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Introduction

e Partitioning Clustering Approach

— a typical clustering analysis approach via iteratively partitioning
training data set to learn a partition of the given data space

— learning a partition on a data set to produce several non-empty
clusters (usually, the number of clusters given in advance)

— in principle, optimal partition achieved via minimising the sum
of squared distance to its “representative object” in each cluster

E=X" d*(x,m,)

XECk

N
e.g., Euclidean distance d*(x,m,) =>_(x, -m,,)’
n=1
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Introduction

e Given a K find a partition of K clusters to optimise the
chosen partitioning criterion (cost function)

o global optimum: exhaustively search all partitions

e The K-means algorithm: a heuristic method

o K-means algorithm (MacQueen’67): each cluster is
represented by the centre of the cluster and the
algorithm converges to stable centriods of clusters.

o K-means algorithm is the simplest partitioning method
for clustering analysis and widely used in data mining
applications.
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K-means Algorithm

Given the cluster number K, the K-means algorithm is
carried out in three steps after initialisation:

Initialisation: set seed points (randomly)

1)Assign each object to the cluster of the nearest seed
point measured with a specific distance metric

2)Compute new seed points as the centroids of the clusters
of the current partition (the centroid is the centre, i.e,,
mean point, of the cluster)

3)Go back to Step 1), stop when no more new assignment
(i.e., membership in each cluster no longer changes)
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Problem

Example

Suppose we have 4 types of medicines and each has two attributes (pH and
weight index). Our goal is to group these objects into K=2 group of medicine.

Medicine | Weight pH-
Index
A 1 1
B 2 1
C 4 3
D 5 4

attribute 2 (Y): pH

L 9=
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______________________________________

attribute 1 (X): weight index
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Example

attribute 2 (Y): pH

=
on

=

iteration 0

-------------------------------------------------

_________________________________________________

attribute 1 (X): weight index

Step 1: Use initial seed points for partitioning

c,=A,c,=B

d(D,c;)=+(5-1)> +(4—1)> =5

d(D,c,)=~/(5-2)> +(4—1)* =4.24

Assign each object to the cluster
with the nearest seed point
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attribute 2 (Y): pH

=
in

=

iteration 1

..............................................

o
La n
1

--------------------------------------

"""""""""""""""""""""""""""""""

attribute 1 (X): weight index

Step 2: Compute new centroids of the current partition

Knowing the members of each
cluster, now we compute the new
centroid of each group based on
these new memberships.

€1 = (1/ 1)

(2+4+5 1+3+4j
C2:

3 7 3
11 8
—(3,3)
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attribute 2 (Y): pH

= = ra o h
O h = i K W W i =
i i 1 1 i

iteration 1

__________________________________

b

attribute 1 (X): weight index

Step 2: Renew membership based on new centroids

Compute the distance of all
objects to the new centroids

"Assign the membership to objects
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Example

e Step 3: Repeat the first two steps until its convergence

-
n

pH

| ]
[ ]
—
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attribute 2 (Y

=
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iteration 2

I
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25 4
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..............

""""""""""""""""""""""""""""

"""""""""""""""""""""""""""""""""

"""""""""""""""""""""""""""

0 1 2 3 4 5 B

attribute 1 (X): weight index

Knowing the members of each
cluster, now we compute the new
centroid of each group based on
these new memberships.

7

1+2 1+1 1
Clz( j:(lal 1)

2 2

) _(4+5 3+4)_(41 31)
5 2 7 2 2" T2
10
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Step 3: Repeat the first two steps until its convergence

e
in

Iteration 2

attribute 2 (Y): pH

=
o
1

=

attribute 1 (X): weight index

Example

Compute the distance of all objects
to the new centroids

Stop due to no new assignment
Membership in each cluster no
longer change
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Exercise

For the medicine data set, use K-means with the Manhattan distance
metric for clustering analysis by setting A=2 and initialising seeds as
Ci1 = A and C2 = C. Answer three questions as follows:

1. How many steps are required for convergence?

2. What are memberships of two clusters after convergence?

3. What are centroids of two clusters after convergence?

Medicine | Weight pH- ' E E D
IndeXx *J‘
::n_a,a-----—-——————q.: —————————— G ————————————
A 1 1 = *_ﬁiﬁﬁiﬁiiﬁiﬁﬁﬁﬁﬁ:ﬁiﬁﬁiﬁfﬁﬁiﬁﬁiﬁﬁiﬁ
B 2 1 Sl A B
s S T
C 4 3 R L
D 5 4 attribut~=.:1 (X): weight index

12
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How K-means partitions?

When K centroids are set/fixed,
they partition the whole data
space into K mutually exclusive
subspaces to form a partition.

A partition amounts to a

Changing positions of centroids
leads to a new partitioning.

- .rl..li'
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2) Clustering - K-means demo - Mozilla Firefox
File Edit “iew History Bockmarks Tools Help

- {5t | http: Ahome.deipolimi, it/matteuce A2 uster ing Autor ial_htral Appletdn. hitml wr 7| ~ | *F -
[&] Most Visited | ] http:/fwenee . robertedby.
C',omgle @Google Maps ﬁ Book markss "Q? Check - ':P_| AutoFill - % Cptions = . Dr. KeChen~

|:| Clustering - K-means demo + -

A Tutorial on Clustering Algorithins

Introduction | K-means | Fuzzy C-means | Hiersrchiesl | Mirtore of Ganssians | Links

K-means - Interactive demo

This applet requires Java Funtime Environment version 1.3 or later. You can download it from the Sun Java website.

Data Initialize | | [~ Show

Clusters

& GETTING STARTED

* Choose how many data and clusters you want and then click on the
Indtialire button to generate them in random positions
OR
Insert maonuaily Data and Chisters using Fight and Left monse
buttoms. Tou can sleo delete them by clicking on them.

* Move data and centers of chisters as you like by clicking and

dragzing

* Choose which rmendz the algorithm should use.

* Click on Staxt to begin the sinmlation. During sinmlation data and
chisters positions ave fixed

* Go onusing either Step or Run until the end of the sinmlation.
Current mmber of steps is shoam.

 Tse the Rasetbutton to go back to the initial configuration. Mo
you can move existing data and centers of chisters or generate new
anes and then begin another sinmlation.

* When Show History is checked all the steps done until nowr are
showm.

EBack to F-means

Applet Testapplet started

COMP24111 Machine Learning
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Relevant Issues

Efficient in computation

— O(tKn), where n is number of objects, K is number of clusters,
and ¢ is number of iterations. Normally, K, ¢ << n.

Local optimum

— sensitive to initial seed points

— converge to a local optimum: maybe an unwanted solution

Other problems
— Need to specify K, the number of clusters, in advance

— Unable to handle noisy data and outliers (K-Medoids algorithm)
— Not suitable for discovering clusters with non-convex shapes

— Applicable only when mean is defined, then what about
categorical data? (K-mode algorithm)

— how to evaluate the A~-mean performance?

15
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Step 1: Loading a colour image of tissue stained with hemotoxylin and
eosin (H&E) H&E image

Image courtesy of Alan Parin, Johns Hopkins Universty
16
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Application

Step 2: Convert the image from RGB colour space to L*a*b*
colour space

« Unlike the RGB colour model, colour is
designed to approximate human vision.

« There is a complicated transformation between RGB
and L*a*b*.

(L*, a%, b*) = T(R, G, B).
(Rl GI B) — T’(L*I a>l<l b*)'

COMP24111 Machine Learning
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Application

« Colour-Based Image Segmentation Using A-means

Step 3: Undertake clustering analysis in the (a*, b*) colour

space with the A~means algorithm

« In the L*a*b* colour space, each pixel has a
properties or feature vector: (L*, a*, b*).

 Like feature selection, L* feature is discarded. As a
result, each pixel has a feature vector (a*, b*).

« Applying the Asmeans algorithm to the image in the
a*b* feature space where K = 3 (by applying the
domain knowledge.

COMP24111 Machine Learning
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Application

Colour-Based Image Segmentation Using A~means

Step 4: Label every pixel in the image using the results from
K-means Clustering (indicated by three different grey levels)

image labeled by cluster index

a2
R

- .
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Application

» Colour-Based Image Segmentation Using A-means

Step 5: Create Images that Segment the H&E Image by Colour

« Apply the label and the colour information of each pixel to achieve
separate colour images corresponding to three clusters.

objects in cluster 2

20
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Application

Colour-Based Image Segmentation Using A~means

Step 6: Segment the nuclei into a separate image with the L* feature

In cluster 1, there are dark and light blue objects. The dark blue objects
correspond to nuclei (with the domain knowledge).

L* feature specifies the brightness values of each colour.
With a threshold for L*, we achieve an image containing the nuclei only.

blue nuclei

COMP24111 Machine Learning
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Summary

e K-means algorithm is a simple yet popular method for
clustering analysis

o Its performance is determined by initialisation and
appropriate distance measure

e There are several variants of A-means to overcome its

weaknesses

— K-Medoids: resistance to noise and/or outliers

— K-Modes: extension to categorical data clustering analysis

— CLARA: extension to deal with large data sets

— Mixture models (EM algorithm): handling uncertainty of clusters

Fnline tutorial: the Ameans function in Matlab

https://www.youtube.com/watch?v=aYzjenNNOcc
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