
Decision Trees

Jeff Storey

Overview

 What is a Decision Tree

 Sample Decision Trees

 How to Construct a Decision Tree

 Problems with Decision Trees

 Decision Trees in Gaming

 Summary

 An inductive learning task
 Use particular facts to make more generalized

conclusions

 A predictive model based on a branching
series of Boolean tests
 These smaller Boolean tests are less complex

than a one-stage classifier

 Let’s look at a sample decision tree…

What is a Decision Tree?

Predicting Commute Time

Leave At

Stall? Accident?

10 AM 9 AM
8 AM

Long

Long

Short Medium Long

No Yes No Yes

If we leave at

10 AM and

there are no

cars stalled on

the road, what

will our

commute time

be?

Inductive Learning

 In this decision tree, we made a series of
Boolean decisions and followed the
corresponding branch
 Did we leave at 10 AM?

 Did a car stall on the road?

 Is there an accident on the road?

 By answering each of these yes/no
questions, we then came to a conclusion on
how long our commute might take

Decision Trees as Rules

 We did not have represent this tree

graphically

 We could have represented as a set of

rules. However, this may be much

harder to read…

Decision Tree as a Rule Set

if hour == 8am

commute time = long

else if hour == 9am

if accident == yes

commute time = long

else

commute time =
medium

else if hour == 10am

if stall == yes

commute time = long

else

commute time = short

 Notice that all attributes to
not have to be used in each
path of the decision.

 As we will see, all attributes
may not even appear in the
tree.

How to Create a Decision Tree

 We first make a list of attributes that

we can measure

 These attributes (for now) must be

discrete

 We then choose a target attribute that

we want to predict

 Then create an experience table that

lists what we have seen in the past

Sample Experience Table

Example Attributes Target

Hour Weather Accident Stall Commute

D1 8 AM Sunny No No Long

D2 8 AM Cloudy No Yes Long

D3 10 AM Sunny No No Short

D4 9 AM Rainy Yes No Long

D5 9 AM Sunny Yes Yes Long

D6 10 AM Sunny No No Short

D7 10 AM Cloudy No No Short

D8 9 AM Rainy No No Medium

D9 9 AM Sunny Yes No Long

D10 10 AM Cloudy Yes Yes Long

D11 10 AM Rainy No No Short

D12 8 AM Cloudy Yes No Long

D13 9 AM Sunny No No Medium

Choosing Attributes

 The previous experience decision

table showed 4 attributes: hour,

weather, accident and stall

 But the decision tree only showed 3

attributes: hour, accident and stall

 Why is that?

Choosing Attributes

 Methods for selecting attributes (which

will be described later) show that

weather is not a discriminating

attribute

 We use the principle of Occam’s

Razor: Given a number of competing

hypotheses, the simplest one is

preferable

Choosing Attributes

 The basic structure of creating a

decision tree is the same for most

decision tree algorithms

 The difference lies in how we select

the attributes for the tree

 We will focus on the ID3 algorithm

developed by Ross Quinlan in 1975

Decision Tree Algorithms

 The basic idea behind any decision tree

algorithm is as follows:

 Choose the best attribute(s) to split the

remaining instances and make that attribute a

decision node

 Repeat this process for recursively for each child

 Stop when:

 All the instances have the same target attribute value

 There are no more attributes

 There are no more instances

Identifying the Best Attributes

 Refer back to our original decision tree

Leave At

Stall? Accident?

10 AM 9 AM
8 AM

Long

Long

Short Medium

No Yes No Yes

Long

 How did we know to split on leave at

and then on stall and accident and not

weather?

ID3 Heuristic

 To determine the best attribute, we

look at the ID3 heuristic

 ID3 splits attributes based on their

entropy.

 Entropy is the measure of

disinformation…

Entropy

 Entropy is minimized when all values of the
target attribute are the same.
 If we know that commute time will always be

short, then entropy = 0

 Entropy is maximized when there is an
equal chance of all values for the target
attribute (i.e. the result is random)
 If commute time = short in 3 instances, medium

in 3 instances and long in 3 instances, entropy is
maximized

Entropy

 Calculation of entropy

 Entropy(S) = ∑(i=1 to l)-|Si|/|S| * log2(|Si|/|S|)

 S = set of examples

 Si = subset of S with value vi under the target

attribute

 l = size of the range of the target attribute

ID3

 ID3 splits on attributes with the lowest
entropy

 We calculate the entropy for all values of an
attribute as the weighted sum of subset
entropies as follows:
 ∑(i = 1 to k) |Si|/|S| Entropy(Si), where k is the range

of the attribute we are testing

 We can also measure information gain
(which is inversely proportional to entropy)
as follows:
 Entropy(S) - ∑(i = 1 to k) |Si|/|S| Entropy(Si)

ID3

 Given our commute time sample set, we

can calculate the entropy of each attribute

at the root node

Attribute Expected Entropy Information Gain

Hour 0.6511 0.768449

Weather 1.28884 0.130719

Accident 0.92307 0.496479

Stall 1.17071 0.248842

Pruning Trees

 There is another technique for

reducing the number of attributes used

in a tree - pruning

 Two types of pruning:

 Pre-pruning (forward pruning)

 Post-pruning (backward pruning)

Prepruning

 In prepruning, we decide during the building

process when to stop adding attributes

(possibly based on their information gain)

 However, this may be problematic – Why?

 Sometimes attributes individually do not

contribute much to a decision, but combined,

they may have a significant impact

Postpruning

 Postpruning waits until the full decision

tree has built and then prunes the

attributes

 Two techniques:

 Subtree Replacement

 Subtree Raising

Subtree Replacement

 Entire subtree is replaced by a single
leaf node

A

B

C

1 2 3

4 5

Subtree Replacement

 Node 6 replaced the subtree

 Generalizes tree a little more, but may
increase accuracy

A

B

6 4 5

Subtree Raising

 Entire subtree is raised onto another
node

A

B

C

1 2 3

4 5

Subtree Raising

 Entire subtree is raised onto another node

 This was not discussed in detail as it is not
clear whether this is really worthwhile (as it
is very time consuming)

A

C

1 2 3

Problems with ID3

 ID3 is not optimal

 Uses expected entropy reduction, not

actual reduction

 Must use discrete (or discretized)

attributes

 What if we left for work at 9:30 AM?

 We could break down the attributes into

smaller values…

Problems with Decision Trees

 While decision trees classify quickly,
the time for building a tree may be
higher than another type of classifier

 Decision trees suffer from a problem of
errors propagating throughout a tree

 A very serious problem as the number of
classes increases

Error Propagation

 Since decision trees work by a series

of local decisions, what happens when

one of these local decisions is wrong?

 Every decision from that point on may be

wrong

 We may never return to the correct path

of the tree

Error Propagation Example

Problems with ID3

 If we broke down leave time to the

minute, we might get something like

this:

8:02 AM 10:02 AM8:03 AM 9:09 AM9:05 AM 9:07 AM

Long Medium Short Long Long Short

Since entropy is very low for each branch, we have

n branches with n leaves. This would not be helpful

for predictive modeling.

Problems with ID3

 We can use a technique known as

discretization

 We choose cut points, such as 9AM for

splitting continuous attributes

 These cut points generally lie in a subset of

boundary points, such that a boundary point

is where two adjacent instances in a sorted

list have different target value attributes

Problems with ID3

 Consider the attribute commute time

8:00 (L), 8:02 (L), 8:07 (M), 9:00 (S), 9:20 (S), 9:25 (S), 10:00 (S), 10:02 (M)

When we split on these attributes, we

increase the entropy so we don’t have a

decision tree with the same number of

cut points as leaves

ID3 in Gaming

 Black & White, developed by Lionhead

Studios, and released in 2001 used

ID3

 Used to predict a player’s reaction to a

certain creature’s action

 In this model, a greater feedback value

means the creature should attack

ID3 in Black & White

Example Attributes Target

Allegiance Defense Tribe Feedback

D1 Friendly Weak Celtic -1.0

D2 Enemy Weak Celtic 0.4

D3 Friendly Strong Norse -1.0

D4 Enemy Strong Norse -0.2

D5 Friendly Weak Greek -1.0

D6 Enemy Medium Greek 0.2

D7 Enemy Strong Greek -0.4

D8 Enemy Medium Aztec 0.0

D9 Friendly Weak Aztec -1.0

ID3 in Black & White

Allegiance

Defense

Friendly Enemy

0.4 -0.3

-1.0

Weak Strong

0.1

Medium

Note that this decision tree does not even use the tribe attribute

ID3 in Black & White

 Now suppose we don’t want the entire

decision tree, but we just want the 2

highest feedback values

 We can create a Boolean expressions,

such as
((Allegiance = Enemy) ^ (Defense = Weak)) v

((Allegiance = Enemy) ^ (Defense = Medium))

Summary

 Decision trees can be used to help

predict the future

 The trees are easy to understand

 Decision trees work more efficiently

with discrete attributes

 The trees may suffer from error

propagation

