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 An inductive learning task
 Use particular facts to make more generalized 

conclusions

 A predictive model based on a branching 
series of Boolean tests
 These smaller Boolean tests are less complex 

than a one-stage classifier

 Let’s look at a sample decision tree…

What is a Decision Tree?



Predicting Commute Time

Leave At

Stall? Accident?

10 AM 9 AM
8 AM

Long

Long

Short Medium Long

No Yes No Yes

If we leave at 

10 AM and 

there are no 

cars stalled on 

the road, what 

will our 

commute time 

be?



Inductive Learning

 In this decision tree, we made a series of 
Boolean decisions and followed the 
corresponding branch
 Did we leave at 10 AM?

 Did a car stall on the road?

 Is there an accident on the road?

 By answering each of these yes/no 
questions, we then came to a conclusion on 
how long our commute might take



Decision Trees as Rules

 We did not have represent this tree 

graphically

 We could have represented as a set of 

rules.  However, this may be much 

harder to read…



Decision Tree as a Rule Set

if hour == 8am

commute time = long

else if hour == 9am

if accident == yes

commute time = long

else

commute time = 
medium

else if hour == 10am

if stall == yes

commute time = long

else

commute time = short

 Notice that all attributes to 
not have to be used in each 
path of the decision.

 As we will see, all attributes 
may not even appear in the 
tree.



How to Create a Decision Tree

 We first make a list of attributes that 

we can measure

 These attributes (for now) must be 

discrete

 We then choose a target attribute that 

we want to predict

 Then create an experience table that 

lists what we have seen in the past



Sample Experience Table

Example Attributes Target

Hour Weather Accident Stall Commute

D1 8 AM Sunny No No Long

D2 8 AM Cloudy No Yes Long

D3 10 AM Sunny No No Short

D4 9 AM Rainy Yes No Long

D5 9 AM Sunny Yes Yes Long

D6 10 AM Sunny No No Short

D7 10 AM Cloudy No No Short

D8 9 AM Rainy No No Medium

D9 9 AM Sunny Yes No Long

D10 10 AM Cloudy Yes Yes Long

D11 10 AM Rainy No No Short

D12 8 AM Cloudy Yes No Long

D13 9 AM Sunny No No Medium



Choosing Attributes

 The previous experience decision 

table showed 4 attributes: hour, 

weather, accident and stall

 But the decision tree only showed 3 

attributes: hour, accident and stall

 Why is that?



Choosing Attributes

 Methods for selecting attributes (which 

will be described later) show that 

weather is not a discriminating 

attribute

 We use the principle of Occam’s 

Razor:  Given a number of competing 

hypotheses, the simplest one is 

preferable



Choosing Attributes

 The basic structure of creating a 

decision tree is the same for most 

decision tree algorithms

 The difference lies in how we select 

the attributes for the tree

 We will focus on the ID3 algorithm 

developed by Ross Quinlan in 1975



Decision Tree Algorithms

 The basic idea behind any decision tree 

algorithm is as follows:

 Choose the best attribute(s) to split the 

remaining instances and make that attribute a 

decision node

 Repeat this process for recursively for each child

 Stop when:

 All the instances have the same target attribute value

 There are no more attributes

 There are no more instances



Identifying the Best Attributes

 Refer back to our original decision tree

Leave At

Stall? Accident?

10 AM 9 AM
8 AM

Long

Long

Short Medium

No Yes No Yes

Long

 How did we know to split on leave at

and then on stall and accident and not 

weather?



ID3 Heuristic

 To determine the best attribute, we 

look at the ID3 heuristic

 ID3 splits attributes based on their 

entropy.

 Entropy is the measure of 

disinformation…



Entropy

 Entropy is minimized when all values of the 
target attribute are the same.
 If we know that commute time will always be 

short, then entropy = 0

 Entropy is maximized when there is an 
equal chance of all values for the target 
attribute (i.e. the result is random)
 If commute time = short in 3 instances, medium 

in 3 instances and long in 3 instances, entropy is 
maximized



Entropy

 Calculation of entropy

 Entropy(S) = ∑(i=1 to l)-|Si|/|S| * log2(|Si|/|S|)

 S = set of examples

 Si = subset of S with value vi under the target 

attribute

 l = size of the range of the target attribute



ID3

 ID3 splits on attributes with the lowest 
entropy

 We calculate the entropy for all values of an 
attribute as the weighted sum of subset 
entropies as follows:
 ∑(i = 1 to k) |Si|/|S| Entropy(Si), where k is the range 

of the attribute we are testing

 We can also measure information gain 
(which is inversely proportional to entropy) 
as follows:
 Entropy(S) - ∑(i = 1 to k) |Si|/|S| Entropy(Si)



ID3

 Given our commute time sample set, we 

can calculate the entropy of each attribute 

at the root node

Attribute Expected Entropy Information Gain

Hour 0.6511 0.768449

Weather 1.28884 0.130719

Accident 0.92307 0.496479

Stall 1.17071 0.248842



Pruning Trees

 There is another technique for 

reducing the number of attributes used 

in a tree - pruning

 Two types of pruning:

 Pre-pruning (forward pruning)

 Post-pruning (backward pruning)



Prepruning

 In prepruning, we decide during the building 

process when to stop adding attributes 

(possibly based on their information gain)

 However, this may be problematic – Why?

 Sometimes attributes individually do not 

contribute much to a decision, but combined, 

they may have a significant impact



Postpruning

 Postpruning waits until the full decision 

tree has built and then prunes the 

attributes

 Two techniques:

 Subtree Replacement

 Subtree Raising



Subtree Replacement

 Entire subtree is replaced by a single 
leaf node

A

B

C

1 2 3

4 5



Subtree Replacement

 Node 6 replaced the subtree

 Generalizes tree a little more, but may 
increase accuracy

A

B

6 4 5



Subtree Raising

 Entire subtree is raised onto another 
node

A

B

C

1 2 3

4 5



Subtree Raising

 Entire subtree is raised onto another node

 This was not discussed in detail as it is not 
clear whether this is really worthwhile (as it 
is very time consuming)

A

C

1 2 3



Problems with ID3

 ID3 is not optimal

 Uses expected entropy reduction, not 

actual reduction

 Must use discrete (or discretized) 

attributes

 What if we left for work at 9:30 AM?

 We could break down the attributes into 

smaller values…



Problems with Decision Trees

 While decision trees classify quickly, 
the time for building a tree may be 
higher than another type of classifier

 Decision trees suffer from a problem of 
errors propagating throughout a tree

 A very serious problem as the number of 
classes increases



Error Propagation

 Since decision trees work by a series 

of local decisions, what happens when 

one of these local decisions is wrong?

 Every decision from that point on may be 

wrong

 We may never return to the correct path 

of the tree



Error Propagation Example



Problems with ID3

 If we broke down leave time to the 

minute, we might get something like 

this:

8:02 AM 10:02 AM8:03 AM 9:09 AM9:05 AM 9:07 AM

Long Medium Short Long Long Short

Since entropy is very low for each branch, we have 

n branches with n leaves.  This would not be helpful 

for predictive modeling.



Problems with ID3

 We can use a technique known as 

discretization

 We choose cut points, such as 9AM for 

splitting continuous attributes

 These cut points generally lie in a subset of 

boundary points, such that a boundary point 

is where two adjacent instances in a sorted 

list have different target value attributes



Problems with ID3

 Consider the attribute commute time

8:00 (L), 8:02 (L), 8:07 (M), 9:00 (S), 9:20 (S), 9:25 (S), 10:00 (S), 10:02 (M)

When we split on these attributes, we 

increase the entropy so we don’t have a 

decision tree with the same number of 

cut points as leaves



ID3 in Gaming

 Black & White, developed by Lionhead 

Studios, and released in 2001 used 

ID3

 Used to predict a player’s reaction to a 

certain creature’s action

 In this model, a greater feedback value 

means the creature should attack



ID3 in Black & White

Example Attributes Target

Allegiance Defense Tribe Feedback

D1 Friendly Weak Celtic -1.0

D2 Enemy Weak Celtic 0.4

D3 Friendly Strong Norse -1.0

D4 Enemy Strong Norse -0.2

D5 Friendly Weak Greek -1.0

D6 Enemy Medium Greek 0.2

D7 Enemy Strong Greek -0.4

D8 Enemy Medium Aztec 0.0

D9 Friendly Weak Aztec -1.0



ID3 in Black & White

Allegiance

Defense

Friendly Enemy

0.4 -0.3

-1.0

Weak Strong

0.1

Medium

Note that this decision tree does not even use the tribe attribute



ID3 in Black & White

 Now suppose we don’t want the entire 

decision tree, but we just want the 2 

highest feedback values

 We can create a Boolean expressions, 

such as
((Allegiance = Enemy) ^ (Defense = Weak)) v 

((Allegiance = Enemy) ^ (Defense = Medium))



Summary

 Decision trees can be used to help 

predict the future

 The trees are easy to understand

 Decision trees work more efficiently 

with discrete attributes

 The trees may suffer from error 

propagation


