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Introduction

• Partitioning Clustering Approach

– a typical clustering analysis approach via iteratively partitioning 

training data set to learn a partition of the given data space

– learning a partition on a data set to produce several non-empty 

clusters (usually, the number of clusters given in advance)

– in principle, optimal partition achieved via minimising the sum 

of squared distance to its “representative object” in each cluster

2

1

2 )(),( knn

N

n

k mxd 


mx

),(2

1 kC

K

k dE
k

mxx 

e.g., Euclidean distance



COMP24111  Machine Learning
4

Introduction

• Given a K, find a partition of K clusters to optimise the 

chosen partitioning criterion (cost function)

o global optimum: exhaustively search all partitions

• The K-means algorithm: a heuristic method 

o K-means algorithm (MacQueen’67): each cluster is 

represented by the centre of the cluster and the 

algorithm converges to stable centriods of clusters.

o K-means algorithm is the simplest partitioning method 

for clustering analysis and widely used in data mining 

applications. 
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K-means Algorithm

• Given the cluster number K, the K-means  algorithm is 
carried out in three steps after initialisation:

Initialisation: set seed points (randomly)

1)Assign each object to the cluster of the nearest seed 

point measured with a specific distance metric

2)Compute new seed points as the centroids of the clusters 

of the current partition (the centroid is the centre, i.e., 

mean point, of the cluster)

3)Go back to Step 1), stop when no more new assignment 

(i.e., membership in each cluster no longer changes)
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• Problem

Example

Suppose we have 4 types of medicines and each has two attributes (pH and 

weight index). Our goal is to group these objects into K=2 group of medicine.

Medicine Weight pH-
Index

A 1 1

B 2 1

C 4 3

D 5 4

A B

C

D
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Example

• Step 1: Use initial seed points for partitioning 
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Example

• Step 2: Compute new centroids of the current partition 

Knowing the members of each 
cluster, now we compute the new 
centroid of each group based on 
these new memberships.
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Example

• Step 2: Renew membership based on new centroids 

Compute the distance of all 
objects to the new centroids

Assign the membership to objects
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Example

• Step 3: Repeat the first two steps until its convergence 

Knowing the members of each 
cluster, now we compute the new 
centroid of each group based on 
these new memberships.
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Example

• Step 3: Repeat the first two steps until its convergence 

Compute the distance of all objects 
to the new centroids

Stop due to no new assignment 
Membership in each cluster no 
longer change
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Exercise

For the medicine data set, use K-means with the Manhattan distance 

metric for clustering analysis by setting K=2 and initialising seeds as 

C1 = A and C2 = C. Answer three questions as follows:

1. How many steps are required for convergence?

2. What are memberships of two clusters after convergence?

3. What are centroids of two clusters after convergence?

Medicine Weight pH-
Index

A 1 1

B 2 1

C 4 3

D 5 4

A B

C

D
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How K-means partitions?

When K centroids are set/fixed,
they partition the whole data 
space into K  mutually exclusive 
subspaces to form a partition.

A partition amounts to a

Changing positions of centroids 
leads to a new partitioning. 

Voronoi Diagram

http://en.wikipedia.org/wiki/Voronoi_diagram
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K-means Demo

K-means Demo

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
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Relevant Issues
• Efficient in computation

– O(tKn), where n is number of objects, K is number of clusters, 
and t is number of iterations. Normally, K, t << n.

• Local optimum 

– sensitive to initial seed points

– converge to a local optimum: maybe an unwanted solution 

• Other problems 

– Need to specify K, the number of clusters, in advance 

– Unable to handle noisy data and outliers (K-Medoids algorithm)

– Not suitable for discovering clusters with non-convex shapes

– Applicable only when mean is defined, then what about 
categorical data? (K-mode algorithm)

– how to evaluate the K-mean performance?
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Application
• Colour-Based Image Segmentation Using K-means 

Step 1: Loading a colour image of  tissue stained with hemotoxylin and 

eosin (H&E)

http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
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Application

• Colour-Based Image Segmentation Using K-means 

Step 2: Convert the image from RGB colour space to L*a*b* 

colour space

• Unlike the RGB colour model, L*a*b* colour is 

designed to approximate human vision.

• There is a complicated transformation between RGB 

and L*a*b*.

(L*, a*, b*) = T(R, G, B).

(R, G, B) = T’(L*, a*, b*).

http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html
https://en.wikipedia.org/wiki/Lab_color_space
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Application

• Colour-Based Image Segmentation Using K-means 

Step 3: Undertake clustering analysis in the (a*, b*) colour 

space with the K-means algorithm

• In the L*a*b* colour space, each pixel has a 

properties or feature vector:  (L*, a*, b*).

• Like feature selection, L* feature is discarded. As a 

result, each pixel has a feature vector (a*, b*).

• Applying the K-means algorithm to the image in the 

a*b* feature space where K = 3 (by applying the 

domain knowledge.
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Application
• Colour-Based Image Segmentation Using K-means 

Step 4: Label every pixel in the image using the results from 

K-means Clustering (indicated by three different grey levels)
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Application

• Colour-Based Image Segmentation Using K-means 

Step 5: Create Images that Segment the H&E Image by Colour

• Apply the label and the colour information of each pixel to achieve 

separate colour images corresponding to three clusters.              
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Application
• Colour-Based Image Segmentation Using K-means 

Step 6: Segment the nuclei into a separate image with the L* feature

• In cluster 1, there are dark and light blue objects. The dark blue objects 

correspond to nuclei (with the domain knowledge).

• L* feature specifies the brightness values of each colour.

• With a threshold for L*, we achieve an image containing the nuclei only.
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Summary

• K-means algorithm is a simple yet popular method for 
clustering analysis

• Its performance is determined by initialisation and 
appropriate distance measure

• There are several variants of K-means to overcome its 
weaknesses 

– K-Medoids: resistance to noise and/or outliers

– K-Modes: extension to categorical data clustering analysis

– CLARA: extension to deal with large data sets

– Mixture models (EM algorithm): handling uncertainty of clusters

Online tutorial: the K-means function in Matlab

https://www.youtube.com/watch?v=aYzjenNNOcc


