
Bordoloi and Bock

PL/SQL : INTRODUCTION

Bordoloi and Bock

PL/SQL

• PL/SQL is Oracle's procedural language extension
to SQL, the non-procedural relational database
language.

• With PL/SQL, you can use SQL statements to
manipulate ORACLE data and the flow of control
statements to process the data. Moreover, you can
declare constants and variables, define subprograms
(procedures and functions), and trap runtime errors.
Thus, PL/SQL combines the data manipulating
power of SQL with the data processing power of
procedural languages.

Bordoloi and Bock

PL/SQL

• Many Oracle applications are built using client-server
architecture. The Oracle database resides on the server.

• The program that makes requests against this database
resides on the client machine.

• This program can be written in C, Java, or PL/SQL.

• While PL/SQL is just like any other programming
language, it has syntax and rules that determine how
programming statements work together. It is important
for you to realize that PL/SQL is not a stand-alone
programming language.

• PL/SQL is a part of the Oracle RDBMS, and it can
reside in two environments, the client and the server.

Bordoloi and Bock

PL/SQL

• As a result, it is very easy to move PL/SQL modules
between server-side and client-side applications.

• When the PL/SQL engine is located on the server, the
whole PL/SQL block is passed to the PL/SQL engine
on the Oracle server.

• The PL/SQL engine processes the block according to
the Figure 2.1.

Bordoloi and Bock

Bordoloi and Bock

PL/SQL

• When the PL/SQL engine is located on the client, as it
is in the Oracle Developer Tools, the PL/SQL
processing is done on the client side.

• All SQL statements that are embedded within the
PL/SQL block are sent to the Oracle server for further
processing. When PL/SQL block contains no SQL
statement, the entire block is executed on the client
side.

Bordoloi and Bock

DIFFERENCE BETWEEN PL/SQL AND SQL

• When a SQL statement is issued on the client
computer, the request is made to the database on the
server, and the result set is sent back to the client.

• As a result, a single SQL statement causes two trips
on the network. If multiple SELECT statements are
issued, the network traffic increase significantly very
fast. For example, four SELECT statements cause
eight network trips.

• If these statements are part of the PL/SQL block, they
are sent to the server as a single unit. The SQL
statements in this PL/SQL program are executed at the
server and the result set is sent back as a single unit.
There is still only one network trip made as is in case
of a single SELECT statement.

Bordoloi and Bock

Comparison of SQL*PLUS and PL/SQL

Bordoloi and Bock

PL/SQL BLOCKS

• PL/SQL blocks can be divided into two groups:

1. Named and

2. Anonymous.

• Named blocks are used when creating subroutines.
These subroutines are procedures, functions, and
packages.

• The subroutines can be stored in the database and
referenced by their names later on.

• In addition, subroutines can be defined within the
anonymous PL/SQL block.

• Anonymous PL/SQL blocks do not have names. As a
result,they cannot be stored in the database and
referenced later.

Bordoloi and Bock

PL/SQL BLOCK STRUCTURE

• PL/SQL blocks contain three sections

1. Declare section

2. Executable section and

3. Exception-handling section.

• The executable section is the only mandatory section
of the block.

• Both the declaration and exception-handling sections
are optional.

Bordoloi and Bock

PL/SQL BLOCK STRUCTURE

• PL/SQL block has the following structure:

DECLARE

Declaration statements

BEGIN

Executable statements

EXCETION

Exception-handling statements

END ;

Bordoloi and Bock

DECLARATION SECTION

• The declaration section is the first section of the
PL/SQL block.

• It contains definitions of PL/SQL identifiers such
as variables, constants, cursors and so on.

• Example

DECLARE

v_first_name VARCHAR2(35) ;

v_last_name VARCHAR2(35) ;

v_counter NUMBER := 0 ;

Bordoloi and Bock

EXECUTABLE SECTION

• The executable section is the next section of the PL/SQL
block.

• This section contains executable statements that allow
you to manipulate the variables that have been declared
in the declaration section.

BEGIN

SELECT first_name, last_name

INTO v_first_name, v_last_name

FROM student

WHERE student_id = 123 ;

DBMS_OUTPUT.PUT_LINE

(‘Student name :’ || v_first_name ||‘ ’|| v_last_name);

END;

Bordoloi and Bock

EXCEPTION-HANDLING SECTION

• The exception-handling section is the last section of
the PL/SQL block.

• This section contains statements that are executed
when a runtime error occurs within a block.

• Runtime errors occur while the program is running
and cannot be detected by the PL/SQL compiler.

EXCEPTION

WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE

(‘ There is no student with student id 123 ’);

END;

Bordoloi and Bock

HOW PL/SQL GETS EXECUTED

• Every time an anonymous block is executed, the
code is sent to the PL/SQL engine on the server
where it is compiled.

• The named PL/SQL block is compiled only at the
time of its creation, or if it has been changed.

• The compilation process includes syntax checking,
binding and p-code generation.

• Syntax checking involves checking PL/SQL code for
syntax or compilation errors.

• Once the programmer corrects syntax errors, the
compiler can assign a storage address to program
variables that are used to hold data for Oracle. This
process is called Binding.

Bordoloi and Bock

HOW PL/SQL GETS EXECUTED

• After binding, p-code is generated for the PL/SQL
block.

• P-code is a list of instructions to the PL/SQL engine.

• For named blocks, p-code is stored in the database,
and it is used the next time the program is executed.

• Once the process of compilation has completed
successfully, the status for a named PL/SQL block is
set to VALID, and also stored in the database.

• If the compilation process was not successful, the
status for a named PL/SQL block is set to INVALID.

Bordoloi and Bock

PL/SQL IN SQL*PLUS

• SQL*Plus is an interactive tool that allows

you to type SQL or PL/SQL statements at the

command prompt.

• These statements are then sent to the database.

Once they are processed, the results are sent

back from the database and displayed on the

screen.

• There are some differences between entering

SQL and PL/SQL statements.

Bordoloi and Bock

SQL EXAMPLE

SELECT first_name, last_name

FROM student;

• The semicolon terminates this SELECT

statement. Therefore, as soon as you type

semicolon and hit the ENTER key, the result

set is displayed to you.

Bordoloi and Bock

PL/SQL EXAMPLE
DECLARE

v_first_name VARCHAR2(20);

v_last_name VARCHAR2(25);

BEGIN

SELECT first_name, last_name

INTO v_first_name, v_last_name

FROM employees

WHERE EMPLOYEE_ID= 123;

DBMS_OUTPUT.PUT_LINE

('Student name: '||v_first_name||' '||v_last_name);

EXCEPTION

WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE

('There is no student with student id 123');

END;

.

/

Bordoloi and Bock

PL/SQL EXAMPLE

• There are two additional lines at the end of the block

containing “.” End “/”. The “.” marks the end of the

PL/SQL block and is optional.

• The “/” executes the PL/SQL block and is required.

• When SQL*Plus reads SQL statement, it knows that

the semicolon marks the end of the statement.

Therefore, the statement is complete and can be sent

to the database.

• When SQL*Plus reads a PL/SQL block, a semicolon

• marks the end of the individual statement within the

block. In other words, it is not a block terminator.

Bordoloi and Bock

PL/SQL EXAMPLE

• Therefore, SQL*Plus needs to know when the block

has ended. As you have seen in the example, it can

be done with period and forward slash.

Bordoloi and Bock

EXECUTING PL/SQL

PL/SQL can be executed directly in SQL*Plus. A

PL/SQL program is normally saved with an

.sql extension. To execute an anonymous

PL/SQL program, simply type the following

command at the SQL prompt:

SQL> @DisplayAge

Bordoloi and Bock

GENERATING OUTPUT

Like other programming languages, PL/SQL provides a

procedure (i.e. PUT_LINE) to allow the user to

display the output on the screen. For a user to able to

view a result on the screen, two steps are required.

First, before executing any PL/SQL program, type the

following command at the SQL prompt (Note: you

need to type in this command only once for every

SQL*PLUS session):

SQL> SET SERVEROUTPUT ON;

or put the command at the beginning of the program,

right before the declaration section.

Bordoloi and Bock

GENERATING OUTPUT

Second, use DBMS_OUTPUT.PUT_LINE in your

executable section to display any message you want

to the screen.

Syntax for displaying a message:

DBMS_OUTPUT.PUT_LINE(<string>);

in which PUT_LINE is the procedure to generate the

output on the screen, and DBMS_OUTPUT is the

package to which the PUT_LINE belongs.

DBMS_OUTPUT_PUT_LINE(‘My age is ‘ ||

num_age);

Bordoloi and Bock

SUBSTITUTIONVARIABLES

• SQL*Plus allows a PL/SQL block to receive input

information with the help of substitution variables.

• Substitution variables cannot be used to output the

values because no memory is allocated for them.

• SQL*Plus will substitute a variable before the

PL/SQL block is sent to the database.

• Substitution variables are usually prefixed by the

ampersand(&) character or double ampersand (&&)

character.

Bordoloi and Bock

EXAMPLE

DECLARE

v_student_id NUMBER := &sv_student_id;

v_first_name VARCHAR2(20);

v_last_name VARCHAR2(25);

BEGIN

SELECT first_name, last_name

INTO v_first_name, v_last_name

FROM employees

WHERE employee_id = v_student_id;

DBMS_OUTPUT.PUT_LINE

('Student name: '||v_first_name||' '||v_last_name);

EXCEPTION

WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE('There is no such student');

END;

Bordoloi and Bock

EXAMPLE

• When this example is executed, the user is asked to

provide a value for the student ID.

• The example shown above uses a single ampersand

for the substitution variable.

• When a single ampersand is used throughout the

PL/SQL block, the user is asked to provide a value

for each occurrence of the substitution variable.

Bordoloi and Bock

EXAMPLE

BEGIN

DBMS_OUTPUT.PUT_LINE('Today is ‘||’&sv_day');

DBMS_OUTPUT.PUT_LINE('Tomorrow will be ‘||’ &sv_day');

END;

This example produces the following output:

Enter value for sv_day: Monday

old 2: DBMS_OUTPUT.PUT_LINE('Today is ‘||’ &sv_day');

new 2: DBMS_OUTPUT.PUT_LINE('Today is ‘||’ Monday');

Enter value for sv_day: Tuesday

old 3: DBMS_OUTPUT.PUT_LINE('Tomorrow will be ‘||’ &sv_day');

new 3: DBMS_OUTPUT.PUT_LINE('Tomorrow will be ‘||’ Tuesday');

Today is Monday

Tomorrow will be Tuesday

PL/SQL procedure successfully completed.

Bordoloi and Bock

EXAMPLE

• When a substitution variable is used in the script, the

output produced by the program contains the

statements that show how the substitution was done.

• If you do not want to see these lines displayed in the

output produced by the script, use the SET command

option before you run the script as shown below:

SET VERIFY OFF;

Bordoloi and Bock

EXAMPLE

• Then, the output changes as shown below:

Enter value for sv_day: Monday

Enter value for sv_day: Tuesday

Today is Monday

Tomorrow will be Tuesday

PL/SQL procedure successfully completed.

• The substitution variable sv_day appears twice in this

PL/SQL block. As a result, when this example is run, the user

is asked twice to provide the value for the same variable.

Bordoloi and Bock

EXAMPLE

BEGIN

DBMS_OUTPUT.PUT_LINE('Today is '||'&&sv_day');

DBMS_OUTPUT.PUT_LINE('Tomorrow will be ‘||’ &sv_day');

END;

• In this example, substitution variable sv_day is prefixed

by double ampersand in the first

DBMS_OUTPUT.PUT_LINE statement. As a result,

this version of the example produces different output.

Bordoloi and Bock

OUTPUT

Enter value for sv_day: Monday

old 2: DBMS_OUTPUT.PUT_LINE('Today is ‘||’ &&sv_day');

new 2: DBMS_OUTPUT.PUT_LINE('Today is ‘||’ Monday');

old 3: DBMS_OUTPUT.PUT_LINE('Tomorrow will be ‘||’ &sv_day');

new 3: DBMS_OUTPUT.PUT_LINE('Tomorrow will be ‘||’ Monday');

Today is Monday

Tomorrow will be Monday

PL/SQL procedure successfully completed.

• It is clear that the user is asked only once to provide the value for

the substitution variable sv_day.

• As a result, both DBMS_OUTPUT.PUT_LINE statements use the

value of Monday entered previously by the user.

Bordoloi and Bock

Substitution Variables

• Ampersand(&) character and double ampersand (&&)
characters are the default characters that denote
substitution variables.

• There is a special SET command option available in
SQL*Plus that allows to change the default character
(&) to any other character or disable the substitution
variable feature.

• This SET command has the following syntax:

SET DEFINE character

or

SET DEFINE ON

or

SET DEFINE OFF

Bordoloi and Bock

Substitution Variables

• The first set command option changes the prefix of

the substitution variable from an ampersand to another

character. This character cannot be alphanumeric or

white space.

• The second (ON option) and third (OFF option)

control whether SQL*Plus will look for substitution

variables or not.

• In addition, ON option changes the value of the

character back to the ampersand.

