
Bordoloi and Bock

CURSORS

Bordoloi and Bock

CURSOR MANIPULATION

• To process an SQL statement, ORACLE needs to

create an area of memory known as the context area;

this will have the information needed to process the

statement.

• This information includes the number of rows

processed by the statement, a pointer to the parsed

representation of the statement.

• In a query, the active set refers to the rows that will be

returned.

Bordoloi and Bock

CURSOR MANIPULATION

• A cursor is a handle, or pointer, to the context area.

• Through the cursor, a PL/SQL program can control

the context area and what happens to it as the

statement is processed.

• Two important features about the cursor are

1. Cursors allow you to fetch and process rows

returned by a SELECT statement, one row at a

time.

2. A cursor is named so that it can be referenced.

Bordoloi and Bock

Types Of Cursors

• There are two types of cursors:

1. An IMPLICIT cursor is automatically declared

by Oracle every time an SQL statement is

executed. The user will not be aware of this

happening and will not be able to control or

process the information in an implicit cursor.

2. An EXPLICIT cursor is defined by the program

for any query that returns more than one row of

data. That means the programmer has declared

the cursor within the PL/SQL code block.

Bordoloi and Bock

IMPLICIT CURSOR

• Any given PL/SQL block issues an implicit cursor whenever

an SQL statement is executed, as long as an explicit cursor

does not exist for that SQL statement.

• A cursor is automatically associated with every DML (Data

Manipulation) statement (UPDATE, DELETE, INSERT).

• All UPDATE and DELETE statements have cursors that

identify the set of rows that will be affected by the operation.

• An INSERT statement needs a place to receive the data that is

to be inserted in the database; the implicit cursor fulfills this

need.

• The most recently opened cursor is called the “SQL%”

Cursor.

Bordoloi and Bock

The Processing Of An Implicit Cursor

• The implicit cursor is used to process INSERT, UPDATE,

DELETE, and SELECT INTO statements.

• During the processing of an implicit cursor, Oracle

automatically performs the OPEN, FETCH, and CLOSE

operations.

• An implicit cursor cannot tell you how many rows were

affected by an update. SQL%ROWCOUNT returns numbers

of rows updated. It can be used as follows:

BEGIN

UPDATE employees

SET first_name = 'B'

WHERE first_name LIKE 'B%';

DBMS_OUTPUT.PUT_LINE(SQL%ROWCOUNT);

END;

Bordoloi and Bock

EXPLICIT CURSOR

• The only means of generating an explicit cursor

is for the cursor to be named in the DECLARE

section of the PL/SQL Block.

• The advantages of declaring an explicit cursor

over the indirect implicit cursor are that the

explicit cursor gives more programmatic

control to the programmer.

• Implicit cursors are less efficient than explicit

cursors and thus it is harder to trap data errors.

Bordoloi and Bock

EXPLICIT CURSOR

• The process of working with an explicit cursor

consists of the following steps:

• DECLARING the cursor. This initializes the cursor

into memory.

• OPENING the cursor. The previously declared cursor

can now be opened; memory is allotted.

• FETCHING the cursor. The previously declared and

opened cursor can now retrieve data; this is the

process of fetching the cursor.

• CLOSING the cursor. The previously declared,

opened, and fetched cursor must now be closed to

release memory allocation.

Bordoloi and Bock

DECLARING A CURSOR

• Declaring a cursor defines the name of the cursor and

associates it with a SELECT statement.

• The first step is to Declare the Cursor with the

following syntax:

CURSOR c_cursor_name IS select statement

• Cursor names follow the same rules of scope and

visibility that apply to the PL/SQL identifiers.

• Because the name of the cursor is a PL/SQL identifier,

it must be declared before it is referenced.

• Any valid select statement can be used to define a

cursor, including joins and statements with the

UNION or MINUS clause.

Bordoloi and Bock

RECORD TYPES

• A record is a composite data structure, which means

that it is composed of more than one element.

• Records are very much like a row of a database table,

but each element of the record does not stand on its

own.

• PL/SQL supports three kinds of records:

1. Table based

2. Cursor_based,

3. Programmer-defined.

Bordoloi and Bock

RECORD TYPES

• A table-based record is one whose structure is drawn

from the list of columns in the table.

• A cursor-based record is one whose structure matches

the elements of a predefined cursor.

• To create a table-based or cursor_based record use the

%ROWTYPE attribute.

<record_name> <table_name or cursor_name>%ROWTYPE

Bordoloi and Bock

Example

DECLARE

vr_employe employees%ROWTYPE;

BEGIN

SELECT *

INTO vr_employe

FROM employees

WHERE employee_id = 156;

DBMS_OUTPUT.PUT_LINE (vr_employe.first_name ||vr_employe.last_name||

‘ has an ID of 156’);

EXCEPTION

WHEN no_data_found

THEN

RAISE_APPLICATION_ERROR(-2001,‘The Student’ || ‘is not in the

database’);

END;

Bordoloi and Bock

OPENING A CURSOR

• The next step in controlling an explicit cursor is to open

it. When the Open cursor statement is processed, the

following four actions will take place automatically:

1. The variables (including bind variables) in the WHERE

clause are examined.

2. Based on the values of the variables, the active set is

determined and the PL/SQL engine executes the query for

that cursor. Variables are examined at cursor open time

only.

3. The PL/SQL engine identifies the active set of data—the

rows from all involved tables that meet the WHERE clause

criteria.

4. The active set pointer is set to the first row.

Bordoloi and Bock

OPENING A CURSOR

• The syntax for opening a cursor is:

OPEN cursor_name;

Bordoloi and Bock

FETCHING ROWS IN A CURSOR

• After the cursor has been declared and opened, you

can then retrieve data from the cursor.

• The process of getting the data from the cursor is

referred to as fetching the cursor.

• There are two methods of fetching a cursor, done with

the following command:

FETCH cursor_name INTO PL/SQL variables;

or

FETCH cursor_name INTO PL/SQL record;

Bordoloi and Bock

FETCHING ROWS IN A CURSOR

• When the cursor is fetched the following occurs:

1. The fetch command is used to retrieve one row at a time

from the active set. This is generally done inside a loop.

The values of each row in the active set can then be stored

into the corresponding variables or PL/SQL record one at

a time, performing operations on each one successively.

2. After each FETCH, the active set pointer is moved

forward to the next row. Thus, each fetch will return

successive rows of the active set, until the entire set is

returned. The last FETCH will not assign values to the

output variables; they will still contain their prior values.

Bordoloi and Bock

Example

DECLARE

CURSOR c_zip IS

SELECT *

FROM employees;

vr_zip c_zip%ROWTYPE;

BEGIN

OPEN c_zip;

LOOP

FETCH c_zip INTO vr_zip;

EXIT WHEN c_zip%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(vr_zip.employee_id);

END LOOP;

END;

Bordoloi and Bock

CLOSING A CURSOR

• Once all of the rows in the cursor have been processed

(retrieved), the cursor should be closed.

• This tells the PL/SQL engine that the program is

finished with the cursor, and the resources associated

with it can be freed.

• The syntax for closing the cursor is:

CLOSE cursor_name;

• Once a cursor is closed, it is no longer valid to fetch

from it.

• Likewise, it is not possible to close an already closed

cursor (either one will result in an Oracle error).

Bordoloi and Bock

Bordoloi and Bock

USING CURSOR FOR LOOPS AND

NESTING CURSORS

• When using the cursor FOR LOOP, the process of

opening, fetching, and closing are implicitly handled.

• This makes the blocks much simpler to code and

easier to maintain.

• The cursor FOR LOOP specifies a sequence of

statements to be repeated once for each row returned

by the cursor.

• Use the cursor FOR LOOP if you need to FETCH and

PROCESS each and every record from a cursor.

Bordoloi and Bock

Example

DECLARE

CURSOR c_student IS

SELECT student_id, last_name, first_name

FROM student

WHERE student_id < 110;

BEGIN

FOR r_student IN c_student

LOOP

INSERT INTO table_log

VALUES(r_student.last_name);

END LOOP;

END;

Bordoloi and Bock

PROCESSING NESTED CURSORS

• Cursors can be nested inside each other.

• It is just a loop inside a loop, much like nested loops.

• If you had one parent cursor and two child cursors,

then each time the parent cursor makes a single loop,

it will loop through each child cursor once and then

begin a second round.

• In the following example, you will encounter a nested

cursor with a single child cursor.

Bordoloi and Bock

Example

1 DECLARE

2 v_zip zipcode.zip%TYPE;

3 CURSOR c_zip IS

4 SELECT zip, city, state

5 FROM zipcode

6 WHERE state = 'CT';

7 CURSOR c_student IS

8 SELECT first_name,

last_name

9 FROM student

10 WHERE zip = v_zip;

11 BEGIN

12 FOR r_zip IN c_zip

13 LOOP

• There are two cursors

in this example.

• The first is a cursor of

the zipcodes and the

second cursor is a list

of students.

• The variable v_zip is

initialized in line 14

to be the zipcode of

the current record of

the c_zip cursor.

• The c_student cursor

ties in c_zip cursor by

means of this

variable.

Bordoloi and Bock

Contd.

14 v_zip := r_zip.zip;

15 DBMS_OUTPUT.PUT_LINE
(CHR(10));

16 DBMS_OUTPUT.PUT_LINE
('Students living in '||

17 r_zip.city);

18 FOR r_student in c_student

19 LOOP

20 DBMS_OUTPUT.PUT_LINE
(r_student.first_name||

21 ' '||r_student.last_name);

22 END LOOP;

23 END LOOP;

24* END;

Thus, when the cursor is

processed in lines 18–22, it

is retrieving students that

have the zipcode of the

current record for the parent

cursor.

The parent cursor is processed

from lines 12–23. Each

iteration of the parent

cursor will only execute the

DBMS_OUTPUT in lines

16 and 17 once.

The DBMS_OUTPUT in line 20

will be executed once for

each iteration of the child

loop, producing a line of

output for each student.

Bordoloi and Bock

CURSORS WITH PARAMETERS

• A cursor can be declared with parameters.

• This enables a cursor to generate a specific result set,

which is, on the one hand, more narrow, but on the

other hand, reusable.

• A cursor of all the data from the zipcode table may be

very useful, but it would be more useful for certain

data processing if it held information for only one

state.

CURSOR c_zip (p_state IN zipcode.state%TYPE) IS

SELECT zip, city, state

FROM zipcode

WHERE state = p_state;

Bordoloi and Bock

CURSORS WITH PARAMETERS

• Cursor parameters make the cursor more reusable.

• Cursor parameters can be assigned default values.

• The scope of the cursor parameters is local to the

cursor.

• The mode of the parameters can only be IN.

• When a cursor has been declared as taking a

parameter, it must be called with a value for that

parameter.

• The c_zip cursor that was just declared is called as

follows:

OPEN c_zip (parameter_value)

Bordoloi and Bock

USING A FOR UPDATE CURSOR

• The CURSOR FOR UPDATE clause is only used

with a cursor when you want to update tables in the

database.

• Generally, when you execute a SELECT statement,

you are not locking any rows.

• The purpose of using the FOR UPDATE clause is to

lock the rows of the tables that you want to update, so

that another user cannot perform an update until you

perform your update and release the lock.

• The next COMMIT or ROLLBACK statement

releases the lock.

Bordoloi and Bock

USING A FOR UPDATE CURSOR

• The syntax is simply to add FOR UPDATE to the end

of the cursor definition.

• If there are multiple items being selected, but you only

want to lock one of them, then end the cursor

definition with the following syntax:

FOR UPDATE OF <item_name>

Bordoloi and Bock

WHERE CURRENT OF CLAUSE

• Use WHERE CURRENT OF when you want to

update the most recently fetched row.

• WHERE CURRENT OF can only be used with a FOR

UPDATE OF cursor.

• The advantage of the WHERE CURRENT OF clause

is that it enables you to eliminate the WHERE clause

in the UPDATE statement.

Bordoloi and Bock

Example

DECLARE

CURSOR c_stud_zip IS

SELECT s.studid_id, z.city

FROM student s, zipcode z

WHERE z.city = 'Brooklyn'

AND s.szip = z.zip

FOR UPDATE OF sphone;

BEGIN

FOR r_stud_zip IN c_stud_zip

LOOP

DBMS_OUTPUT.PUT_LINE(r_stud_zip.studid);

UPDATE student

SET sphone = '718'||SUBSTR(sphone,4)

WHERE CURRENT OF c_stud_zip;

END LOOP;

END;

Bordoloi and Bock

END

