K-means Clustering

Ke Chen

COMP24111 Machine Learning

Outline

• Introduction

MANCHESTER

- K-means Algorithm
- Example
- How *K*-means partitions?
- *K*-means Demo
- Relevant Issues
- Application: Cell Neulei Detection
- Summary

Introduction

Partitioning Clustering Approach

MANCHES

ne University Manchester

- a typical clustering analysis approach via iteratively partitioning training data set to learn a partition of the given data space
- learning a partition on a data set to produce several non-empty clusters (usually, the number of clusters given in advance)
- in principle, optimal partition achieved via minimising the sum of squared distance to its "representative object" in each cluster

$$E = \sum_{k=1}^{K} \sum_{\mathbf{x} \in C_k} d^2(\mathbf{x}, \mathbf{m}_k)$$

e.g., Euclidean distance $d^2(\mathbf{x}, \mathbf{m}_k) = \sum_{n=1}^{N} (x_n - m_{kn})^2$

Introduction

MANCHESTEI

- Given a *K*, find a partition of *K clusters* to optimise the chosen partitioning criterion (cost function)
 - global optimum: exhaustively search all partitions
- The *K-means* algorithm: a heuristic method
 - K-means algorithm (MacQueen'67): each cluster is represented by the centre of the cluster and the algorithm converges to stable centriods of clusters.
 - K-means algorithm is the simplest partitioning method for clustering analysis and widely used in data mining applications.

K-means Algorithm

• Given the cluster number *K*, the *K*-means algorithm is carried out in three steps after initialisation:

Initialisation: set seed points (randomly)

- 1)Assign each object to the cluster of the nearest seed point measured with a specific distance metric
- 2)Compute new seed points as the centroids of the clusters of the current partition (the centroid is the centre, i.e., *mean point*, of the cluster)
- 3)Go back to Step 1), stop when no more new assignment (i.e., membership in each cluster no longer changes)

Problem

MANCHESTER

The University of Manchester

Suppose we have 4 types of medicines and each has two attributes (pH and weight index). Our goal is to group these objects into K=2 group of medicine.

Step 1: Use initial seed points for partitioning

MANCHESTER

Step 2: Compute new centroids of the current partition

Knowing the members of each cluster, now we compute the new centroid of each group based on these new memberships.

$$c_1 = (1, 1)$$

$$c_2 = \left(\frac{2+4+5}{3}, \frac{1+3+4}{3}\right)$$
$$= \left(\frac{11}{3}, \frac{8}{3}\right)$$

Step 2: Renew membership based on new centroids

Step 3: Repeat the first two steps until its convergence

Knowing the members of each cluster, now we compute the new centroid of each group based on these new memberships.

$$c_{1} = \left(\frac{1+2}{2}, \frac{1+1}{2}\right) = (1\frac{1}{2}, 1)$$

$$c_{2} = \left(\frac{4+5}{2}, \frac{3+4}{2}\right) = (4\frac{1}{2}, 3\frac{1}{2})$$

• Step 3: Repeat the first two steps until its convergence

Compute the distance of all objects to the new centroids

$$\mathbf{D}^{2} = \begin{bmatrix} 0.5 & 0.5 & 3.20 & 4.61 \\ 4.30 & 3.54 & 0.71 & 0.71 \end{bmatrix} \quad \mathbf{c}_{1} = (1\frac{1}{2}, 1) \quad group - 1 \\ \mathbf{c}_{2} = (4\frac{1}{2}, 3\frac{1}{2}) \quad group - 2 \\ A \quad B \quad C \quad D \\ \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \quad X \\ \begin{bmatrix} 1 & 1 & 3 & 4 \end{bmatrix} \quad Y$$

Stop due to no new assignment Membership in each cluster no longer change

MANCHESTER

Exercise

For the medicine data set, use K-means with the Manhattan distance metric for clustering analysis by setting K=2 and initialising seeds as $C_1 = A$ and $C_2 = C$. Answer three questions as follows:

- 1. How many steps are required for convergence?
- 2. What are memberships of two clusters after convergence?
- 3. What are centroids of two clusters after convergence?

MANCH

How K-means partitions?

When *K* centroids are set/fixed, they partition the whole data space into *K* mutually exclusive subspaces to form a partition.

A partition amounts to a Voronoi Diagram

Changing positions of centroids leads to a new partitioning.

K-means Demo

🕙 Clustering - K-means demo - Mozilla Firefox						
Eile Edit ⊻iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp						
🔇 🔊 - C 🗙 🏠 🗋 http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html	☆ •	💌 🔮 -				
🖻 Most Visited 📄 http://www.robertwhy						
Google ØGoogle Maps 🏠 Bookmarks- 🍄 Check 🔹 🣔 AutoFill 🔸		🖏 Options 🔹 🔵 Dr.KeChen•				
Clustering - K-means demo *		-				
A Tutorial on Clustering Algorithms						

Introduction | K-means | Fuzzy C-means | Hierarchical | Mixture of Gaussians | Links

K-means - Interactive demo

This applet requires Java Runtime Environment version 1.3 or later. You can download it from the <u>Sun Java website</u>.

Data 100 Clusters 3	Initialize Start St	Reset	Euclide:		
K-me	eans	Den	10		
📽 GETTING STARTED					
 Choose how man Initialize button 	y data and clusters y 1 to generate them :	you want and then in random position	click on the 13.		
OR Insert <i>manually</i> I buttons. You can	Data and Clusters us also delete them hy	ing Right and Left	mouse		
 Move data and conductive dragging. 	enters of clusters as	you like by clickir	ig and		
 Choose which ma Click on Start to clusters positions 	<i>tric</i> the algorithm s begin the simulationare fixed.	hould use. m. During simulati	ion data and		
 Go on using eithe Current number of 	r Step or Run unti of steps is shown.	l the end of the si	mulation.		
 Use the Keset buy you can move ex ones and then be; 	itton to go back to isting data and cent gin another simulati	the initial configu ers of clusters or g on.	ation. Now enerate new		
• When Show His	tory is checked all	the steps done unt	il now are		

Back to K-means

Applet TestApplet started									
🐉 start	🧐 Inbox for kchen@i	🗀 moore-tutorials-fo	🕙 K-mean	🐏 kmeans	PowerPoint Slide	🕙 Clustering - K-me	EN 🖮 🔇 🔂 17:35		

- Efficient in computation
 - O(tKn), where *n* is number of objects, *K* is number of clusters, and *t* is number of iterations. Normally, *K*, *t* << *n*.
- Local optimum

MANCHES

- sensitive to initial seed points
- converge to a local optimum: maybe an unwanted solution
- Other problems
 - Need to specify *K*, the *number* of clusters, in advance
 - Unable to handle noisy data and outliers (*K-Medoids* algorithm)
 - Not suitable for discovering clusters with non-convex shapes
 - Applicable only when mean is defined, then what about categorical data? (*K-mode* algorithm)
 - how to evaluate the K-mean performance?

Application

<u>Colour-Based Image Segmentation Using K-means</u>

MANCHESTER

The University of Manchester

Step 1: Loading a colour image of tissue stained with hemotoxylin and
eosin (H&E)H&E image

Image courtesy of Alan Partin, Johns Hopkins University

COMP24111 Machine Learning

MANCHESTER

- <u>Colour-Based Image Segmentation Using K-means</u>
 - **Step 2**: Convert the image from RGB colour space to L*a*b* colour space
 - Unlike the RGB colour model, <u>L*a*b*</u> colour is designed to approximate human vision.
 - There is a complicated transformation between RGB and L*a*b*.

$$(L^*, a^*, b^*) = T(R, G, B).$$

 $(R, G, B) = T'(L^*, a^*, b^*).$

Application

• Colour-Based Image Segmentation Using *K*-means

MANCHESTER

- **Step 3**: Undertake clustering analysis in the (a*, b*) colour space with the *K*-means algorithm
 - In the L*a*b* colour space, each pixel has a properties or feature vector: (L*, a*, b*).
 - Like feature selection, L* feature is discarded. As a result, each pixel has a feature vector (a*, b*).
 - Applying the *K*-means algorithm to the image in the a*b* feature space where K = 3 (by applying the domain knowledge.

Application

• Colour-Based Image Segmentation Using *K*-means

MANCHESTER

The University of Manchester

Step 4: Label every pixel in the image using the results from

K-means Clustering (indicated by three different grey levels) image labeled by cluster index

MANCHESTER

- Colour-Based Image Segmentation Using *K*-means
 Step 5: Create Images that Segment the H&E Image by Colour
 - Apply the label and the colour information of each pixel to achieve separate colour images corresponding to three clusters.

Application

- Colour-Based Image Segmentation Using K-means
 Step 6: Segment the nuclei into a separate image with the L* feature
 - In cluster 1, there are dark and light blue objects. The dark blue objects correspond to nuclei (with the domain knowledge).
 - L* feature specifies the brightness values of each colour.

MANCHESTER

The University of Mancheste

• With a threshold for L^* , we achieve an image containing the nuclei only.

blue nuclei

COMP24111 Machine Learning

Summary

- *K*-means algorithm is a simple yet popular method for clustering analysis
- Its performance is determined by initialisation and appropriate distance measure
- There are several variants of *K*-means to overcome its weaknesses
 - *K*-Medoids: resistance to noise and/or outliers

MANCHE

- *K*-Modes: extension to categorical data clustering analysis
- CLARA: extension to deal with large data sets
- Mixture models (EM algorithm): handling uncertainty of clusters

Online tutorial: the *K*-means function in Matlab

https://www.youtube.com/watch?v=aYzjenNNOcc