
Bordoloi and Bock

PROCEDURES, FUNCTIONS &

TRIGGERS

Bordoloi and Bock

PROCEDURES

• A procedure is a module performing one or more
actions; it does not need to return any values.

• The syntax for creating a procedure is as follows:
CREATE OR REPLACE PROCEDURE name

[(parameter[, parameter, ...])]

AS

[local declarations]

BEGIN

executable statements

[EXCEPTION

exception handlers]

END [name];

Bordoloi and Bock

PROCEDURES

• A procedure may have 0 to many parameters.

• Every procedure has two parts:

1. The header portion, which comes before AS
(sometimes you will see IS—they are
interchangeable), keyword (this contains the
procedure name and the parameter list),

2. The body, which is everything after the IS
keyword.

• The word REPLACE is optional.

• When the word REPLACE is not used in the
header of the procedure, in order to change the
code in the procedure, it must be dropped first
and then re-created.

Bordoloi and Bock

Example

-- ch11_01a.sql

CREATE OR REPLACE PROCEDURE Discount

AS

CURSOR c_group_discount

IS

SELECT distinct s.course_no,

c.description

FROM section s, enrollment e, course c

WHERE s.section_id = e.section_id

AND c.course_no = s.course_no

GROUP BY s.course_no, c.description,

e.section_id, s.section_id

HAVING COUNT(*) >=8;

BEGIN

Bordoloi and Bock

Example

FOR r_group_discount IN c_group_discount

LOOP

UPDATE course

SET cost = cost * .95

WHERE course_no =

r_group_discount.course_no;

DBMS_OUTPUT.PUT_LINE

('A 5% discount has been given to'||

r_group_discount.course_no||' '||

r_group_discount.description

);

END LOOP;

END;

Bordoloi and Bock

Example

• In order to execute a procedure in SQL*Plus use the
following syntax:

EXECUTE Procedure_name

SQL> EXECUTE Discount

Bordoloi and Bock

PARAMETERS

• Parameters are the means to pass values to and
from the calling environment to the server.

• These are the values that will be processed or
returned via the execution of the procedure.

• There are three types of parameters:

• IN, OUT, and IN OUT.

• Modes specify whether the parameter passed is
read in or a receptacle for what comes out.

Bordoloi and Bock

Types of Parameters

Bordoloi and Bock

FORMAL AND ACTUAL PARAMETERS

• Formal parameters are the names specified
within parentheses as part of the header of a
module.

• Actual parameters are the values—expressions
specified within parentheses as a parameter list—
when a call is made to the module.

• The formal parameter and the related actual
parameter must be of the same or compatible data
types.

Bordoloi and Bock

MATCHING ACTUAL AND FORMAL PARAMETERS

• Two methods can be used to match actual and formal
parameters: positional notation and named notation.

• Positional notation is simply association by position: The
order of the parameters used when executing the
procedure matches the order in the procedure’s header
exactly.

• Named notation is explicit association using the symbol
=>

Syntax: formal_parameter_name =>

argument_value

• In named notation, the order does not matter.

• If you mix notation, list positional notation before named
notation.

Bordoloi and Bock

MATCHING ACTUAL AND FORMAL PARAMETERS

Bordoloi and Bock

FUNCTIONS

• Functions are a type of stored code and are very similar
to procedures.

• The significant difference is that a function is a PL/SQL
block that returns a single value.

• Functions can accept one, many, or no parameters, but a
function must have a return clause in the executable
section of the function.

• The datatype of the return value must be declared in the
header of the function.

• A function is not a stand-alone executable in the way that
a procedure is: It must be used in some context. You can
think of it as a sentence fragment.

• A function has output that needs to be assigned to a
variable, or it can be used in a SELECT statement.

Bordoloi and Bock

FUNCTIONS

• The syntax for creating a function is as follows:

CREATE [OR REPLACE] FUNCTION function_name

(parameter list)

RETURN datatype

IS

BEGIN

<body>

RETURN (return_value);

END;

Bordoloi and Bock

FUNCTIONS

• The function does not necessarily have to have
any parameters, but it must have a RETURN
value declared in the header, and it must return
values for all the varying possible execution
streams.

• The RETURN statement does not have to appear
as the last line of the main execution section, and
there may be more than one RETURN statement
(there should be a RETURN statement for each
exception).

• A function may have IN, OUT, or IN OUT
parameters. but you rarely see anything except IN
parameters.

Bordoloi and Bock

Example
CREATE OR REPLACE FUNCTION show_description

(i_course_no number)

RETURN varchar2

AS

v_description varchar2(50);

BEGIN

SELECT description

INTO v_description

FROM course

WHERE course_no = i_course_no;

RETURN v_description;

EXCEPTION

WHEN NO_DATA_FOUND

THEN

RETURN('The Course is not in the database');

WHEN OTHERS

THEN

RETURN('Error in running show_description');

END;

Bordoloi and Bock

Making Use Of Functions

• In a anonymous block

SET SERVEROUTPUT ON

DECLARE

v_description VARCHAR2(50);

BEGIN

v_description := show_description(&sv_cnumber);

DBMS_OUTPUT.PUT_LINE(v_description);

END;

• In a SQL statement

SELECT course_no, show_description(course_no)

FROM course;

Bordoloi and Bock

TRIGGERS

A database trigger is a stored PL/SQL program

unit associated with a specific database table.

ORACLE executes (fires) a database trigger

automatically when a given SQL operation (like

INSERT, UPDATE or DELETE) affects the table.

Unlike a procedure, or a function, which must be

invoked explicitly, database triggers are invoked

implicitly.

Bordoloi and Bock

TRIGGERS

Database triggers can be used to perform any of the

following:

• Audit data modification

• Log events transparently

• Enforce complex business rules

• Derive column values automatically

• Implement complex security authorizations

• Maintain replicate tables

Bordoloi and Bock

TRIGGERS

• You can associate up to 12 database triggers with a

given table. A database trigger has three parts: a

triggering event, an optional trigger constraint,

and a trigger action.

• When an event occurs, a database trigger is fired, and

an predefined PL/SQL block will perform the

necessary action.

Bordoloi and Bock

TRIGGERS

SYNTAX:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE|AFTER} triggering_event ON table_name

[FOR EACH ROW]

[WHEN condition]

DECLARE

Declaration statements

BEGIN

Executable statements

EXCEPTION

Exception-handling statements

END;

Bordoloi and Bock

TRIGGERS

The trigger_name references the name of the trigger.

BEFORE or AFTER specify when the trigger is fired (before or

after the triggering event).

The triggering_event references a DML statement issued against

the table (e.g., INSERT, DELETE, UPDATE).

The table_name is the name of the table associated with the trigger.

The clause, FOR EACH ROW, specifies a trigger is a row trigger

and fires once for each modified row.

A WHEN clause specifies the condition for a trigger to be fired.

Bear in mind that if you drop a table, all the associated triggers for

the table are dropped as well.

Bordoloi and Bock

TYPES OF TRIGGERS

Triggers may be called BEFORE or AFTER the

following events:

INSERT, UPDATE and DELETE.

The before/after options can be used to specify when

the trigger body should be fired with respect to

the triggering statement. If the user indicates a

BEFORE option, then Oracle fires the trigger

before executing the triggering statement. On the

other hand, if an AFTER is used, Oracle fires the

trigger after executing the triggering statement.

Bordoloi and Bock

TYPES OF TRIGGERS

• A trigger may be a ROW or STATEMENT type. If

the statement FOR EACH ROW is present in the

CREATE TRIGGER clause of a trigger, the

trigger is a row trigger. A row trigger is fired for

each row affected by an triggering statement.

• A statement trigger, however, is fired only once

for the triggering statement, regardless of the

number of rows affected by the triggering

statement

Bordoloi and Bock

TYPES OF TRIGGERS

Example: statement trigger

CREATE OR REPLACE TRIGGER mytrig1 BEFORE DELETE OR INSERT

OR UPDATE ON employee

BEGIN

IF (TO_CHAR(SYSDATE, 'day') IN ('sat', 'sun')) OR

(TO_CHAR(SYSDATE,'hh:mi') NOT BETWEEN '08:30' AND '18:30')

THEN RAISE_APPLICATION_ERROR(-20500, 'table is secured');

END IF;

END;

/

The above example shows a trigger that limits the DML

actions to the employee table to weekdays from 8.30am to

6.30pm. If a user tries to insert/update/delete a row in the

EMPLOYEE table, a warning message will be prompted.

Bordoloi and Bock

Example: ROW Trigger

CREATE OR REPLACE TRIGGER mytrig2

AFTER DELETE OR INSERT OR UPDATE ON employee

FOR EACH ROW

BEGIN

IF DELETING THEN

INSERT INTO xemployee (emp_ssn, emp_last_name,emp_first_name, deldate)

VALUES (:old.emp_ssn, :old.emp_last_name,:old.emp_first_name, sysdate);

ELSIF INSERTING THEN

INSERT INTO nemployee (emp_ssn, emp_last_name,emp_first_name, adddate)

VALUES (:new.emp_ssn, :new.emp_last_name,:new.emp_first_name, sysdate);

ELSIF UPDATING('emp_salary') THEN

INSERT INTO cemployee (emp_ssn, oldsalary, newsalary, up_date)

VALUES (:old.emp_ssn,:old.emp_salary, :new.emp_salary, sysdate); ELSE

INSERT INTO uemployee (emp_ssn, emp_address, up_date)

VALUES (:old.emp_ssn, :new.emp_address, sysdate);

END IF;

END;

/

Bordoloi and Bock

TYPES OF TRIGGERS

Example: ROW Trigger

• The previous trigger is used to keep track of all
the transactions performed on the employee table.
If any employee is deleted, a new row containing
the details of this employee is stored in a table
called xemployee. Similarly, if a new employee is
inserted, a new row is created in another table
called nemployee, and so on.

• Note that we can specify the old and new values
of an updated row by prefixing the column names
with the :OLD and :NEW qualifiers.

Bordoloi and Bock

TYPES OF TRIGGERS

SQL> DELETE FROM employee WHERE

emp_last_name = 'Joshi';

1 row deleted.

SQL> SELECT * FROM xemployee;

EMP_SSN EMP_LAST_NAME EMP_FIRST_NAME DELDATE

------------- ----------------------- -------------------------- -----------------

999333333 Joshi Dinesh 02-MAY-03

Bordoloi and Bock

ENABLING, DISABLING, DROPPING

TRIGGERS

SQL>ALTER TRIGGER trigger_name DISABLE;

SQL>ALTER TABLE table_name DISABLE ALL

TRIGGERS;

To enable a trigger, which is disabled, we can use the

following syntax:

SQL>ALTER TABLE table_name ENABLE trigger_name;

All triggers can be enabled for a specific table by using

the following command

SQL> ALTER TABLE table_name ENABLE ALL

TRIGGERS;

SQL> DROP TRIGGER trigger_name

Bordoloi and Bock

END

