
Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 3: SQL

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan3.2Database System Concepts, 5th Ed., June 2006

Chapter 3: SQL

 Data Definition

 Basic Query Structure

 Set Operations

 Aggregate Functions

 Null Values

 Nested Subqueries

 Complex Queries

 Views

 Modification of the Database

 Joined Relations**

©Silberschatz, Korth and Sudarshan3.3Database System Concepts, 5th Ed., June 2006

History

 IBM Sequel language developed as part of System R project at the

IBM San Jose Research Laboratory

 Renamed Structured Query Language (SQL)

 ANSI and ISO standard SQL:

 SQL-86

 SQL-89

 SQL-92

 SQL:1999 (language name became Y2K compliant!)

 SQL:2003

 Commercial systems offer most, if not all, SQL-92 features, plus

varying feature sets from later standards and special proprietary

features.

 Not all examples here may work on your particular system.

©Silberschatz, Korth and Sudarshan3.4Database System Concepts, 5th Ed., June 2006

Data Definition Language

 The schema for each relation, including attribute types.

 Integrity constraints

 Authorization information for each relation.

 Non-standard SQL extensions also allow specification of

 The set of indices to be maintained for each relations.

 The physical storage structure of each relation on disk.

Allows the specification of:

©Silberschatz, Korth and Sudarshan3.5Database System Concepts, 5th Ed., June 2006

Create Table Construct

 An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

 r is the name of the relation

 each Ai is an attribute name in the schema of relation r

 Di is the data type of attribute Ai

 Example:

create table branch
(branch_name char(15),
branch_city char(30),
assets integer)

©Silberschatz, Korth and Sudarshan3.6Database System Concepts, 5th Ed., June 2006

Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.

 varchar(n). Variable length character strings, with user-specified maximum
length n.

 int. Integer (a finite subset of the integers that is machine-dependent).

 smallint. Small integer (a machine-dependent subset of the integer
domain type).

 numeric(p,d). Fixed point number, with user-specified precision of p digits,
with n digits to the right of decimal point.

 real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

 float(n). Floating point number, with user-specified precision of at least n
digits.

 More are covered in Chapter 4.

©Silberschatz, Korth and Sudarshan3.7Database System Concepts, 5th Ed., June 2006

Integrity Constraints on Tables

 not null

 primary key (A1, ..., An)

Example: Declare branch_name as the primary key for branch

.

create table branch

(branch_name char(15),

branch_city char(30) not null,

assets integer,

primary key (branch_name))

primary key declaration on an attribute automatically ensures

not null in SQL-92 onwards, needs to be explicitly stated in

SQL-89

©Silberschatz, Korth and Sudarshan3.8Database System Concepts, 5th Ed., June 2006

Basic Insertion and Deletion of Tuples

 Newly created table is empty

 Add a new tuple to account

insert into account

values ('A-9732', 'Perryridge', 1200)

 Insertion fails if any integrity constraint is violated

 Delete all tuples from account

delete from account

Note: Will see later how to delete selected tuples

©Silberschatz, Korth and Sudarshan3.9Database System Concepts, 5th Ed., June 2006

Drop and Alter Table Constructs

 The drop table command deletes all information about the dropped

relation from the database.

 The alter table command is used to add attributes to an existing

relation:

alter table r add A D

where A is the name of the attribute to be added to relation r and D

is the domain of A.

 All tuples in the relation are assigned null as the value for the

new attribute.

 The alter table command can also be used to drop attributes of a

relation:

alter table r drop A

where A is the name of an attribute of relation r

 Dropping of attributes not supported by many databases

©Silberschatz, Korth and Sudarshan3.10Database System Concepts, 5th Ed., June 2006

Basic Query Structure

 A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

 Ai represents an attribute

 Ri represents a relation

 P is a predicate.

 This query is equivalent to the relational algebra expression.

 The result of an SQL query is a relation.

))((
21,,, 21 mPAAA

rrr
n

  

©Silberschatz, Korth and Sudarshan3.11Database System Concepts, 5th Ed., June 2006

The select Clause

 The select clause list the attributes desired in the result of a query

 corresponds to the projection operation of the relational algebra

 Example: find the names of all branches in the loan relation:

select branch_name

from loan

 In the relational algebra, the query would be:

branch_name (loan)

 NOTE: SQL names are case insensitive (i.e., you may use upper- or

lower-case letters.)

 E.g. Branch_Name ≡ BRANCH_NAME ≡ branch_name

 Some people use upper case wherever we use bold font.

©Silberschatz, Korth and Sudarshan3.12Database System Concepts, 5th Ed., June 2006

The select Clause (Cont.)

 SQL allows duplicates in relations as well as in query results.

 To force the elimination of duplicates, insert the keyword distinct after

select.

 Find the names of all branches in the loan relations, and remove

duplicates

select distinct branch_name

from loan

 The keyword all specifies that duplicates not be removed.

select all branch_name

from loan

©Silberschatz, Korth and Sudarshan3.13Database System Concepts, 5th Ed., June 2006

The select Clause (Cont.)

 An asterisk in the select clause denotes “all attributes”

select *

from loan

 The select clause can contain arithmetic expressions involving the

operation, +, –, , and /, and operating on constants or attributes of

tuples.

 E.g.:

select loan_number, branch_name, amount  100

from loan

©Silberschatz, Korth and Sudarshan3.14Database System Concepts, 5th Ed., June 2006

The where Clause

 The where clause specifies conditions that the result must satisfy

 Corresponds to the selection predicate of the relational algebra.

 To find all loan number for loans made at the Perryridge branch with

loan amounts greater than $1200.

select loan_number

from loan

where branch_name = 'Perryridge' and amount > 1200

 Comparison results can be combined using the logical connectives and,

or, and not.

©Silberschatz, Korth and Sudarshan3.15Database System Concepts, 5th Ed., June 2006

The from Clause

 The from clause lists the relations involved in the query

 Corresponds to the Cartesian product operation of the relational algebra.

 Find the Cartesian product borrower X loan

select 

from borrower, loan

 Find the name, loan number and loan amount of all customers

having a loan at the Perryridge branch.

select customer_name, borrower.loan_number, amount

from borrower, loan

where borrower.loan_number = loan.loan_number and

branch_name = 'Perryridge'

©Silberschatz, Korth and Sudarshan3.16Database System Concepts, 5th Ed., June 2006

The Rename Operation

 SQL allows renaming relations and attributes using the as clause:

old-name as new-name

 E.g. Find the name, loan number and loan amount of all customers;

rename the column name loan_number as loan_id.

select customer_name, borrower.loan_number as loan_id, amount

from borrower, loan

where borrower.loan_number = loan.loan_number

©Silberschatz, Korth and Sudarshan3.17Database System Concepts, 5th Ed., June 2006

Tuple Variables

 Tuple variables are defined in the from clause via the use of the as

clause.

 Find the customer names and their loan numbers and amount for all

customers having a loan at some branch.

 Find the names of all branches that have greater assets than

some branch located in Brooklyn.

select distinct T.branch_name

from branch as T, branch as S

where T.assets > S.assets and S.branch_city = 'Brooklyn'

Keyword as is optional and may be omitted

borrower as T ≡ borrower T

 Some database such as Oracle require as to be omitted

select customer_name, T.loan_number, S.amount
from borrower as T, loan as S
where T.loan_number = S.loan_number

©Silberschatz, Korth and Sudarshan3.18Database System Concepts, 5th Ed., June 2006

String Operations

 SQL includes a string-matching operator for comparisons on character

strings. The operator “like” uses patterns that are described using two

special characters:

 percent (%). The % character matches any substring.

 underscore (_). The _ character matches any character.

 Find the names of all customers whose street includes the substring

“Main”.

select customer_name

from customer

where customer_street like '% Main%'

 Match the name “Main%”

like 'Main\%' escape '\'

 SQL supports a variety of string operations such as

 concatenation (using “||”)

 converting from upper to lower case (and vice versa)

 finding string length, extracting substrings, etc.

©Silberschatz, Korth and Sudarshan3.19Database System Concepts, 5th Ed., June 2006

Ordering the Display of Tuples

 List in alphabetic order the names of all customers having a loan in

Perryridge branch

select distinct customer_name

from borrower, loan

where borrower loan_number = loan.loan_number and

branch_name = 'Perryridge'

order by customer_name

 We may specify desc for descending order or asc for ascending

order, for each attribute; ascending order is the default.

 Example: order by customer_name desc

©Silberschatz, Korth and Sudarshan3.20Database System Concepts, 5th Ed., June 2006

Duplicates

 In relations with duplicates, SQL can define how many copies of tuples

appear in the result.

 Multiset versions of some of the relational algebra operators – given

multiset relations r1 and r2:

1.  (r1): If there are c1 copies of tuple t1 in r1, and t1 satisfies

selections ,, then there are c1 copies of t1 in  (r1).

2. A (r): For each copy of tuple t1 in r1, there is a copy of tuple

A (t1) in A (r1) where A (t1) denotes the projection of the single

tuple t1.

3. r1 x r2 : If there are c1 copies of tuple t1 in r1 and c2 copies of tuple

t2 in r2, there are c1 x c2 copies of the tuple t1. t2 in r1 x r2

©Silberschatz, Korth and Sudarshan3.21Database System Concepts, 5th Ed., June 2006

Duplicates (Cont.)

 Example: Suppose multiset relations r1 (A, B) and r2 (C) are as

follows:

r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)}

 Then B(r1) would be {(a), (a)}, while B(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}

 SQL duplicate semantics:

select A1,, A2, ..., An

from r1, r2, ..., rm

where P

is equivalent to the multiset version of the expression:

))((
21,,, 21 mPAAA

rrr
n

  

©Silberschatz, Korth and Sudarshan3.22Database System Concepts, 5th Ed., June 2006

Set Operations

 The set operations union, intersect, and except operate on relations

and correspond to the relational algebra operations 

 Each of the above operations automatically eliminates duplicates; to

retain all duplicates use the corresponding multiset versions union all,

intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it occurs:

 m + n times in r union all s

 min(m,n) times in r intersect all s

 max(0, m – n) times in r except all s

©Silberschatz, Korth and Sudarshan3.23Database System Concepts, 5th Ed., June 2006

Set Operations

 Find all customers who have a loan, an account, or both:

(select customer_name from depositor)
except
(select customer_name from borrower)

(select customer_name from depositor)

intersect

(select customer_name from borrower)

 Find all customers who have an account but no loan.

(select customer_name from depositor)

union

(select customer_name from borrower)

 Find all customers who have both a loan and an account.

©Silberschatz, Korth and Sudarshan3.24Database System Concepts, 5th Ed., June 2006

Aggregate Functions

 These functions operate on the multiset of values of a column of

a relation, and return a value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

©Silberschatz, Korth and Sudarshan3.25Database System Concepts, 5th Ed., June 2006

Aggregate Functions (Cont.)

 Find the average account balance at the Perryridge branch.

 Find the number of depositors in the bank.

 Find the number of tuples in the customer relation.

select avg (balance)

from account

where branch_name = 'Perryridge'

select count (*)

from customer

select count (distinct customer_name)

from depositor

©Silberschatz, Korth and Sudarshan3.26Database System Concepts, 5th Ed., June 2006

Aggregate Functions – Group By

 Find the number of depositors for each branch.

Note: Attributes in select clause outside of aggregate functions must

appear in group by list

select branch_name, count (distinct customer_name)

from depositor, account

where depositor.account_number = account.account_number

group by branch_name

©Silberschatz, Korth and Sudarshan3.27Database System Concepts, 5th Ed., June 2006

Aggregate Functions – Having Clause

 Find the names of all branches where the average account balance is

more than $1,200.

Note: predicates in the having clause are applied after the

formation of groups whereas predicates in the where

clause are applied before forming groups

select branch_name, avg (balance)

from account

group by branch_name

having avg (balance) > 1200

©Silberschatz, Korth and Sudarshan3.28Database System Concepts, 5th Ed., June 2006

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries.

 A subquery is a select-from-where expression that is nested within

another query.

 A common use of subqueries is to perform tests for set membership, set

comparisons, and set cardinality.

©Silberschatz, Korth and Sudarshan3.29Database System Concepts, 5th Ed., June 2006

“In” Construct

 Find all customers who have both an account and a loan at the bank.

 Find all customers who have a loan at the bank but do not have

an account at the bank

select distinct customer_name

from borrower

where customer_name not in (select customer_name

from depositor)

select distinct customer_name

from borrower

where customer_name in (select customer_name

from depositor)

©Silberschatz, Korth and Sudarshan3.30Database System Concepts, 5th Ed., June 2006

Example Query

 Find all customers who have both an account and a loan at the

Perryridge branch

 Note: Above query can be written in a much simpler manner. The

formulation above is simply to illustrate SQL features.

select distinct customer_name

from borrower, loan

where borrower.loan_number = loan.loan_number and

branch_name = 'Perryridge' and

(branch_name, customer_name) in

(select branch_name, customer_name

from depositor, account

where depositor.account_number =

account.account_number)

©Silberschatz, Korth and Sudarshan3.31Database System Concepts, 5th Ed., June 2006

“Some” Construct

 Find all branches that have greater assets than some branch located

in Brooklyn.

 Same query using > some clause

select branch_name

from branch

where assets > some

(select assets

from branch

where branch_city = 'Brooklyn')

select distinct T.branch_name

from branch as T, branch as S

where T.assets > S.assets and

S.branch_city = 'Brooklyn'

©Silberschatz, Korth and Sudarshan3.32Database System Concepts, 5th Ed., June 2006

“All” Construct

 Find the names of all branches that have greater assets than all

branches located in Brooklyn.

select branch_name

from branch

where assets > all

(select assets

from branch

where branch_city = 'Brooklyn')

©Silberschatz, Korth and Sudarshan3.33Database System Concepts, 5th Ed., June 2006

“Exists” Construct

 Find all customers who have an account at all branches located in

Brooklyn.

select distinct S.customer_name

from depositor as S

where not exists (

(select branch_name

from branch

where branch_city = 'Brooklyn')

except

(select R.branch_name

from depositor as T, account as R

where T.account_number = R.account_number and

S.customer_name = T.customer_name))

 Note that X – Y = Ø  X Y

 Note: Cannot write this query using = all and its variants

©Silberschatz, Korth and Sudarshan3.34Database System Concepts, 5th Ed., June 2006

Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any duplicate

tuples in its result.

 Find all customers who have at most one account at the Perryridge

branch.

select T.customer_name
from depositor as T
where unique (

select R.customer_name

from account, depositor as R

where T.customer_name = R.customer_name and

R.account_number = account.account_number and

account.branch_name = 'Perryridge')

©Silberschatz, Korth and Sudarshan3.35Database System Concepts, 5th Ed., June 2006

Example Query

 Find all customers who have at least two accounts at the Perryridge

branch.

select distinct T.customer_name

from depositor as T

where not unique (

select R.customer_name

from account, depositor as R

where T.customer_name = R.customer_name and

R.account_number = account.account_number and

account.branch_name = 'Perryridge')

 Variable from outer level is known as a correlation variable

©Silberschatz, Korth and Sudarshan3.36Database System Concepts, 5th Ed., June 2006

Modification of the Database – Deletion

 Delete all account tuples at the Perryridge branch

delete from account

where branch_name = 'Perryridge'

 Delete all accounts at every branch located in the city ‘Needham’.

delete from account

where branch_name in (select branch_name

from branch

where branch_city = 'Needham')

©Silberschatz, Korth and Sudarshan3.37Database System Concepts, 5th Ed., June 2006

Example Query

 Delete the record of all accounts with balances below the average at

the bank.

delete from account

where balance < (select avg (balance)

from account)

 Problem: as we delete tuples from deposit, the average balance

changes

 Solution used in SQL:

1. First, compute avg balance and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or

retesting the tuples)

©Silberschatz, Korth and Sudarshan3.38Database System Concepts, 5th Ed., June 2006

Modification of the Database – Insertion

 Add a new tuple to account

insert into account

values ('A-9732', 'Perryridge', 1200)

or equivalently

insert into account (branch_name, balance, account_number)

values ('Perryridge', 1200, 'A-9732')

 Add a new tuple to account with balance set to null

insert into account

values ('A-777','Perryridge', null)

©Silberschatz, Korth and Sudarshan3.39Database System Concepts, 5th Ed., June 2006

Modification of the Database – Insertion

 Provide as a gift for all loan customers of the Perryridge branch, a $200

savings account. Let the loan number serve as the account number for the

new savings account

insert into account

select loan_number, branch_name, 200

from loan

where branch_name = 'Perryridge'

insert into depositor

select customer_name, loan_number

from loan, borrower

where branch_name = 'Perryridge'

and loan.account_number = borrower.account_number

 The select from where statement is evaluated fully before any of its

results are inserted into the relation

 Motivation: insert into table1 select * from table1

©Silberschatz, Korth and Sudarshan3.40Database System Concepts, 5th Ed., June 2006

Modification of the Database – Updates

 Increase all accounts with balances over $10,000 by 6%, all other

accounts receive 5%.

 Write two update statements:

update account

set balance = balance  1.06

where balance > 10000

update account

set balance = balance  1.05

where balance  10000

 The order is important

 Can be done better using the case statement (next slide)

©Silberschatz, Korth and Sudarshan3.41Database System Concepts, 5th Ed., June 2006

Case Statement for Conditional Updates

 Same query as before: Increase all accounts with balances over

$10,000 by 6%, all other accounts receive 5%.

update account

set balance = case

when balance <= 10000 then balance *1.05

else balance * 1.06

end

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

More Features

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan3.43Database System Concepts, 5th Ed., June 2006

Joined Relations**

 Join operations take two relations and return as a result another

relation.

 These additional operations are typically used as subquery

expressions in the from clause

 Join condition – defines which tuples in the two relations match, and

what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not match any

tuple in the other relation (based on the join condition) are treated.

©Silberschatz, Korth and Sudarshan3.44Database System Concepts, 5th Ed., June 2006

Joined Relations – Datasets for Examples

 Relation loan

 Relation borrower

 Note: borrower information missing for L-260 and loan

information missing for L-155

©Silberschatz, Korth and Sudarshan3.45Database System Concepts, 5th Ed., June 2006

Joined Relations – Examples

 loan inner join borrower on

loan.loan_number = borrower.loan_number

 loan left outer join borrower on

loan.loan_number = borrower.loan_number

©Silberschatz, Korth and Sudarshan3.46Database System Concepts, 5th Ed., June 2006

Joined Relations – Examples

 loan natural inner join borrower

 loan natural right outer join borrower

 Find all customers who have either an account or a loan (but not both) at the bank.

select customer_name

from (depositor natural full outer join borrower)

where account_number is null or loan_number is null

©Silberschatz, Korth and Sudarshan3.47Database System Concepts, 5th Ed., June 2006

Joined Relations – Examples

 Natural join can get into trouble if two relations have an attribute with

same name that should not affect the join condition

 e.g. an attribute such as remarks may be present in many tables

 Solution:

 loan full outer join borrower using (loan_number)

©Silberschatz, Korth and Sudarshan3.48Database System Concepts, 5th Ed., June 2006

Derived Relations

 SQL allows a subquery expression to be used in the from clause

 Find the average account balance of those branches where the average

account balance is greater than $1200.

select branch_name, avg_balance

from (select branch_name, avg (balance)

from account

group by branch_name)

as branch_avg (branch_name, avg_balance)

where avg_balance > 1200

Note that we do not need to use the having clause, since we compute

the temporary (view) relation branch_avg in the from clause, and the

attributes of branch_avg can be used directly in the where clause.

©Silberschatz, Korth and Sudarshan3.49Database System Concepts, 5th Ed., June 2006

View Definition

 A relation that is not of the conceptual model but is made visible to

a user as a “virtual relation” is called a view.

 A view is defined using the create view statement which has the

form

create view v as < query expression >

where <query expression> is any legal SQL expression. The view

name is represented by v.

 Once a view is defined, the view name can be used to refer to the

virtual relation that the view generates.

©Silberschatz, Korth and Sudarshan3.50Database System Concepts, 5th Ed., June 2006

Example Queries

 A view consisting of branches and their customers

 Find all customers of the Perryridge branch

create view all_customer as

(select branch_name, customer_name

from depositor, account

where depositor.account_number =

account.account_number)

union

(select branch_name, customer_name

from borrower, loan

where borrower.loan_number = loan.loan_number)

select customer_name

from all_customer

where branch_name = 'Perryridge'

©Silberschatz, Korth and Sudarshan3.51Database System Concepts, 5th Ed., June 2006

Uses of Views

 Hiding some information from some users

 Consider a user who needs to know a customer’s name, loan number

and branch name, but has no need to see the loan amount.

 Define a view

(create view cust_loan_data as

select customer_name, borrower.loan_number, branch_name

from borrower, loan

where borrower.loan_number = loan.loan_number)

 Grant the user permission to read cust_loan_data, but not borrower or

loan

 Predefined queries to make writing of other queries easier

 Common example: Aggregate queries used for statistical analysis of

data

©Silberschatz, Korth and Sudarshan3.52Database System Concepts, 5th Ed., June 2006

Processing of Views

 When a view is created

 the query expression is stored in the database along with the view

name

 the expression is substituted into any query using the view

 Views definitions containing views

 One view may be used in the expression defining another view

 A view relation v1 is said to depend directly on a view relation v2 if

v2 is used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if either v1

depends directly to v2 or there is a path of dependencies from

v1 to v2

 A view relation v is said to be recursive if it depends on itself.

©Silberschatz, Korth and Sudarshan3.53Database System Concepts, 5th Ed., June 2006

View Expansion

 A way to define the meaning of views defined in terms of other views.

 Let view v1 be defined by an expression e1 that may itself contain uses

of view relations.

 View expansion of an expression repeats the following replacement

step:

repeat

Find any view relation vi in e1

Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will

terminate

©Silberschatz, Korth and Sudarshan3.54Database System Concepts, 5th Ed., June 2006

With Clause

 The with clause provides a way of defining a temporary view whose

definition is available only to the query in which the with clause

occurs.

 Find all accounts with the maximum balance

with max_balance (value) as

select max (balance)

from account

select account_number

from account, max_balance

where account.balance = max_balance.value

©Silberschatz, Korth and Sudarshan3.55Database System Concepts, 5th Ed., June 2006

Complex Queries using With Clause

 Find all branches where the total account deposit is greater than the

average of the total account deposits at all branches.

with branch_total (branch_name, value) as

select branch_name, sum (balance)

from account

group by branch_name

with branch_total_avg (value) as

select avg (value)

from branch_total

select branch_name

from branch_total, branch_total_avg

where branch_total.value >= branch_total_avg.value

 Note: the exact syntax supported by your database may vary slightly.

 E.g. Oracle syntax is of the form

with branch_total as (select ..),

branch_total_avg as (select ..)

select …

©Silberschatz, Korth and Sudarshan3.56Database System Concepts, 5th Ed., June 2006

Update of a View

 Create a view of all loan data in the loan relation, hiding the amount

attribute

create view loan_branch as

select loan_number, branch_name

from loan

 Add a new tuple to loan_branch

insert into loan_branch

values ('L-37‘, 'Perryridge‘)

This insertion must be represented by the insertion of the tuple

('L-37', 'Perryridge', null)

into the loan relation

©Silberschatz, Korth and Sudarshan3.57Database System Concepts, 5th Ed., June 2006

Updates Through Views (Cont.)

 Some updates through views are impossible to translate into

updates on the database relations

 create view v as

select loan_number, branch_name, amount

from loan

where branch_name = ‘Perryridge’

insert into v values ('L-99','Downtown', '23')

 Others cannot be translated uniquely

 insert into all_customer values ('Perryridge', 'John')

 Have to choose loan or account, and

create a new loan/account number!

 Most SQL implementations allow updates only on simple views

(without aggregates) defined on a single relation

©Silberschatz, Korth and Sudarshan3.58Database System Concepts, 5th Ed., June 2006

Null Values

 It is possible for tuples to have a null value, denoted by null, for some

of their attributes

 null signifies an unknown value or that a value does not exist.

 The predicate is null can be used to check for null values.

 Example: Find all loan number which appear in the loan relation

with null values for amount.

select loan_number

from loan

where amount is null

 The result of any arithmetic expression involving null is null

 Example: 5 + null returns null

 However, aggregate functions simply ignore nulls

 More on next slide

©Silberschatz, Korth and Sudarshan3.59Database System Concepts, 5th Ed., June 2006

Null Values and Three Valued Logic

 Any comparison with null returns unknown

 Example: 5 < null or null <> null or null = null

 Three-valued logic using the truth value unknown:

 OR: (unknown or true) = true,

(unknown or false) = unknown

(unknown or unknown) = unknown

 AND: (true and unknown) = unknown,

(false and unknown) = false,

(unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 “P is unknown” evaluates to true if predicate P evaluates to

unknown

 Result of where clause predicate is treated as false if it evaluates to

unknown

©Silberschatz, Korth and Sudarshan3.60Database System Concepts, 5th Ed., June 2006

Null Values and Aggregates

 Total all loan amounts

select sum (amount)

from loan

 Above statement ignores null amounts

 Result is null if there is no non-null amount

 All aggregate operations except count(*) ignore tuples with null

values on the aggregated attributes.

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 3

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan3.62Database System Concepts, 5th Ed., June 2006

The where Clause (Cont.)

 SQL includes a between comparison operator

 Example: Find the loan number of those loans with loan amounts between

$90,000 and $100,000 (that is,  $90,000 and  $100,000)

select loan_number

from loan

where amount between 90000 and 100000

©Silberschatz, Korth and Sudarshan3.63Database System Concepts, 5th Ed., June 2006

Figure 3.1: Database Schema

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

loan (loan_number, branch_name, amount)

borrower (customer_name, loan_number)

account (account_number, branch_name, balance)

depositor (customer_name, account_number)

©Silberschatz, Korth and Sudarshan3.64Database System Concepts, 5th Ed., June 2006

Definition of Some Clause

0
5

0
5(5  some) = true (since 0  5)

) = true(5 = some

 (= some)  in

 However, ( some) is not equivalent to not in

©Silberschatz, Korth and Sudarshan3.65Database System Concepts, 5th Ed., June 2006

Definition of all Clause

0
5

6

(5 < all) = false

6
10

4

) = true

5

4
6(5  all) = true (since 5  4 and 5  6)

(5 < all

) = false(5 = all

 ( all)  not in

 However, (= all) is not equivalent to in

©Silberschatz, Korth and Sudarshan3.66Database System Concepts, 5th Ed., June 2006

Test for Empty Relations

 The exists construct returns the value true if the argument subquery is

nonempty.

 exists r  r  Ø

 not exists r  r = Ø

©Silberschatz, Korth and Sudarshan3.67Database System Concepts, 5th Ed., June 2006

Figure 3.3: Tuples inserted into loan and

borrower

©Silberschatz, Korth and Sudarshan3.68Database System Concepts, 5th Ed., June 2006

Figure 3.4:

The loan and borrower relations

