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CONDITIONAL CONTROLS
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Conditional Control

• Conditional control allows you to control the flow of 
the execution of the program based on a condition. 

• In programming terms, it means that the statements in 
the program are not executed sequentially.

• Rather, one group of statements, or another will be 
executed depending on how the condition is evaluated.

• In PL/SQL, there are two types of conditional control:

– IF statement and 

– ELSIF statement.
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IF STATEMENTS

• An IF statement has two forms:

IF-THEN and IF-THEN-ELSE. 

• An IF-THEN statement allows you to specify only one 
group of actions to take.

• In other words, this group of actions is taken only when 
a condition evaluates to TRUE.

• An IF-THEN-ELSE statement allows you to specify 
two groups of actions, and the second group of actions 
is taken when a condition evaluates to FALSE.
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IF-THEN STATEMENTS

• An IF-THEN statement is the most basic kind of a 
conditional control and has the following structure:

IF CONDITION

THEN

STATEMENT 1;

…

STATEMENT N;

END IF;

• The reserved word IF marks the beginning of the IF 
statement.

• Statements 1 through N are a sequence of executable 
statements that consist of one or more of the standard 
programming structures. 
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IF-THEN STATEMENTS

• The word CONDITION between keywords IF and 
THEN determines whether these statements are 
executed.

• END IF is a reserved phrase that indicates the end of 
the IF-THEN construct.
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IF-THEN STATEMENTS

• When an IF-THEN statement is executed, a condition is 

evaluated to either TRUE or FALSE. 

• If the condition evaluates to TRUE, control is passed to 

the first executable statement of the IF-THEN 

construct.

• If the condition evaluates to FALSE, the control is 

passed to the first executable statement after the END 

IF statement.
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Example
DECLARE

v_num1 NUMBER := 5;

v_num2 NUMBER := 3;

v_temp NUMBER;

BEGIN

-- if v_num1 is greater than v_num2 rearrange their

-- values

IF v_num1 > v_num2

THEN

v_temp := v_num1;

v_num1 := v_num2;

v_num2 := v_temp;

END IF;

-- display the values of v_num1 and v_num2

DBMS_OUTPUT.PUT_LINE('v_num1 = '||v_num1);

DBMS_OUTPUT.PUT_LINE('v_num2 = '||v_num2);

END;
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Example explained

• In this example, condition 'v_num1 > v_num2' 

evaluates to TRUE because 5 is greater that 3.

• Next, the values are rearranged so that 3 is assigned to 

v_num1, and 5 is assigned to v_num2. 

• It is done with the help of the third variable, v_temp, 

that is used as a temporary storage.

• This example produces the following output:

v_num1 = 3

v_num2 = 5

PL/SQL procedure successfully completed.
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IF-THEN-ELSE STATEMENT

• An IF-THEN statement specifies the sequence of 

statements to execute only if the condition evaluates to 

TRUE.

• When this condition evaluates to FALSE, there is no 

special action to take except to proceed with execution 

of the program.

• An IF-THEN-ELSE statement enables you to specify 

two groups of statements.

– One group of statements is executed when the condition 

evaluates to TRUE.

– Another group of statements is executed when the 

condition evaluates to FALSE. 
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IF-THEN-ELSE STATEMENT

IF CONDITION

THEN

STATEMENT 1;

ELSE

STATEMENT 2;

END IF;

STATEMENT 3;

• When CONDITION evaluates to TRUE, control is 

passed to STATEMENT 1;

• When CONDITION evaluates to FALSE, control is 

passed to STATEMENT 2. 

• After the IF-THEN-ELSE construct has completed, 

STATEMENT 3 is executed. 
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IF-THEN-ELSE STATEMENT
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Example

DECLARE

v_num NUMBER := &sv_user_num;

BEGIN

-- test if the number provided by the user is even

IF MOD(v_num,2) = 0

THEN

DBMS_OUTPUT.PUT_LINE(v_num||' is even 

number');

ELSE

DBMS_OUTPUT.PUT_LINE(v_num||' is odd 

number');

END IF;

DBMS_OUTPUT.PUT_LINE('Done…');

END;
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Example explained

• It is important to realize that for any given number only 

one of the DBMS_OUTPUT.PUT_LINE statements is 

executed.

• Hence, the IFTHEN-ELSE construct enables you to 

specify two and only two mutually exclusive actions.

• When run, this example produces the following output:

Enter value for v_user_num: 24

old 2: v_num NUMBER := &v_user_num;

new 2: v_num NUMBER := 24;

24 is even number

Done…

PL/SQL procedure successfully completed.
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NULL CONDITION

• In some cases, a condition used in an IF statement can 

be evaluated to NULL instead of TRUE or FALSE.

• For the IF-THEN construct, the statements will not be 

executed if an associated condition evaluates to NULL.

• Next, control will be passed to the first executable 

statement after END IF.

• For the IF-THEN-ELSE construct, the statements 

specified after the keyword ELSE will be executed if an 

associated condition evaluates to NULL.
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Example

DECLARE

v_num1 NUMBER := 0;

v_num2 NUMBER;

BEGIN

IF v_num1 = v_num2

THEN

DBMS_OUTPUT.PUT_LINE('v_num1 = v_num2');

ELSE

DBMS_OUTPUT.PUT_LINE('v_num1 != v_num2');

END IF;

END;
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Example explained

• This example produces the following output:

v_num1 != v_num2

PL/SQL procedure successfully completed.

• The condition v_num1 = v_num2 is evaluated to 

NULL because a value is not assigned to the variable 

v_num2.

• Therefore, variable v_num2 is NULL.

• Notice that IF-THEN-ELSE construct is behaving as if 

the condition evaluated to FALSE, and second 

DBMS_OUTPUT.PUT_LINE statement is executed.
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ELSIF STATEMENTS

• An ELSIF statement has the following structure:
IF CONDITION 1

THEN

STATEMENT 1;

ELSIF CONDITION 2

THEN

STATEMENT 2;

ELSIF CONDITION 3

THEN

STATEMENT 3;

…

ELSE

STATEMENT N;

END IF;
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ELSIF STATEMENTS

• The reserved word IF marks the beginning of an ELSIF 

construct.

• The words CONDITION 1 through CONDITION N are a 

sequence of the conditions that evaluate to TRUE or 

FALSE. 

• These conditions are mutually exclusive. In other words, 

if CONDITION 1 evaluates to TRUE, STATEMENT1 is 

executed, and control is passed to the first executable 

statement after the reserved phrase END IF. The rest of 

the ELSIF construct is ignored.
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ELSIF STATEMENTS

• When CONDITION 1 evaluates to FALSE, the control is 
passed to the ELSIF part and CONDITION 2 is 
evaluated, and so forth.

• If none of the specified conditions yield TRUE, the 
control is passed to the ELSE part of the ELSIF 
construct.

• An ELSIF statement can contain any number of ELSIF 
clauses.
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ELSIF STATEMENTS
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Example

DECLARE

v_num NUMBER := &sv_num;

BEGIN

IF v_num < 0

THEN

DBMS_OUTPUT.PUT_LINE (v_num||‘ is a negative number’);

ELSIF v_num = 0

THEN

DBMS_OUTPUT.PUT_LINE (v_num ||‘ is equal to zero’);

ELSE

DBMS_OUTPUT.PUT_LINE (v_num||‘ is a positive number’);

END IF;

END;
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Example explained

• The value of v_num is provided at runtime and 

evaluated with the help of the ELSIF statement. 

• If the value of v_num is less that zero, the first 

DBMS_OUTPUT.PUT_LINE statement executes, and 

the ELSIF construct terminates. 

• If the value of v_num is greater that zero, both 

conditions v_num < 0 and v_num = 0 evaluate to 

FALSE, and the ELSE part of the ELSIF construct 

executes.
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Example explained

• Assume the value of v_num equals five at runtime. 

• This example produces the output shown below:

Enter value for sv_num: 5

old 2: v_num NUMBER := &sv_num;

new 2: v_num NUMBER := 5;

5 is a positive number

PL/SQL procedure successfully completed.
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ELSIF STATEMENTS

• There is no second “E” in the “ELSIF”.

• Conditions of an ELSIF statement must be mutually 

exclusive.

• These conditions are evaluated in sequential order, from 

the first to the last.

• Once a condition evaluates to TRUE, the remaining 

conditions of the ELSIF statement are not evaluated at 

all. 

• Consider this example of an ELSIF construct:
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Example

IF v_num >= 0

THEN

DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');

ELSIF v_num =< 10

THEN

DBMS_OUTPUT.PUT_LINE ('v_num is less than 10');

ELSE

DBMS_OUTPUT.PUT_LINE ('v_num is less than ? or 

greater than ?');

END IF;
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Example explained

• Assume that the value of v_num is equal to 5. 

• Both conditions of the ELSIF statement potentially can 

evaluate to TRUE because 5 is greater than 0, and 5 is 

less than 10.

• However, once the first condition, v_num>= 0 

evaluates to TRUE, the rest of the ELSIF construct is 

ignored.

• For any value of v_num that is greater or equal to 0 and 

less or equal to 10, these conditions are not mutually 

exclusive. 
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Example explained

• Therefore, DBMS_OUTPUT.PUT_LINE statement 

associated with ELSIF clause will not execute for any 

such value of v_num. 

• In order for the second condition, v_num <= 10, to 

yield TRUE, the value of v_num must be less than 0.
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ELSIF STATEMENTS

• When using an ELSIF construct, it is not necessary to 

specify what action should be taken if none of the 

conditions evaluate to TRUE. 

• In other words, an ELSE clause is not required in the 

ELSIF construct.

• Consider the following example:
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Example
DECLARE

v_num NUMBER := &sv_num;

BEGIN

IF v_num < 0

THEN

DBMS_OUTPUT.PUT_LINE (v_num||' is a negative 

number');

ELSIF v_num > 0

THEN

DBMS_OUTPUT.PUT_LINE (v_num||' is a positive 

number');

END IF;

DBMS_OUTPUT.PUT_LINE ('Done…');

END;
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Example explained

• As you can see, there is no action specified when 

v_num is equal to zero. 

• If the value of v_num is equal to zero, both conditions 

will evaluate to FALSE, and the ELSIF statement will 

not execute at all.

• When value of zero is specified for v_num, this 

example produces the following output.

Enter value for sv_num: 0

old 2: v_num NUMBER := &sv_num;

new 2: v_num NUMBER := 0;

Done…

PL/SQL procedure successfully completed.
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NESTED IF STATEMENTS

• You have encountered different types of conditional 

controls: IF-THEN statement, IF-THEN-ELSE 

statement, and ELSIF statement. 

• These types of conditional controls can be nested inside 

of another—for example, an IF statement can be nested 

inside an ELSIF and vice versa.
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Example

DECLARE

v_num1 NUMBER := &sv_num1;

v_num2 NUMBER := &sv_num2;

v_total NUMBER;

BEGIN

IF v_num1 > v_num2

THEN

DBMS_OUTPUT.PUT_LINE('IF part of the outer IF');

v_total := v_num1 - v_num2;

ELSE

DBMS_OUTPUT.PUT_LINE('ELSE part of the outer IF');

v_total := v_num1 + v_num2;



Bordoloi and Bock

Example contd.

IF v_total < 0

THEN

DBMS_OUTPUT.PUT_LINE('Inner IF');

v_total := v_total * (-1);

END IF;

END IF;

DBMS_OUTPUT.PUT_LINE('v_total = '||v_total);

END;
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Example explained

• The IF-THEN-ELSE statement is called an outer IF 

statement because it encompasses the IF-THEN 

statement. 

• The IF-THEN statement is called an inner IF statement 

because it is enclosed by the body of the IF-THEN-

ELSE statement.

• Assume that the value for v_num1 and v_num2 are –4 

and 3 respectively.

• First, the condition v_num1 > v_num2 of the outer IF 

statement is evaluated. Since –4 is not greater than 3, 

the ELSE part of the outer IF statement is executed. 

• As a result, the message ELSE part of the outer IF
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Example explained

is displayed, and the value of v_total is calculated.

• Next, the condition v_total < 0 of the inner IF 

statement is evaluated.

• Since that value of v_total is equal –l, the condition 

yields TRUE, and message Inner IF is displayed.

• Next, the value of v_total is calculated again. 

• This logic is demonstrated by the output produced by 

the example:
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Output

Enter value for sv_num1: -4

old 2: v_num1 NUMBER := &sv_num1;

new 2: v_num1 NUMBER := -4;

Enter value for sv_num2: 3

old 3: v_num2 NUMBER := &sv_num2;

new 3: v_num2 NUMBER := 3;

ELSE part of the outer IF

Inner IF

v_total = 1

PL/SQL procedure successfully completed.
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LOGICAL OPERATORS

• So far you have seen examples of different IF 

statements. All these examples used test operators such 

as >, <, and =, to test a condition.

• Logical operators can be used to evaluate a condition as 

well. 

• In addition, they allow a programmer to combine 

multiple conditions into a single condition if there is 

such a need.
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Example

DECLARE

v_letter CHAR(1) := '&sv_letter';

BEGIN

IF (v_letter >= 'A' AND v_letter <= 'Z')

OR (v_letter >= 'a' AND v_letter <= 'z')

THEN

DBMS_OUTPUT.PUT_LINE('This is a letter');

ELSE

DBMS_OUTPUT.PUT_LINE('This is not a letter');

IF v_letter BETWEEN '0' and '9'

THEN
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Example contd.

DBMS_OUTPUT.PUT_LINE('This is a number');

ELSE

DBMS_OUTPUT.PUT_LINE('This is not a number');

END IF;

END IF;

END;
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Example explained

• In the example above, the condition

(v_letter >= 'A' AND v_letter <= 'Z')

OR (v_letter >= 'a' AND v_letter <= 'z')

uses logical operators AND and OR. 

• There are two conditions 

(v_letter >= 'A' AND v_letter <= 'Z')

and

(v_letter >= 'a' AND v_letter <= 'z')

combined into one with the help of the OR operator. 
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Example explained

• It is also important for you to realize the purpose of the 

parentheses. 

• In this example, they are used to improve the 

readability only because the operator AND takes 

precedence over the operator OR.

• When the symbol “?” is entered at runtime, this 

example produces the following output
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Output

Enter value for sv_letter: ?

old 2: v_letter CHAR(1) := '&sv_letter';

new 2: v_letter CHAR(1) := '?';

This is not a letter

This is not a number

PL/SQL procedure successfully completed.
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END


