
Copyright © 2009, Oracle. All rights reserved.

Creating Functions

Copyright © 2009, Oracle. All rights reserved.3 - 2

Objectives

After completing this lesson, you should be able to do the

following:

• Differentiate between a procedure and a function

• Describe the uses of functions

• Create stored functions

• Invoke a function

• Remove a function

Copyright © 2009, Oracle. All rights reserved.3 - 3

Overview of Stored Functions

A function:

• Is a named PL/SQL block that returns a value

• Can be stored in the database as a schema object for

repeated execution

• Is called as part of an expression or is used to provide a

parameter value

Copyright © 2009, Oracle. All rights reserved.3 - 4

CREATE [OR REPLACE] FUNCTION function_name

[(parameter1 [mode1] datatype1, . . .)]

RETURN datatype IS|AS

[local_variable_declarations;

. . .]

BEGIN

-- actions;

RETURN expression;

END [function_name];

Creating Functions

The PL/SQL block must have at least one RETURN statement.

PL/SQL Block

Copyright © 2009, Oracle. All rights reserved.3 - 5

The Difference Between

Procedures and Functions

Procedures Functions

Execute as a PL/SQL statement Invoke as part of an expression

Do not contain RETURN clause in the

header

Must contain a RETURN clause in the header

Can pass values (if any) using output

parameters

Must return a single value

Can contain a RETURN statement

without a value

Must contain at least one RETURN statement

Copyright © 2009, Oracle. All rights reserved.3 - 6

Creating and Running Functions: Overview

Create/edit

function

Invoke function

Compiler

warnings/errors?

NO

YES
Use SHOW ERRORS

command in SQL*Plus

Use USER/ALL/DBA_

ERRORS views

View errors/warnings

in SQL Developer

View compiler

warnings/errors

Copyright © 2009, Oracle. All rights reserved.3 - 7

Creating and Invoking a Stored Function Using
the CREATE FUNCTION Statement: Example

CREATE OR REPLACE FUNCTION get_sal

(p_id employees.employee_id%TYPE) RETURN NUMBER IS

v_sal employees.salary%TYPE := 0;

BEGIN

SELECT salary

INTO v_sal

FROM employees

WHERE employee_id = p_id;

RETURN v_sal;

END get_sal; /

-- Invoke the function as an expression or as

-- a parameter value.

EXECUTE dbms_output.put_line(get_sal(100))

Copyright © 2009, Oracle. All rights reserved.3 - 8

Using Different Methods for Executing Functions

-- As a PL/SQL expression, get the results using host variables

VARIABLE b_salary NUMBER

EXECUTE :b_salary := get_sal(100)

-- As a PL/SQL expression, get the results using a local

-- variable

DECLARE

sal employees.salary%type;

BEGIN

sal := get_sal(100);

DBMS_OUTPUT.PUT_LINE('The salary is: '|| sal);

END;/

Copyright © 2009, Oracle. All rights reserved.3 - 9

Using Different Methods for Executing Functions

-- Use as a parameter to another subprogram

EXECUTE dbms_output.put_line(get_sal(100))

-- Use in a SQL statement (subject to restrictions)

SELECT job_id, get_sal(employee_id) FROM employees;

. . .

Copyright © 2009, Oracle. All rights reserved.3 - 10

Creating and Compiling

Functions Using SQL Developer

1 2 3

4

Copyright © 2009, Oracle. All rights reserved.3 - 11

Executing Functions Using SQL Developer

1

2

Replace ID with

the actual value`

3`

Copyright © 2009, Oracle. All rights reserved.3 - 12

Advantages of User-Defined

Functions in SQL Statements

• Can extend SQL where activities are too complex, too

awkward, or unavailable with SQL

• Can increase efficiency when used in the WHERE clause to

filter data, as opposed to filtering the data in the application

• Can manipulate data values

Copyright © 2009, Oracle. All rights reserved.3 - 13

Using a Function in a SQL Expression: Example

CREATE OR REPLACE FUNCTION tax(p_value IN NUMBER)

RETURN NUMBER IS

BEGIN

RETURN (p_value * 0.08);

END tax;

/

SELECT employee_id, last_name, salary, tax(salary)

FROM employees

WHERE department_id = 100;

Copyright © 2009, Oracle. All rights reserved.3 - 14

Calling User-Defined Functions

in SQL Statements

User-defined functions act like built-in single-row functions and

can be used in:

• The SELECT list or clause of a query

• Conditional expressions of the WHERE and HAVING

clauses

• The CONNECT BY, START WITH, ORDER BY, and GROUP BY

clauses of a query

• The VALUES clause of the INSERT statement

• The SET clause of the UPDATE statement

Copyright © 2009, Oracle. All rights reserved.3 - 15

Restrictions When Calling Functions

from SQL Expressions

• User-defined functions that are callable from SQL

expressions must:

– Be stored in the database

– Accept only IN parameters with valid SQL data types, not

PL/SQL-specific types

– Return valid SQL data types, not PL/SQL-specific types

• When calling functions in SQL statements:

– You must own the function or have the EXECUTE privilege

Copyright © 2009, Oracle. All rights reserved.3 - 16

Controlling Side Effects When

Calling Functions from SQL Expressions

Functions called from:

• A SELECT statement cannot contain DML statements

• An UPDATE or DELETE statement on a table T cannot

query or contain DML on the same table T

• SQL statements cannot end transactions (that is, cannot
execute COMMIT or ROLLBACK operations)

Note: Calls to subprograms that break these restrictions are

also not allowed in the function.

Copyright © 2009, Oracle. All rights reserved.3 - 17

Restrictions on Calling Functions

from SQL: Example
CREATE OR REPLACE FUNCTION dml_call_sql(p_sal NUMBER)

RETURN NUMBER IS
BEGIN

INSERT INTO employees(employee_id, last_name,
email, hire_date, job_id, salary)

VALUES(1, 'Frost', 'jfrost@company.com',
SYSDATE, 'SA_MAN', p_sal);

RETURN (p_sal + 100);
END;

UPDATE employees
SET salary = dml_call_sql(2000)

WHERE employee_id = 170;

Copyright © 2009, Oracle. All rights reserved.3 - 18

Named and Mixed Notation from SQL

• PL/SQL allows arguments in a subroutine call to be

specified using positional, named, or mixed notation

• Prior to Oracle Database 11g, only the positional notation

is supported in calls from SQL

• Starting in Oracle Database 11g, named and mixed

notation can be used for specifying arguments in calls to

PL/SQL subroutines from SQL statements

• For long parameter lists, with most having default values,

you can omit values from the optional parameters

• You can avoid duplicating the default value of the optional

parameter at each call site

Copyright © 2009, Oracle. All rights reserved.3 - 19

Named and Mixed Notation from SQL: Example

CREATE OR REPLACE FUNCTION f(

p_parameter_1 IN NUMBER DEFAULT 1,

p_parameter_5 IN NUMBER DEFAULT 5)

RETURN NUMBER

IS

v_var number;

BEGIN

v_var := p_parameter_1 + (p_parameter_5 * 2);

RETURN v_var;

END f;

/

SELECT f(p_parameter_5 => 10) FROM DUAL;

Copyright © 2009, Oracle. All rights reserved.3 - 20

Removing Functions: Using the DROP

SQL Statement or SQL Developer

• Using the DROP statement:

• Using SQL Developer:

DROP FUNCTION f;

1

2

3

Copyright © 2009, Oracle. All rights reserved.3 - 21

Viewing Functions

Using Data Dictionary Views

SELECT text

FROM user_source

WHERE type = 'FUNCTION'

ORDER BY line;

DESCRIBE USER_SOURCE

. . .

Copyright © 2009, Oracle. All rights reserved.3 - 22

Quiz

A PL/SQL function:

1. Can be invoked as part of an expression

2. Must contain a RETURN clause in the header

3. Must return a single value

4. Must contain at least one RETURN statement

5. Does not contain a RETURN clause in the header

Copyright © 2009, Oracle. All rights reserved.3 - 23

Summary

In this lesson, you should have learned how to:

• Differentiate between a procedure and a function

• Describe the uses of functions

• Create stored functions

• Invoke a function

• Remove a function

Copyright © 2009, Oracle. All rights reserved.3 - 24

Practice 3: Overview

This practice covers the following topics:

• Creating stored functions:

– To query a database table and return specific values

– To be used in a SQL statement

– To insert a new row, with specified parameter values, into a

database table

– Using default parameter values

• Invoking a stored function from a SQL statement

• Invoking a stored function from a stored procedure

