
Bordoloi and Bock

CONTROL STRUCTURES:

CONDITIONAL CONTROLS

Bordoloi and Bock

Conditional Control

• Conditional control allows you to control the flow of
the execution of the program based on a condition.

• In programming terms, it means that the statements in
the program are not executed sequentially.

• Rather, one group of statements, or another will be
executed depending on how the condition is evaluated.

• In PL/SQL, there are two types of conditional control:

– IF statement and

– ELSIF statement.

Bordoloi and Bock

IF STATEMENTS

• An IF statement has two forms:

IF-THEN and IF-THEN-ELSE.

• An IF-THEN statement allows you to specify only one
group of actions to take.

• In other words, this group of actions is taken only when
a condition evaluates to TRUE.

• An IF-THEN-ELSE statement allows you to specify
two groups of actions, and the second group of actions
is taken when a condition evaluates to FALSE.

Bordoloi and Bock

IF-THEN STATEMENTS

• An IF-THEN statement is the most basic kind of a
conditional control and has the following structure:

IF CONDITION

THEN

STATEMENT 1;

…

STATEMENT N;

END IF;

• The reserved word IF marks the beginning of the IF
statement.

• Statements 1 through N are a sequence of executable
statements that consist of one or more of the standard
programming structures.

Bordoloi and Bock

IF-THEN STATEMENTS

• The word CONDITION between keywords IF and
THEN determines whether these statements are
executed.

• END IF is a reserved phrase that indicates the end of
the IF-THEN construct.

Bordoloi and Bock

Bordoloi and Bock

IF-THEN STATEMENTS

• When an IF-THEN statement is executed, a condition is

evaluated to either TRUE or FALSE.

• If the condition evaluates to TRUE, control is passed to

the first executable statement of the IF-THEN

construct.

• If the condition evaluates to FALSE, the control is

passed to the first executable statement after the END

IF statement.

Bordoloi and Bock

Example
DECLARE

v_num1 NUMBER := 5;

v_num2 NUMBER := 3;

v_temp NUMBER;

BEGIN

-- if v_num1 is greater than v_num2 rearrange their

-- values

IF v_num1 > v_num2

THEN

v_temp := v_num1;

v_num1 := v_num2;

v_num2 := v_temp;

END IF;

-- display the values of v_num1 and v_num2

DBMS_OUTPUT.PUT_LINE('v_num1 = '||v_num1);

DBMS_OUTPUT.PUT_LINE('v_num2 = '||v_num2);

END;

Bordoloi and Bock

Example explained

• In this example, condition 'v_num1 > v_num2'

evaluates to TRUE because 5 is greater that 3.

• Next, the values are rearranged so that 3 is assigned to

v_num1, and 5 is assigned to v_num2.

• It is done with the help of the third variable, v_temp,

that is used as a temporary storage.

• This example produces the following output:

v_num1 = 3

v_num2 = 5

PL/SQL procedure successfully completed.

Bordoloi and Bock

IF-THEN-ELSE STATEMENT

• An IF-THEN statement specifies the sequence of

statements to execute only if the condition evaluates to

TRUE.

• When this condition evaluates to FALSE, there is no

special action to take except to proceed with execution

of the program.

• An IF-THEN-ELSE statement enables you to specify

two groups of statements.

– One group of statements is executed when the condition

evaluates to TRUE.

– Another group of statements is executed when the

condition evaluates to FALSE.

Bordoloi and Bock

IF-THEN-ELSE STATEMENT

IF CONDITION

THEN

STATEMENT 1;

ELSE

STATEMENT 2;

END IF;

STATEMENT 3;

• When CONDITION evaluates to TRUE, control is

passed to STATEMENT 1;

• When CONDITION evaluates to FALSE, control is

passed to STATEMENT 2.

• After the IF-THEN-ELSE construct has completed,

STATEMENT 3 is executed.

Bordoloi and Bock

IF-THEN-ELSE STATEMENT

Bordoloi and Bock

Example

DECLARE

v_num NUMBER := &sv_user_num;

BEGIN

-- test if the number provided by the user is even

IF MOD(v_num,2) = 0

THEN

DBMS_OUTPUT.PUT_LINE(v_num||' is even

number');

ELSE

DBMS_OUTPUT.PUT_LINE(v_num||' is odd

number');

END IF;

DBMS_OUTPUT.PUT_LINE('Done…');

END;

Bordoloi and Bock

Example explained

• It is important to realize that for any given number only

one of the DBMS_OUTPUT.PUT_LINE statements is

executed.

• Hence, the IFTHEN-ELSE construct enables you to

specify two and only two mutually exclusive actions.

• When run, this example produces the following output:

Enter value for v_user_num: 24

old 2: v_num NUMBER := &v_user_num;

new 2: v_num NUMBER := 24;

24 is even number

Done…

PL/SQL procedure successfully completed.

Bordoloi and Bock

NULL CONDITION

• In some cases, a condition used in an IF statement can

be evaluated to NULL instead of TRUE or FALSE.

• For the IF-THEN construct, the statements will not be

executed if an associated condition evaluates to NULL.

• Next, control will be passed to the first executable

statement after END IF.

• For the IF-THEN-ELSE construct, the statements

specified after the keyword ELSE will be executed if an

associated condition evaluates to NULL.

Bordoloi and Bock

Example

DECLARE

v_num1 NUMBER := 0;

v_num2 NUMBER;

BEGIN

IF v_num1 = v_num2

THEN

DBMS_OUTPUT.PUT_LINE('v_num1 = v_num2');

ELSE

DBMS_OUTPUT.PUT_LINE('v_num1 != v_num2');

END IF;

END;

Bordoloi and Bock

Example explained

• This example produces the following output:

v_num1 != v_num2

PL/SQL procedure successfully completed.

• The condition v_num1 = v_num2 is evaluated to

NULL because a value is not assigned to the variable

v_num2.

• Therefore, variable v_num2 is NULL.

• Notice that IF-THEN-ELSE construct is behaving as if

the condition evaluated to FALSE, and second

DBMS_OUTPUT.PUT_LINE statement is executed.

Bordoloi and Bock

ELSIF STATEMENTS

• An ELSIF statement has the following structure:
IF CONDITION 1

THEN

STATEMENT 1;

ELSIF CONDITION 2

THEN

STATEMENT 2;

ELSIF CONDITION 3

THEN

STATEMENT 3;

…

ELSE

STATEMENT N;

END IF;

Bordoloi and Bock

ELSIF STATEMENTS

• The reserved word IF marks the beginning of an ELSIF

construct.

• The words CONDITION 1 through CONDITION N are a

sequence of the conditions that evaluate to TRUE or

FALSE.

• These conditions are mutually exclusive. In other words,

if CONDITION 1 evaluates to TRUE, STATEMENT1 is

executed, and control is passed to the first executable

statement after the reserved phrase END IF. The rest of

the ELSIF construct is ignored.

Bordoloi and Bock

ELSIF STATEMENTS

• When CONDITION 1 evaluates to FALSE, the control is
passed to the ELSIF part and CONDITION 2 is
evaluated, and so forth.

• If none of the specified conditions yield TRUE, the
control is passed to the ELSE part of the ELSIF
construct.

• An ELSIF statement can contain any number of ELSIF
clauses.

Bordoloi and Bock

ELSIF STATEMENTS

Bordoloi and Bock

Example

DECLARE

v_num NUMBER := &sv_num;

BEGIN

IF v_num < 0

THEN

DBMS_OUTPUT.PUT_LINE (v_num||‘ is a negative number’);

ELSIF v_num = 0

THEN

DBMS_OUTPUT.PUT_LINE (v_num ||‘ is equal to zero’);

ELSE

DBMS_OUTPUT.PUT_LINE (v_num||‘ is a positive number’);

END IF;

END;

Bordoloi and Bock

Example explained

• The value of v_num is provided at runtime and

evaluated with the help of the ELSIF statement.

• If the value of v_num is less that zero, the first

DBMS_OUTPUT.PUT_LINE statement executes, and

the ELSIF construct terminates.

• If the value of v_num is greater that zero, both

conditions v_num < 0 and v_num = 0 evaluate to

FALSE, and the ELSE part of the ELSIF construct

executes.

Bordoloi and Bock

Example explained

• Assume the value of v_num equals five at runtime.

• This example produces the output shown below:

Enter value for sv_num: 5

old 2: v_num NUMBER := &sv_num;

new 2: v_num NUMBER := 5;

5 is a positive number

PL/SQL procedure successfully completed.

Bordoloi and Bock

ELSIF STATEMENTS

• There is no second “E” in the “ELSIF”.

• Conditions of an ELSIF statement must be mutually

exclusive.

• These conditions are evaluated in sequential order, from

the first to the last.

• Once a condition evaluates to TRUE, the remaining

conditions of the ELSIF statement are not evaluated at

all.

• Consider this example of an ELSIF construct:

Bordoloi and Bock

Example

IF v_num >= 0

THEN

DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');

ELSIF v_num =< 10

THEN

DBMS_OUTPUT.PUT_LINE ('v_num is less than 10');

ELSE

DBMS_OUTPUT.PUT_LINE ('v_num is less than ? or

greater than ?');

END IF;

Bordoloi and Bock

Example explained

• Assume that the value of v_num is equal to 5.

• Both conditions of the ELSIF statement potentially can

evaluate to TRUE because 5 is greater than 0, and 5 is

less than 10.

• However, once the first condition, v_num>= 0

evaluates to TRUE, the rest of the ELSIF construct is

ignored.

• For any value of v_num that is greater or equal to 0 and

less or equal to 10, these conditions are not mutually

exclusive.

Bordoloi and Bock

Example explained

• Therefore, DBMS_OUTPUT.PUT_LINE statement

associated with ELSIF clause will not execute for any

such value of v_num.

• In order for the second condition, v_num <= 10, to

yield TRUE, the value of v_num must be less than 0.

Bordoloi and Bock

ELSIF STATEMENTS

• When using an ELSIF construct, it is not necessary to

specify what action should be taken if none of the

conditions evaluate to TRUE.

• In other words, an ELSE clause is not required in the

ELSIF construct.

• Consider the following example:

Bordoloi and Bock

Example
DECLARE

v_num NUMBER := &sv_num;

BEGIN

IF v_num < 0

THEN

DBMS_OUTPUT.PUT_LINE (v_num||' is a negative

number');

ELSIF v_num > 0

THEN

DBMS_OUTPUT.PUT_LINE (v_num||' is a positive

number');

END IF;

DBMS_OUTPUT.PUT_LINE ('Done…');

END;

Bordoloi and Bock

Example explained

• As you can see, there is no action specified when

v_num is equal to zero.

• If the value of v_num is equal to zero, both conditions

will evaluate to FALSE, and the ELSIF statement will

not execute at all.

• When value of zero is specified for v_num, this

example produces the following output.

Enter value for sv_num: 0

old 2: v_num NUMBER := &sv_num;

new 2: v_num NUMBER := 0;

Done…

PL/SQL procedure successfully completed.

Bordoloi and Bock

NESTED IF STATEMENTS

• You have encountered different types of conditional

controls: IF-THEN statement, IF-THEN-ELSE

statement, and ELSIF statement.

• These types of conditional controls can be nested inside

of another—for example, an IF statement can be nested

inside an ELSIF and vice versa.

Bordoloi and Bock

Example

DECLARE

v_num1 NUMBER := &sv_num1;

v_num2 NUMBER := &sv_num2;

v_total NUMBER;

BEGIN

IF v_num1 > v_num2

THEN

DBMS_OUTPUT.PUT_LINE('IF part of the outer IF');

v_total := v_num1 - v_num2;

ELSE

DBMS_OUTPUT.PUT_LINE('ELSE part of the outer IF');

v_total := v_num1 + v_num2;

Bordoloi and Bock

Example contd.

IF v_total < 0

THEN

DBMS_OUTPUT.PUT_LINE('Inner IF');

v_total := v_total * (-1);

END IF;

END IF;

DBMS_OUTPUT.PUT_LINE('v_total = '||v_total);

END;

Bordoloi and Bock

Example explained

• The IF-THEN-ELSE statement is called an outer IF

statement because it encompasses the IF-THEN

statement.

• The IF-THEN statement is called an inner IF statement

because it is enclosed by the body of the IF-THEN-

ELSE statement.

• Assume that the value for v_num1 and v_num2 are –4

and 3 respectively.

• First, the condition v_num1 > v_num2 of the outer IF

statement is evaluated. Since –4 is not greater than 3,

the ELSE part of the outer IF statement is executed.

• As a result, the message ELSE part of the outer IF

Bordoloi and Bock

Example explained

is displayed, and the value of v_total is calculated.

• Next, the condition v_total < 0 of the inner IF

statement is evaluated.

• Since that value of v_total is equal –l, the condition

yields TRUE, and message Inner IF is displayed.

• Next, the value of v_total is calculated again.

• This logic is demonstrated by the output produced by

the example:

Bordoloi and Bock

Output

Enter value for sv_num1: -4

old 2: v_num1 NUMBER := &sv_num1;

new 2: v_num1 NUMBER := -4;

Enter value for sv_num2: 3

old 3: v_num2 NUMBER := &sv_num2;

new 3: v_num2 NUMBER := 3;

ELSE part of the outer IF

Inner IF

v_total = 1

PL/SQL procedure successfully completed.

Bordoloi and Bock

LOGICAL OPERATORS

• So far you have seen examples of different IF

statements. All these examples used test operators such

as >, <, and =, to test a condition.

• Logical operators can be used to evaluate a condition as

well.

• In addition, they allow a programmer to combine

multiple conditions into a single condition if there is

such a need.

Bordoloi and Bock

Example

DECLARE

v_letter CHAR(1) := '&sv_letter';

BEGIN

IF (v_letter >= 'A' AND v_letter <= 'Z')

OR (v_letter >= 'a' AND v_letter <= 'z')

THEN

DBMS_OUTPUT.PUT_LINE('This is a letter');

ELSE

DBMS_OUTPUT.PUT_LINE('This is not a letter');

IF v_letter BETWEEN '0' and '9'

THEN

Bordoloi and Bock

Example contd.

DBMS_OUTPUT.PUT_LINE('This is a number');

ELSE

DBMS_OUTPUT.PUT_LINE('This is not a number');

END IF;

END IF;

END;

Bordoloi and Bock

Example explained

• In the example above, the condition

(v_letter >= 'A' AND v_letter <= 'Z')

OR (v_letter >= 'a' AND v_letter <= 'z')

uses logical operators AND and OR.

• There are two conditions

(v_letter >= 'A' AND v_letter <= 'Z')

and

(v_letter >= 'a' AND v_letter <= 'z')

combined into one with the help of the OR operator.

Bordoloi and Bock

Example explained

• It is also important for you to realize the purpose of the

parentheses.

• In this example, they are used to improve the

readability only because the operator AND takes

precedence over the operator OR.

• When the symbol “?” is entered at runtime, this

example produces the following output

Bordoloi and Bock

Output

Enter value for sv_letter: ?

old 2: v_letter CHAR(1) := '&sv_letter';

new 2: v_letter CHAR(1) := '?';

This is not a letter

This is not a number

PL/SQL procedure successfully completed.

Bordoloi and Bock

END

