
Clustering

CMPUT 466/551

Nilanjan Ray

What is Clustering?

• Attach label to each observation or data points in a set

• You can say this “unsupervised classification”

• Clustering is alternatively called as “grouping”

• Intuitively, if you would want to assign same label to a

data points that are “close” to each other

• Thus, clustering algorithms rely on a distance metric

between data points

• Sometimes, it is said that the for clustering, the distance

metric is more important than the clustering algorithm

Distances: Quantitative Variables
S

o
m

e
 e

x
a
m

p
le

s

T

ipii xxx][1

Data point:

Distances: Ordinal and Categorical

Variables

• Ordinal variables can be forced to lie within (0, 1) and then

a quantitative metric can be applied:

• For categorical variables, distances must be specified by

user between each pair of categories.

Mk
M

k
,,2,1,

2/1




Combining Distances

• Often weighted sum is used:

.0,1,),(),(
11

 


l

p

l

l

p

l

jlillji wwxxdwxxD

Combinatorial Approach

• In how many ways can we assign K labels to N

observations?

• For each such possibility, we can compute a cost. Pick

up the assignment with best cost.

• Formidable number of possible assignments:

(I’ll post a page about the origin of this formula)

K-means Overview

• An unsupervised clustering algorithm

• “K” stands for number of clusters, it is typically a user

input to the algorithm; some criteria can be used to

automatically estimate K

• It is an approximation to an NP-hard combinatorial

optimization problem

• K-means algorithm is iterative in nature

• It converges, however only a local minimum is obtained

• Works only for numerical data

• Easy to implement

K-means: Setup

• x1,…, xN are data points or vectors of observations

• Each observation (vector xi) will be assigned to one and only one cluster

• C(i) denotes cluster number for the ith observation

• Dissimilarity measure: Euclidean distance metric

• K-means minimizes within-cluster point scatter:

   
   


K

k kiC

kik

K

k kiC kjC

ji mxNxxCW
1)(

2

1)()(

2

2

1
)(

where

mk is the mean vector of the kth cluster

Nk is the number of observations in kth cluster

(Exercise)

Within and Between Cluster Criteria

)()(

)),(),((
2

1

1)()()(

CBCW

xxdxxdT
K

k kiC kjC

ji

kjC

ji



   
  

Let’s consider total point scatter for a set of N data points:


 


N

i

N

j

ji xxdT
1 1

),(
2

1

Distance between two points

T can be re-written as:

Where,   
  


K

k kiC kjC

ji xxdCW
1)()(

),(
2

1
)(

  
  


K

k kiC kjC

ji xxdCB
1)()(

),(
2

1
)(

If d is square Euclidean distance, then

 
 


K

k kiC

kik mxNCW
1)(

2
)(

and 



K

k

kk mmNCB
1

2
)(

Within cluster

scatter

Between cluster

scatter
Minimizing W(C) is equivalent to maximizing B(C)

Grand mean

Ex.

K-means Algorithm

• For a given cluster assignment C of the data points,

compute the cluster means mk:

• For a current set of cluster means, assign each

observation as:

• Iterate above two steps until convergence

.,,1,
)(:

Kk
N

x

m
k

kiCi

i

k 




NimxiC
Kk

ki ,,1,minarg)(
1

2




K-means clustering example

K-means Image Segmentation

An image (I) Three-cluster image (J) on

gray values of I

Matlab code:

I = double(imread(‘…'));

J = reshape(kmeans(I(:),3),size(I));

Note that K-means result is “noisy”

K-means: summary

• Algorithmically, very simple to implement

• K-means converges, but it finds a local minimum of the
cost function

• Works only for numerical observations

• K is a user input; alternatively BIC (Bayesian information
criterion) or MDL (minimum description length) can be
used to estimate K

• Outliers can considerable trouble to K-means

K-medoids Clustering

• K-means is appropriate when we can work with

Euclidean distances

• Thus, K-means can work only with numerical,

quantitative variable types

• Euclidean distances do not work well in at least two

situations

– Some variables are categorical

– Outliers can be potential threats

• A general version of K-means algorithm called K-

medoids can work with any distance measure

• K-medoids clustering is computationally more intensive

K-medoids Algorithm

• Step 1: For a given cluster assignment C, find the

observation in the cluster minimizing the total distance to

other points in that cluster:

• Step 2: Assign

• Step 3: Given a set of cluster centers {m1, …, mK},

minimize the total error by assigning each observation to

the closest (current) cluster center:

• Iterate steps 1 to 3

.),(minarg
)(})(:{




 
kjC

ji
kiCi

k xxdi

Kkxm
ki

k ,,2,1,  

NimxdiC ki
Kk

,,1),,(minarg)(
1




K-medoids Summary

• Generalized K-means

• Computationally much costlier that K-means

• Apply when dealing with categorical data

• Apply when data points are not available, but

only pair-wise distances are available

• Converges to local minimum

Choice of K?

• Can WK(C), i.e., the within cluster distance as a function

of K serve as any indicator?

• Note that WK(C) decreases monotonically with

increasing K. That is the within cluster scatter decreases

with increasing centroids.

• Instead look for gap statistics (successive difference

between WK(C)):

}:{}:{ *

1

*

1 KKWWKKWW KKKK  

Choice of K…

Data points simulated

from two pdfs

Gap curveLog(WK) curve

This is essentially a visual heuristic

Vector Quantization

• A codebook (a set of centroids/codewords):

• A quantization function:

• K-means can be used to construct the codebook

},,,{ 21 Kmmm 

ki mxq )(

Often, the nearest-neighbor function

Image Compression by VQ

8 bits/pixel 1.9 bits/pixel,

using 200 codewords

0.5 bits/pixel,

using 4 codewords

Otsu’s Image Thresholding Method

• Based on the clustering idea: Find the threshold that

minimizes the weighted within-cluster point scatter.

• This turns out to be the same as maximizing the

between-class scatter.

• Operates directly on the gray level histogram [e.g. 256

numbers, P(i)], so it’s fast (once the histogram is

computed).

Otsu’s Method…

• Histogram (and the image) are bimodal.

• No use of spatial coherence, nor any other

notion of object structure.

• Assumes uniform illumination (implicitly), so

the bimodal brightness behavior arises from

object appearance differences only.

The weighted within-class variance is:

w
2
(t)  q1(t)1

2
(t) q2 (t) 2

2
(t)

Where the class probabilities are estimated as:

q1(t)  P(i)
i1

t

 q2 (t)  P(i)
i t1

I



1(t) 
iP(i)

q1(t)i1

t

 2(t)
iP(i)

q2(t)it1

I



And the class means are given by:

Finally, the individual class variances are:

1
2
(t) [i  1(t)]

2 P(i)

q1(t)i1

t



2
2
(t) [i  2(t)]

2 P(i)

q2 (t)it1

I



Now, we could actually stop here. All we need to do is just

run through the full range of t values [1, 256] and pick the

value that minimizes .

But the relationship between the within-class and between-

class variances can be exploited to generate a recursion

relation that permits a much faster calculation.

w
2
(t)

Finally...

q1(t 1)  q1(t)  P(t 1)

1(t 1) 
q1(t)1 (t)  (t 1)P(t 1)

q1(t 1)

q1(1)  P(1) 1(0)  0;

2(t 1) 
  q1(t 1)1(t 1)

1  q1(t 1)

Initialization...

Recursion...

After some algebra, we can express the total variance as...


2
w

2
(t) q1(t)[1 q1 (t)][1(t) 2 (t)]

2

Within-class,

from before Between-class,

Since the total is constant and independent of t, the effect of

changing the threshold is merely to move the contributions of

the two terms back and forth.

So, minimizing the within-class variance is the same as

maximizing the between-class variance.

The nice thing about this is that we can compute the quantities

in recursively as we run through the range of t values.

B
2
(t)

B
2
(t)

Result of Otsu’s Algorithm

An image Binary image

by Otsu’s method

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

Gray level histogram

Matlab code:

I = double(imread(‘…'));

I = (I-min(I(:)))/(max(I(:))-min(I(:)));

J = I>graythresh(I);

Hierarchical Clustering

• Two types: (1) agglomerative (bottom up), (2) divisive (top down)

• Agglomerative: two groups are merged if distance between them is

less than a threshold

• Divisive: one group is split into two if intergroup distance more than

a threshold

• Can be expressed by an excellent graphical representation called

“dendogram”, when the process is monotonic: dissimilarity between

merged clusters is increasing. Agglomerative clustering possesses

this property. Not all divisive methods possess this monotonicity.

• Heights of nodes in a dendogram are proportional to the threshold

value that produced them.

An Example Hierarchical Clustering

Linkage Functions

i j

Hj
Gi

SL dHGd




 min),(

i j

Hj
Gi

CL dHGd




 max),(

 
 


Gi Hj

ij

HG

GA d
NN

HGd
1

),(

Linkage functions computes the dissimilarity between two groups of data points:

Single linkage (minimum distance between two groups):

Complete linkage (maximum distance between two groups):

Group average (average distance between two groups):

Linkage Functions…

• SL considers only a single pair of data points; if this pair

is close enough then action is taken. So, SL can form a

“chain” by combining relatively far apart data points.

• SL often violates the compactness property of a cluster.

SL can produce clusters with large diameters (DG).

• CL is just the opposite of SL; it produces many clusters

with small diameters.

• CL can violate “closeness” property- two close data

points may be assigned to different clusters.

• GA is a compromise between SL and CL

ij
GjGi

G dD



,

max

Different Dendograms

Hierarchical Clustering on

Microarray Data

Hierarchical Clustering Matlab

Demo

