
Decision Trees

Jeff Storey

Overview

 What is a Decision Tree

 Sample Decision Trees

 How to Construct a Decision Tree

 Problems with Decision Trees

 Decision Trees in Gaming

 Summary

 An inductive learning task
 Use particular facts to make more generalized

conclusions

 A predictive model based on a branching
series of Boolean tests
 These smaller Boolean tests are less complex

than a one-stage classifier

 Let’s look at a sample decision tree…

What is a Decision Tree?

Predicting Commute Time

Leave At

Stall? Accident?

10 AM 9 AM
8 AM

Long

Long

Short Medium Long

No Yes No Yes

If we leave at

10 AM and

there are no

cars stalled on

the road, what

will our

commute time

be?

Inductive Learning

 In this decision tree, we made a series of
Boolean decisions and followed the
corresponding branch
 Did we leave at 10 AM?

 Did a car stall on the road?

 Is there an accident on the road?

 By answering each of these yes/no
questions, we then came to a conclusion on
how long our commute might take

Decision Trees as Rules

 We did not have represent this tree

graphically

 We could have represented as a set of

rules. However, this may be much

harder to read…

Decision Tree as a Rule Set

if hour == 8am

commute time = long

else if hour == 9am

if accident == yes

commute time = long

else

commute time =
medium

else if hour == 10am

if stall == yes

commute time = long

else

commute time = short

 Notice that all attributes to
not have to be used in each
path of the decision.

 As we will see, all attributes
may not even appear in the
tree.

How to Create a Decision Tree

 We first make a list of attributes that

we can measure

 These attributes (for now) must be

discrete

 We then choose a target attribute that

we want to predict

 Then create an experience table that

lists what we have seen in the past

Sample Experience Table

Example Attributes Target

Hour Weather Accident Stall Commute

D1 8 AM Sunny No No Long

D2 8 AM Cloudy No Yes Long

D3 10 AM Sunny No No Short

D4 9 AM Rainy Yes No Long

D5 9 AM Sunny Yes Yes Long

D6 10 AM Sunny No No Short

D7 10 AM Cloudy No No Short

D8 9 AM Rainy No No Medium

D9 9 AM Sunny Yes No Long

D10 10 AM Cloudy Yes Yes Long

D11 10 AM Rainy No No Short

D12 8 AM Cloudy Yes No Long

D13 9 AM Sunny No No Medium

Choosing Attributes

 The previous experience decision

table showed 4 attributes: hour,

weather, accident and stall

 But the decision tree only showed 3

attributes: hour, accident and stall

 Why is that?

Choosing Attributes

 Methods for selecting attributes (which

will be described later) show that

weather is not a discriminating

attribute

 We use the principle of Occam’s

Razor: Given a number of competing

hypotheses, the simplest one is

preferable

Choosing Attributes

 The basic structure of creating a

decision tree is the same for most

decision tree algorithms

 The difference lies in how we select

the attributes for the tree

 We will focus on the ID3 algorithm

developed by Ross Quinlan in 1975

Decision Tree Algorithms

 The basic idea behind any decision tree

algorithm is as follows:

 Choose the best attribute(s) to split the

remaining instances and make that attribute a

decision node

 Repeat this process for recursively for each child

 Stop when:

 All the instances have the same target attribute value

 There are no more attributes

 There are no more instances

Identifying the Best Attributes

 Refer back to our original decision tree

Leave At

Stall? Accident?

10 AM 9 AM
8 AM

Long

Long

Short Medium

No Yes No Yes

Long

 How did we know to split on leave at

and then on stall and accident and not

weather?

ID3 Heuristic

 To determine the best attribute, we

look at the ID3 heuristic

 ID3 splits attributes based on their

entropy.

 Entropy is the measure of

disinformation…

Entropy

 Entropy is minimized when all values of the
target attribute are the same.
 If we know that commute time will always be

short, then entropy = 0

 Entropy is maximized when there is an
equal chance of all values for the target
attribute (i.e. the result is random)
 If commute time = short in 3 instances, medium

in 3 instances and long in 3 instances, entropy is
maximized

Entropy

 Calculation of entropy

 Entropy(S) = ∑(i=1 to l)-|Si|/|S| * log2(|Si|/|S|)

 S = set of examples

 Si = subset of S with value vi under the target

attribute

 l = size of the range of the target attribute

ID3

 ID3 splits on attributes with the lowest
entropy

 We calculate the entropy for all values of an
attribute as the weighted sum of subset
entropies as follows:
 ∑(i = 1 to k) |Si|/|S| Entropy(Si), where k is the range

of the attribute we are testing

 We can also measure information gain
(which is inversely proportional to entropy)
as follows:
 Entropy(S) - ∑(i = 1 to k) |Si|/|S| Entropy(Si)

ID3

 Given our commute time sample set, we

can calculate the entropy of each attribute

at the root node

Attribute Expected Entropy Information Gain

Hour 0.6511 0.768449

Weather 1.28884 0.130719

Accident 0.92307 0.496479

Stall 1.17071 0.248842

Pruning Trees

 There is another technique for

reducing the number of attributes used

in a tree - pruning

 Two types of pruning:

 Pre-pruning (forward pruning)

 Post-pruning (backward pruning)

Prepruning

 In prepruning, we decide during the building

process when to stop adding attributes

(possibly based on their information gain)

 However, this may be problematic – Why?

 Sometimes attributes individually do not

contribute much to a decision, but combined,

they may have a significant impact

Postpruning

 Postpruning waits until the full decision

tree has built and then prunes the

attributes

 Two techniques:

 Subtree Replacement

 Subtree Raising

Subtree Replacement

 Entire subtree is replaced by a single
leaf node

A

B

C

1 2 3

4 5

Subtree Replacement

 Node 6 replaced the subtree

 Generalizes tree a little more, but may
increase accuracy

A

B

6 4 5

Subtree Raising

 Entire subtree is raised onto another
node

A

B

C

1 2 3

4 5

Subtree Raising

 Entire subtree is raised onto another node

 This was not discussed in detail as it is not
clear whether this is really worthwhile (as it
is very time consuming)

A

C

1 2 3

Problems with ID3

 ID3 is not optimal

 Uses expected entropy reduction, not

actual reduction

 Must use discrete (or discretized)

attributes

 What if we left for work at 9:30 AM?

 We could break down the attributes into

smaller values…

Problems with Decision Trees

 While decision trees classify quickly,
the time for building a tree may be
higher than another type of classifier

 Decision trees suffer from a problem of
errors propagating throughout a tree

 A very serious problem as the number of
classes increases

Error Propagation

 Since decision trees work by a series

of local decisions, what happens when

one of these local decisions is wrong?

 Every decision from that point on may be

wrong

 We may never return to the correct path

of the tree

Error Propagation Example

Problems with ID3

 If we broke down leave time to the

minute, we might get something like

this:

8:02 AM 10:02 AM8:03 AM 9:09 AM9:05 AM 9:07 AM

Long Medium Short Long Long Short

Since entropy is very low for each branch, we have

n branches with n leaves. This would not be helpful

for predictive modeling.

Problems with ID3

 We can use a technique known as

discretization

 We choose cut points, such as 9AM for

splitting continuous attributes

 These cut points generally lie in a subset of

boundary points, such that a boundary point

is where two adjacent instances in a sorted

list have different target value attributes

Problems with ID3

 Consider the attribute commute time

8:00 (L), 8:02 (L), 8:07 (M), 9:00 (S), 9:20 (S), 9:25 (S), 10:00 (S), 10:02 (M)

When we split on these attributes, we

increase the entropy so we don’t have a

decision tree with the same number of

cut points as leaves

ID3 in Gaming

 Black & White, developed by Lionhead

Studios, and released in 2001 used

ID3

 Used to predict a player’s reaction to a

certain creature’s action

 In this model, a greater feedback value

means the creature should attack

ID3 in Black & White

Example Attributes Target

Allegiance Defense Tribe Feedback

D1 Friendly Weak Celtic -1.0

D2 Enemy Weak Celtic 0.4

D3 Friendly Strong Norse -1.0

D4 Enemy Strong Norse -0.2

D5 Friendly Weak Greek -1.0

D6 Enemy Medium Greek 0.2

D7 Enemy Strong Greek -0.4

D8 Enemy Medium Aztec 0.0

D9 Friendly Weak Aztec -1.0

ID3 in Black & White

Allegiance

Defense

Friendly Enemy

0.4 -0.3

-1.0

Weak Strong

0.1

Medium

Note that this decision tree does not even use the tribe attribute

ID3 in Black & White

 Now suppose we don’t want the entire

decision tree, but we just want the 2

highest feedback values

 We can create a Boolean expressions,

such as
((Allegiance = Enemy) ^ (Defense = Weak)) v

((Allegiance = Enemy) ^ (Defense = Medium))

Summary

 Decision trees can be used to help

predict the future

 The trees are easy to understand

 Decision trees work more efficiently

with discrete attributes

 The trees may suffer from error

propagation

