Chapter 8 Mapping a Conceptual Design into a Logical Design

Database Systems

MODELS, LANGUAGES, DESIGN, AND APPLICATION PROGRAMMING

Sixth Edition

Ramez Elmasri Shamkant B. Navathe

Addison-Wesley is an imprint of

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

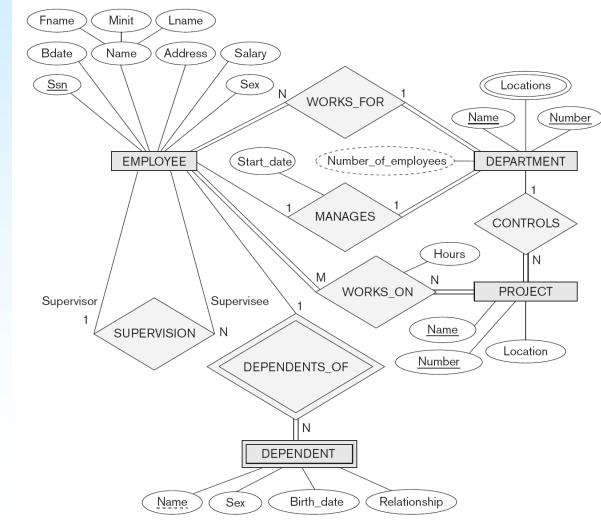
Chapter 8 Outline

- Relational Database Design Using ER-to-Relational Mapping
- Mapping EER Model Constructs to Relations

Relational Database Design by ER- and EER-to-Relational Mapping

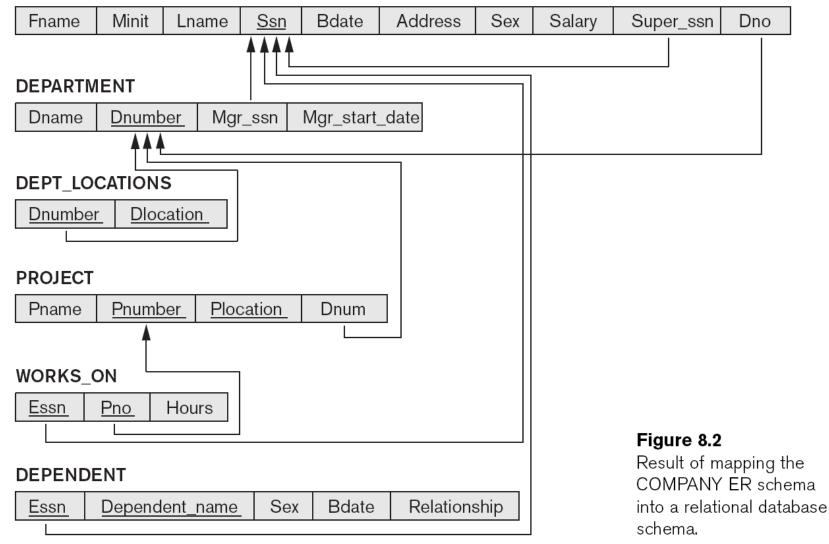
Design a relational database schema

- Based on a conceptual schema design
- Seven-step algorithm to convert the basic ER model constructs into relations
- Additional steps for EER model



Relational Database Design Using ER-to-Relational Mapping

Figure 8.1


The ER conceptual schema diagram for the COMPANY database.

Addison-Wesley is an imprint of

PEARSON Copyright © 2011 Ramez Elmasri and Shamkant Navathe

EMPLOYEE

ER-to-Relational Mapping Algorithm

- COMPANY database example
 - Assume that the mapping will create tables with simple single-valued attributes

Step 1: Mapping of Regular Entity Types

- For each regular entity type, create a relation R that includes all the simple attributes of E
- Called entity relations
 - Each tuple represents an entity instance

- Step 2: Mapping of Weak Entity Types
 - For each weak entity type, create a relation R and include all simple attributes of the entity type as attributes of R
 - Include primary key attribute of owner as foreign key attributes of R

Figure 8.3	(a)	EMPLOYEE								
Illustration of some mapping steps.		Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	
(a) <i>Entity</i> relations after step 1. (b) Additional <i>weak entity</i>		DEPARTN Dname	IENT Dnumb	<u>per</u>						
relation after step 2. (c) <i>Relationship</i> relation after step 5. (d) Relation representing multivalued attribute after step 6.		PROJECT								
		Pname <u>Pnumber</u> Plocation								
	(b)	DEPENDENT								
		Essn Dependent_name			Sex	Bdate	Relations	ship		
	(c)	WORKS_ONEssnPnoHours								
	(d)	DEPT_LO		S cation						

- Step 3: Mapping of Binary 1:1 Relationship Types
 - For each binary 1:1 relationship type
 - Identify relations that correspond to entity types participating in R
 - Possible approaches:
 - Foreign key approach
 - Merged relationship approach
 - Crossreference or relationship relation approach

- Step 4: Mapping of Binary 1:N Relationship Types
 - For each regular binary 1:N relationship type
 - Identify relation that represents participating entity type at *N*-side of relationship type
 - Include primary key of other entity type as foreign key in S
 - Include simple attributes of 1:N relationship type as attributes of S

- Alternative approach
 - Use the relationship relation (cross-reference) option as in the third option for binary 1:1 relationships

- Step 5: Mapping of Binary M: N Relationship Types
 - For each binary M: N relationship type
 - Create a new relation S
 - Include primary key of participating entity types as foreign key attributes in S
 - Include any simple attributes of *M*: *N* relationship type

- Step 6: Mapping of Multivalued Attributes
 - For each multivalued attribute
 - Create a new relation
 - Primary key of *R* is the combination of *A* and *K*
 - If the multivalued attribute is composite, include its simple components

- Step 7: Mapping of *N*-ary Relationship Types
 - For each *n*-ary relationship type *R*
 - Create a new relation S to represent R
 - Include primary keys of participating entity types as foreign keys
 - Include any simple attributes as attributes

Discussion and Summary of Mapping for ER Model Constructs

Table 8.1Correspondence between ER and Relational Models

ER MODEL

Entity type

1:1 or 1:N relationship typeM:N relationship type*n*-ary relationship typeSimple attributeComposite attributeMultivalued attributeValue set

Key attribute

RELATIONAL MODEL

Entity relation

Foreign key (or *relationship* relation) *Relationship* relation and *two* foreign keys *Relationship* relation and *n* foreign keys Attribute

Set of simple component attributes

Relation and foreign key

Domain

Primary (or secondary) key

Discussion and Summary of Mapping for ER Model Constructs (cont'd.)

- In a relational schema relationship, types are not represented explicitly
 - Represented by having two attributes A and B: one a primary key and the other a foreign key

Mapping EER Model Constructs to Relations

 Extending ER-to-relational mapping algorithm

Mapping of Specialization or Generalization

- Step 8: Options for Mapping Specialization or Generalization (see pages 294-295)
 - Option 8A: Multiple relations—superclass and subclasses
 - For any specialization (total or partial, disjoint or overlapping)
 - Option 8B: Multiple relations—subclass relations only
 - Subclasses are total
 - Specialization has disjointedness constraint

Mapping of Specialization or Generalization (cont'd.)

- Option 8C: Single relation with one type attribute
 - Type or discriminating attribute indicates subclass of tuple
 - Subclasses are disjoint
 - Potential for generating many NULL values if many specific attributes exist in the subclasses

Option 8D: Single relation with multiple type attributes

- Subclasses are overlapping
- Will also work for a disjoint specialization

Mapping of Shared Subclasses (Multiple Inheritance)

 Apply any of the options discussed in step 8 to a shared subclass

PERSON												
	<u>Ssn</u>	Name	Birth_date	Sex	Addre	ss						
	EMPLOYEE											
	<u>Ssn</u>	Salary	Employee_type		Position	Rank	Percent_time	Ra_flag	Ta_flag	Project	Course	
ALUMNUS ALUMNUS_DEGREES												
Ssn <u>Year</u> <u>Degree</u> <u>Major</u>												
STUDENT												
	<u>Ssn</u> Major_dept Grad_flag Underg			grad_fla	g Degree_program Class			Student_assist_flag				

Figure 8.6

Mapping the EER specialization lattice in Figure 7.26 using multiple options.

Addison-Wesley

Mapping of Categories (Union Types)

- Step 9: Mapping of Union Types (Categories)
 - Defining superclasses have different keys
 - Specify a new key attribute
 - Surrogate key

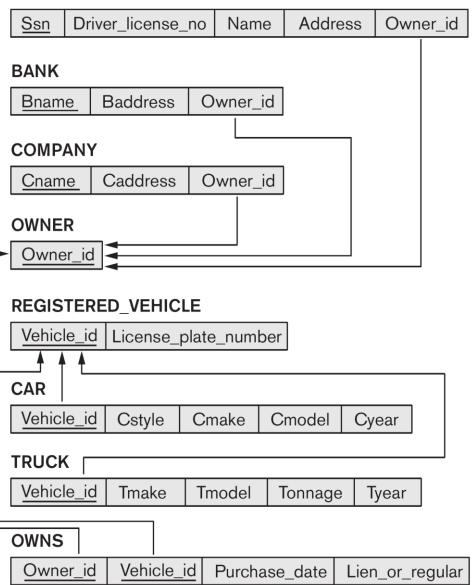


Figure 8.7

Mapping the EER categories (union types) in Figure 7.26 to relations.

PERSON

Summary

- Map conceptual schema design in the ER model to a relational database schema
 - Algorithm for ER-to-relational mapping
 - Illustrated by examples from the COMPANY database
- Include additional steps in the algorithm for mapping constructs from EER model into relational model

