Decision: (A < v) or (A  v)

 consider all possible splits and finds the best cut

 can be more compute intensive



Splitting Based on Continuous 

Attributes

Taxable

Income

> 80K?

Yes No

Taxable

Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K



Tree Induction

 Greedy strategy.

 Split the records based on an attribute test 
that optimizes certain criterion.

 Issues

 Determine how to split the records

 How to specify the attribute test condition?

 How to determine the best split?

 Determine when to stop splitting



How to determine the Best Split

Own

Car?

C0: 6

C1: 4

C0: 4

C1: 6

C0: 1

C1: 3

C0: 8

C1: 0

C0: 1

C1: 7

Car

Type?

C0: 1

C1: 0

C0: 1

C1: 0

C0: 0

C1: 1

Student

ID?

...

Yes No Family

Sports

Luxury c
1

c
10

c
20

C0: 0

C1: 1
...

c
11

Before Splitting: 10 records of class 0,

10 records of class 1

Which test condition is the best?



How to determine the Best Split

 Greedy approach: 

 Nodes with homogeneous class distribution are 
preferred

 Need a measure of node impurity:

C0: 5

C1: 5

C0: 9

C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity



Measures of  Node Impurity

 Gini Index

 Entropy

 Misclassification error



How to Find the Best Split

B?

Yes No

Node N3 Node N4

A?

Yes No

Node N1 Node N2

Before Splitting:

C0 N10 

C1 N11 
 

 

C0 N20 

C1 N21 
 

 

C0 N30 

C1 N31 
 

 

C0 N40 

C1 N41 
 

 

C0 N00 

C1 N01 
 

 

M0

M1 M2 M3 M4

M12 M34
Gain = M0 – M12 vs  M0 – M34



Measure of  Impurity: GINI

 Gini Index for a given node t :

(NOTE: p( j | t) is the relative frequency of class j at node t).

 Maximum (1 - 1/nc) when records are equally 
distributed among all classes, implying least interesting 
information

 Minimum (0.0) when all records belong to one class, 
implying most interesting information


j

tjptGINI 2)]|([1)(

C1 0

C2 6

Gini=0.000

C1 2

C2 4

Gini=0.444

C1 3

C2 3

Gini=0.500

C1 1

C2 5

Gini=0.278



Examples for computing GINI

C1 0 

C2 6 
 

 

C1 2 

C2 4 
 

 

C1 1 

C2 5 
 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0 


j

tjptGINI 2)]|([1)(

P(C1) = 1/6          P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

P(C1) = 2/6          P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444



Splitting Based on GINI
 Used in CART, SLIQ, SPRINT.

 When a node p is split into k partitions (children), 
the quality of split is computed as,

where, ni = number of records at child i,

n = number of records at node p.





k

i

i
split iGINI

n

n
GINI

1

)(



Binary Attributes: Computing GINI 

Index
 Splits into two partitions

 Effect of Weighing partitions: 

 Larger and Purer Partitions are sought for.

B?

Yes No

Node N1 Node N2

 Parent 

C1 6 

C2 6 

Gini = 0.500 

 

 N1 N2 

C1 5 1 

C2 2 4 

Gini=0.333 
 

 

Gini(N1) 

= 1 – (5/6)2 – (2/6)2

= 0.194 

Gini(N2) 

= 1 – (1/6)2 – (4/6)2

= 0.528

Gini(Children) 

= 7/12 * 0.194 + 

5/12 * 0.528

= 0.333



Categorical Attributes: Computing Gini 

Index

 For each distinct value, gather counts for each 
class in the dataset

 Use the count matrix to make decisions

CarType

{Sports,
Luxury}

{Family}

C1 3 1

C2 2 4

Gini 0.400

CarType

{Sports}
{Family,
Luxury}

C1 2 2

C2 1 5

Gini 0.419

CarType

Family Sports Luxury

C1 1 2 1

C2 4 1 1

Gini 0.393

Multi-way split Two-way split 

(find best partition of values)



Continuous Attributes: Computing Gini 

Index

 Use Binary Decisions based on 
one value

 Several Choices for the splitting 
value
 Number of possible splitting 

values 
= Number of distinct values

 Each splitting value has a count 
matrix associated with it
 Class counts in each of the 

partitions, A < v and A  v

 Simple method to choose best v
 For each v, scan the database to 

gather count matrix and compute 
its Gini index

 Computationally Inefficient! 
Repetition of work.

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Taxable

Income

> 80K?

Yes No



Continuous Attributes: Computing Gini 

Index...

 For efficient computation: for each attribute,
 Sort the attribute on values

 Linearly scan these values, each time updating the count 
matrix and computing gini index

 Choose the split position that has the least gini index

Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions

Sorted Values



Alternative Splitting Criteria based on 

INFO
 Entropy at a given node t:

(NOTE: p( j | t) is the relative frequency of class j at node t).

 Measures homogeneity of a node. 

 Maximum (log nc) when records are equally distributed 
among all classes implying least information

 Minimum (0.0) when all records belong to one class, 
implying most information

 Entropy based computations are similar to the 
GINI index computations


j

tjptjptEntropy )|(log)|()(



Examples for computing Entropy

C1 0 

C2 6 
 

 

C1 2 

C2 4 
 

 

C1 1 

C2 5 
 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0 

P(C1) = 1/6          P(C2) = 5/6

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (1/6) = 0.65

P(C1) = 2/6          P(C2) = 4/6

Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92


j

tjptjptEntropy )|(log)|()(
2



Splitting Based on INFO...
 Information Gain: 

Parent Node, p is split into k partitions;

ni is number of records in partition i

 Measures Reduction in Entropy achieved because of the 
split. Choose the split that achieves most reduction 
(maximizes GAIN)

 Used in ID3 and C4.5

 Disadvantage: Tends to prefer splits that result in large 
number of partitions, each being small but pure.









 



k

i

i

split
iEntropy

n

n
pEntropyGAIN

1

)()(



Splitting Based on INFO...

 Gain Ratio: 

Parent Node, p is split into k partitions

ni is the number of records in partition i

 Adjusts Information Gain by the entropy of the 
partitioning (SplitINFO). Higher entropy partitioning 
(large number of small partitions) is penalized!

 Used in C4.5

 Designed to overcome the disadvantage of Information 
Gain

SplitINFO

GAIN
GainRATIO Split

split
 




k

i

ii

n

n

n

n
SplitINFO

1

log



Splitting Criteria based on Classification 

Error

 Classification error at a node t :

 Measures misclassification error made by a node. 
 Maximum (1 - 1/nc) when records are equally distributed 

among all classes, implying least interesting information

 Minimum (0.0) when all records belong to one class, 
implying most interesting information

)|(max1)( tiPtError
i





Examples for Computing Error

C1 0 

C2 6 
 

 

C1 2 

C2 4 
 

 

C1 1 

C2 5 
 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Error = 1 – max (0, 1) = 1 – 1 = 0 

P(C1) = 1/6          P(C2) = 5/6

Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6

P(C1) = 2/6          P(C2) = 4/6

Error = 1 – max (2/6, 4/6) = 1 – 4/6 = 1/3

)|(max1)( tiPtError
i





Comparison among Splitting Criteria
For a 2-class problem:



Misclassification Error vs Gini

A?

Yes No

Node N1 Node N2

 Parent 

C1 7 

C2 3 

Gini = 0.42 

 

 N1 N2 

C1 3 4 

C2 0 3 

 
 

 

Gini(N1) 

= 1 – (3/3)2 – (0/3)2

= 0 

Gini(N2) 

= 1 – (4/7)2 – (3/7)2

= 0.489

Gini(Children) 

= 3/10 * 0 

+ 7/10 * 0.489

= 0.342



Tree Induction

 Greedy strategy.

 Split the records based on an attribute test 
that optimizes certain criterion.

 Issues

 Determine how to split the records

 How to specify the attribute test condition?

 How to determine the best split?

 Determine when to stop splitting



Stopping Criteria for Tree Induction

 Stop expanding a node when all the 
records belong to the same class

 Stop expanding a node when all the 
records have similar attribute values

 Early termination (to be discussed later)



Decision Tree Based Classification

 Advantages:

 Inexpensive to construct

 Extremely fast at classifying unknown records

 Easy to interpret for small-sized trees

 Accuracy is comparable to other classification 
techniques for many simple data sets



Example: C4.5

 Simple depth-first construction.

 Uses Information Gain

 Sorts Continuous Attributes at each node.

 Needs entire data to fit in memory.

 Unsuitable for Large Datasets.

 Needs out-of-core sorting.

 You can download the software from:
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.
gz

http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz


Practical Issues of  Classification

 Underfitting and Overfitting

 Missing Values

 Costs of Classification



Underfitting and Overfitting 

(Example)

500 circular and 500 

triangular data points.

Circular points:

0.5  sqrt(x1
2+x2

2)  1

Triangular points:

sqrt(x1
2+x2

2) > 0.5 or

sqrt(x1
2+x2

2) < 1



Underfitting and Overfitting

Overfitting

Underfitting: when model is too simple, both training and test errors are large 



Overfitting due to Noise 

Decision boundary is distorted by noise point



Overfitting due to Insufficient 

Examples

Lack of data points in the lower half of the diagram makes it difficult 

to predict correctly the class labels of that region 

- Insufficient number of training records in the region causes the 

decision tree to predict the test examples using other training 

records that are irrelevant to the classification task



Notes on Overfitting

 Overfitting results in decision trees that 
are more complex than necessary

 Training error no longer provides a good 
estimate of how well the tree will perform 
on previously unseen records

 Need new ways for estimating errors



Estimating Generalization Errors

 Re-substitution errors: error on training ( e(t) )
 Generalization errors: error on testing ( e’(t))

 Methods for estimating generalization errors:
 Optimistic approach: e’(t) = e(t)
 Pessimistic approach:

 For each leaf node: e’(t) = (e(t)+0.5) 
 Total errors: e’(T) = e(T) + N  0.5 (N: number of leaf 

nodes)
 For a tree with 30 leaf nodes and 10 errors on training 

(out of 1000 instances):
Training error = 10/1000 = 1%

Generalization error = (10 + 300.5)/1000 = 2.5%

 Reduced error pruning (REP):
 uses validation data set to estimate generalization

error



Occam’s Razor

 Given two models of similar generalization 
errors,  one should prefer the simpler 
model over the more complex model

 For complex models, there is a greater 
chance that it was fitted accidentally by 
errors in data

 Therefore, one should include model 
complexity when evaluating a model



Minimum Description Length 

(MDL)

 Cost(Model,Data) = Cost(Data|Model) + Cost(Model)
 Cost is the number of bits needed for encoding.

 Search for the least costly model.

 Cost(Data|Model) encodes the misclassification errors.

 Cost(Model) uses node encoding (number of children) plus 
splitting condition encoding.

A B

A?

B?

C?

10

0

1

Yes No

B1 B2

C1 C2

X y

X1 1

X2 0

X3 0

X4 1

… …
Xn 1

X y

X1 ?

X2 ?

X3 ?

X4 ?

… …
Xn ?



How to Address Overfitting
 Pre-Pruning (Early Stopping Rule)

 Stop the algorithm before it becomes a fully-grown tree

 Typical stopping conditions for a node:

 Stop if all instances belong to the same class

 Stop if all the attribute values are the same

 More restrictive conditions:

 Stop if number of instances is less than some user-specified 
threshold

 Stop if class distribution of instances are independent of the 
available features (e.g., using  2 test)

 Stop if expanding the current node does not improve impurity
measures (e.g., Gini or information gain).



How to Address Overfitting…

 Post-pruning

 Grow decision tree to its entirety

 Trim the nodes of the decision tree in a 
bottom-up fashion

 If generalization error improves after 
trimming, replace sub-tree by a leaf node.

 Class label of leaf node is determined from 
majority class of instances in the sub-tree

 Can use MDL for post-pruning



Example of  Post-Pruning

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10

Error = 10/30

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

= (9 + 4  0.5)/30 = 11/30

PRUNE!

Class = 
Yes

8

Class = 
No

4

Class = 
Yes

3

Class = 
No

4

Class = 
Yes

4

Class = 
No

1

Class = 
Yes

5

Class = 
No

1



Examples of  Post-pruning

 Optimistic error?

 Pessimistic error?

 Reduced error pruning?

C0: 11

C1: 3

C0: 2

C1: 4

C0: 14

C1: 3

C0: 2

C1: 2

Don’t prune for both cases

Don’t prune case 1, prune case 2

Case 1:

Case 2:

Depends on validation set



Handling Missing Attribute Values

 Missing values affect decision tree 
construction in three different ways:

 Affects how impurity measures are computed

 Affects how to distribute instance with missing 
value to child nodes

 Affects how a test instance with missing value 
is classified



Computing Impurity Measure
Tid Refund Marital 

Status 
Taxable 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 ? Single 90K Yes 
10 

 

 
Class 
= Yes 

Class 
= No 

Refund=Yes 0 3 

Refund=No 2 4 
 

Refund=? 1 0 
 

Split on Refund:

Entropy(Refund=Yes) = 0

Entropy(Refund=No) 

= -(2/6)log(2/6) – (4/6)log(4/6) = 0.9183

Entropy(Children) 

= 0.3 (0) + 0.6 (0.9183) = 0.551

Gain = 0.9  (0.8813 – 0.551) = 0.3303

Missing 

value

Before Splitting:

Entropy(Parent) 

= -0.3 log(0.3)-(0.7)log(0.7) = 0.8813



Distribute Instances
Tid Refund Marital 

Status 
Taxable 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 
10 

 

Refund
Yes No

Class=Yes 0 

Class=No 3 
 

 

Cheat=Yes 2 

Cheat=No 4 
 

 

Refund
Yes

Tid Refund Marital 
Status 

Taxable 
Income Class 

10 ? Single 90K Yes 
10 

 

No

Class=Yes 2 + 6/9 

Class=No 4 
 

 

Probability that Refund=Yes is 3/9

Probability that Refund=No is 6/9

Assign record to the left child with 

weight = 3/9 and to the right child 

with weight = 6/9

Class=Yes 0 + 3/9 

Class=No 3 
 

 



Classify Instances

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes
No

Married
Single, 

Divorced

< 80K > 80K

Married Single Divorce
d

Total

Class=No 3 1 0 4

Class=Yes 6/9 1 1 2.67

Total 3.67 2 1 6.67

Tid Refund Marital 
Status 

Taxable 
Income Class 

11 No ? 85K ? 
10 

 

New record:

Probability that Marital Status 

= Married is 3.67/6.67

Probability that Marital Status 

={Single,Divorced} is 3/6.67



Scalable Decision Tree Induction Methods

 SLIQ (EDBT’96 — Mehta et al.)

 Builds an index for each attribute and only class list and 
the current attribute list reside in memory

 SPRINT (VLDB’96 — J. Shafer et al.)

 Constructs an attribute list data structure 

 PUBLIC (VLDB’98 — Rastogi & Shim)

 Integrates tree splitting and tree pruning: stop growing the 
tree earlier

 RainForest (VLDB’98 — Gehrke, Ramakrishnan & 
Ganti)

 Builds an AVC-list (attribute, value, class label)

 BOAT (PODS’99 — Gehrke, Ganti, Ramakrishnan & 
Loh)

 Uses bootstrapping to create several small samples


