
Bordoloi and Bock

Control Structures: Iterative Control



Bordoloi and Bock

SIMPLE LOOPS

• A simple loop, as you can see from its name, is the most basic kind 

of loop and has the following structure:

LOOP

STATEMENT 1;

STATEMENT 2;
….

STATEMENT N;

END LOOP;

• The reserved word LOOP marks the beginning of the simple loop. 

• Statements 1 through N are a sequence of statements that is 

executed repeatedly.

• These statements consist of one or more of the standard 

programming structures.

• END LOOP is a reserved phrase that indicates the end of the loop 

construct.



Bordoloi and Bock

SIMPLE LOOPS

• Every time the loop is iterated, a     

sequence of statements is executed,  

then control is passed back to the top of 

the loop.

• The sequence of statements will be 

executed an infinite number of times 

because there is no statement 

specifying when the loop must 

terminate.

• Hence, a simple loop is called an 

infinite loop because there is no means 

to exit the loop.



Bordoloi and Bock

Exit

• The EXIT statement causes a loop to terminate when the 

EXIT condition evaluates to TRUE. 

• The EXIT condition is evaluated with the help of an IF 

statement. 

• When the EXIT condition is evaluated to TRUE, control 

is passed to the first executable statement after the END 

LOOP statement.



Bordoloi and Bock

Exit

LOOP

STATEMENT 1;

STATEMENT 2;

IF CONDITION

THEN

EXIT;

END IF;

END LOOP;

STATEMENT 3;

• In this example, you can see that after the EXIT 

condition evaluates to TRUE, control is passed to 

STATEMENT 3, which is the first executable 

statement after the END LOOP statement.



Bordoloi and Bock

EXIT WHEN

• The EXIT WHEN statement causes a loop to terminate 

only if the EXIT WHEN condition evaluates to TRUE.

• Control is then passed to the first executable statement 

after the END LOOP statement.

• The structure of a loop using an EXIT WHEN clause is 

as follows:

LOOP

STATEMENT 1;

STATEMENT 2;

EXIT WHEN CONDITION;

END LOOP;

STATEMENT 3;



Bordoloi and Bock

EXIT WHEN



Bordoloi and Bock

EXIT

• When the EXIT statement is used without an EXIT 

condition, the simple loop will execute only once.

• Example.
DECLARE

v_counter NUMBER := 0;

BEGIN

LOOP

DBMS_OUTPUT.PUT_LINE('v_counter ' =  

||v_counter);

EXIT;

END LOOP;

END;



Bordoloi and Bock

EXIT

• This example produces the output:

v_counter = 0

PL/SQL procedure successfully completed.

• Because the EXIT statement is used without an EXIT 

CONDITION, the loop is terminated as soon as the 

EXIT statement is executed.



Bordoloi and Bock

WHILE LOOPS

• A WHILE loop has the following structure:

WHILE CONDITION

LOOP

STATEMENT 1;

STATEMENT 2;

…

STATEMENT N;

END LOOP;



Bordoloi and Bock

WHILE LOOPS

• The reserved word WHILE marks the beginning of a 

loop construct. 

• The word CONDITION is the test condition of the loop 

that evaluates to TRUE or FALSE.

• The result of this evaluation determines whether the 

loop is executed.

• Statements 1 through N are a sequence of statements 

that is executed repeatedly. 

• The END LOOP is a reserved phrase that indicates the 

end of the loop construct.



Bordoloi and Bock

WHILE LOOP
• The test condition is 

evaluated prior to each 

iteration of the loop. 

• If the test condition 

evaluates to TRUE, the 

sequence of statements is 

executed, and the control 

is passed to the top of the 

loop for the next 

evaluation of the test 

condition.

• If the test condition 

evaluates to FALSE, the 

loop is terminated, and 

the control is passed to 

the next executable 



Bordoloi and Bock

Example

DECLARE

v_counter NUMBER := 5;

BEGIN

WHILE v_counter < 5

LOOP

DBMS_OUTPUT.PUT_LINE 

('v_counter = '||v_counter);

-- decrement the value of

-- v_counter by one

v_counter := v_counter - 1;

END LOOP;

END;

• In this example the body of 

the loop is not executed at all 

because the test condition of 

the loop evaluates to FALSE.

• While the test condition of 

the loop must evaluate to 

TRUE at least once for the 

statements in the loop to 

execute, it is important to 

insure that the test condition 

will eventually evaluate to 

FALSE as well.

• Otherwise, the WHILE loop 

will execute continually.



Bordoloi and Bock

Example

DECLARE

v_counter NUMBER := 1;

BEGIN

WHILE v_counter < 5

LOOP

DBMS_OUTPUT.PUT_LINE 

('v_counter = '||v_counter);

-- decrement the value of v_counter 

by one

v_counter := v_counter - 1;

END LOOP;

END;

• This is an example 

of the infinite 

WHILE loop. 

• The test condition 

always evaluates to 

TRUE because the 

value of v_counter 

is decremented by 1 

and is always less 

than 5.



Bordoloi and Bock

Use of Boolean Values to exit Loop

• Boolean expressions can be used to determine when the 

loop should terminate. 
DECLARE

v_test BOOLEAN := TRUE;

BEGIN

WHILE v_test

LOOP

STATEMENTS;

IF TEST_CONDITION

THEN

v_test := FALSE;

END IF;

END LOOP;

END;



Bordoloi and Bock

Premature Termination of Loop

• The EXIT and EXIT WHEN statements can be used 

inside the body of a WHILE loop. 

• If the EXIT condition evaluates to TRUE before the test 

condition evaluates to FALSE, the loop is terminated 

prematurely.

• If the test condition yields FALSE before the EXIT 

condition yields TRUE, there is no premature 

termination of the loop. 



Bordoloi and Bock

• Example

DECLARE

v_counter NUMBER := 1;

BEGIN

WHILE v_counter <= 2

LOOP 

DBMS_OUTPUT.PUT_LINE

('v_counter = '||v_counter);

v_counter := v_counter + 1;

IF v_counter = 5

THEN

EXIT;

END IF;

END LOOP;

END;

• In this example, the test 
condition is

v_counter <= 2 and the 
EXIT condition is 
v_counter = 5

• So, in this case, the loop 
is executed twice as 
well.

• However, it does not 
terminate prematurely 
because the EXIT 
condition never 
evaluates to TRUE.

• As soon as the value of 
v_counter reaches 3, the 
test condition evaluates 
to FALSE, and the loop 
is terminated.



Bordoloi and Bock

NUMERIC FOR LOOPS

• A numeric FOR loop is called numeric because it 
requires an integer as its terminating value. 

• Its structure is as follows:

FOR loop_counter IN[REVERSE] lower_limit..upper_limit

LOOP

STATEMENT 1;

STATEMENT 2;

…

STATEMENT N;

END LOOP;



Bordoloi and Bock

FOR LOOP

• The reserved word FOR marks the beginning of a loop 
construct.

• The variable, loop_counter, is an implicitly defined index 
variable. So, there is no need to define loop counter in the 
declaration section of the PL/SQL block.

• This variable is defined by the loop construct.

• Lower_limit and upper_limit are two integer numbers that 
define the number of iterations for the loop. 

• The values of the lower_limit and upper_limit are evaluated 
once, for the first iteration of the loop. At this point, it is 
determined how many times the loop will iterate.

• Statements 1 through N are a sequence of statements that is 
executed repeatedly.

• END LOOP is a reserved phrase that marks the end of the 
loop construct.



Bordoloi and Bock

FOR LOOP

• The reserved word IN or IN REVERSE must be present 
when defining the loop. If the REVERSE keyword is 
used, the loop counter will iterate from upper limit to 
lower limit. 

• However, the syntax for the limit specification does not 
change.

• The lower limit is always referenced first. 



Bordoloi and Bock

FOR LOOP



Bordoloi and Bock

• Example

BEGIN

FOR v_counter IN 1..5 

LOOP

DBMS_OUTPUT.PUT_LINE 
('v_counter = '||v_counter);

END LOOP;

END; 

OUTPUT

v_counter = 1

v_counter = 2

v_counter = 3

v_counter = 4

v_counter = 5

PL/SQL procedure successfully

completed.

• In this example, there is no 
declaration section for this 
PL/SQL block because the 
only variable used, 
v_counter, is the loop 
counter.

• Numbers 1..5 specify the 
range of the integer numbers 
for which this loop is 
executed.

• Notice that there is no 
statement v_counter := 
v_counter + 1 anywhere, 
inside or outside the body of 
the loop.

• The value of v_counter is 
incremented implicitly by the 
FOR loop itself.



Bordoloi and Bock

EXAMPLE
• As a matter of fact, if you include the statement

v_counter := v_counter + 1 in the body of the loop, PL/SQL 
script will compile with errors. 

BEGIN

FOR v_counter IN 1..5

LOOP

v_counter := v_counter + 1;

DBMS_OUTPUT.PUT_LINE('v_counter = '|| v_counter);

END LOOP;

END;

Output
BEGIN

*

ERROR at line 1:

ORA-06550: line 3, column 7:

PLS-00363: expression 'V_COUNTER' cannot be used as

an assignment target

ORA-06550: line 3, column 7:

PL/SQL: Statement ignored



Bordoloi and Bock

Using the REVERSE option in the loop

BEGIN

FOR v_counter IN REVERSE 1..5

LOOP

DBMS_OUTPUT.PUT_LINE 
('v_counter = '||v_counter);

END LOOP;

END;

Output

v_counter = 5

v_counter = 4

v_counter = 3

v_counter = 2

v_counter = 1

PL/SQL procedure 

successfully completed.



Bordoloi and Bock

Premature Termination Of The Loop

• The EXIT and EXIT WHEN statements can be used 

inside the body of a numeric FOR loop.

• If the EXIT condition evaluates to TRUE before the 

loop counter reaches its terminal value, the FOR loop is 

terminated prematurely.

• If the loop counter reaches its terminal value before the 

EXIT condition yields TRUE, there is no premature 

termination of the FOR loop.



Bordoloi and Bock

Example

BEGIN

FOR v_counter IN 1..5

LOOP

DBMS_OUTPUT.PUT_LINE(‘v_counter = ’||v_counter);

EXIT WHEN v_counter = 3;

END LOOP;

END;



Bordoloi and Bock

NESTED LOOPS

• Simple loops, WHILE loops, and numeric FOR 

loop can be nested inside one another.

• For example, a simple loop can be nested inside 

a WHILE loop and vice versa.



Bordoloi and Bock

Example

DECLARE

v_counter1 INTEGER := 0;

v_counter2 INTEGER;

BEGIN

WHILE v_counter1 < 3

LOOP

DBMS_OUTPUT.PUT_LINE('v_counter1: '||v_counter1);

v_counter2 := 0;

LOOP

DBMS_OUTPUT.PUT_LINE('v_counter2: '||v_counter2);

v_counter2 := v_counter2 + 1;

EXIT WHEN v_counter2 >= 2;

END LOOP;

v_counter1 := v_counter1 + 1;

END LOOP;

END;



Bordoloi and Bock

Example explained

• In this example, the WHILE loop is called an outer loop because 
it encompasses the simple loop.

• The simple loop is called an inner loop because it is enclosed by 
the body of the WHILE loop.

• The outer loop is controlled by the loop counter, v_counter1, and 
it will execute providing the value of v_counter1 is less than 3.

• With each iteration of the loop, the value of v_counter1 is 
displayed on the screen.

• Next, the value of v_counter2 is initialized to 0. It is important to 
note that v_counter2 is not initialized at the time of the 
declaration. 

• The simple loop is placed inside the body of the WHILE loop, 
and the value of v_counter2 must be initialized every time 
before control is passed to the simple loop.



Bordoloi and Bock

Example explained

• Once control is passed to the inner loop, the value of 
v_counter2 is displayed on the screen, and incremented 
by 1. 

• Next, the EXIT WHEN condition is evaluated. If the 
EXIT WHEN condition evaluates to FALSE, control is 
passed back to the top of the simple loop. 

• If the EXIT WHEN condition evaluates to TRUE, the 
control is passed to the first executable statement 
outside the loop. 

• In our case, control is passed back to the outer loop, 
and the value of v_counter1 is incremented by 1, and 
the TEST condition of the WHILE loop is evaluated 
again.



Bordoloi and Bock

Output

v_counter1: 0

v_counter2: 0

v_counter2: 1

v_counter1: 1

v_counter2: 0

v_counter2: 1

v_counter1: 2

v_counter2: 0

v_counter2: 1

PL/SQL procedure successfully completed.



Bordoloi and Bock

LOOP LABELS

• Loops can be labeled in the similar manner as 

PL/SQL blocks. 
<<label_name>>

FOR LOOP_COUNTER IN 

LOWER_LIMIT..UPPER_LIMIT

LOOP

STATEMENT 1;

…

STATEMENT N;

END LOOP label_name;



Bordoloi and Bock

LOOP LABELS

• The label must appear right before the beginning of the loop.

• This syntax example shows that the label can be optionally used 
at the end of the loop statement. 

• It is very helpful to label nested loops because labels improve 
readability.

BEGIN

<<outer_loop>>

FOR i IN 1..3

LOOP

DBMS_OUTPUT.PUT_LINE('i = '||i);

<<inner_loop>>

FOR j IN 1..2

LOOP

DBMS_OUTPUT.PUT_LINE('j = '||j);

END LOOP inner_loop;

END LOOP outer_loop;

END;



Bordoloi and Bock

END


