
P R E S E N T E D B Y S A N G E E T A M E H T A

E E C S 8 1 0

U N I V E R S I T Y O F K A N S A S

O C T O B E R 2 0 0 8

Design Patterns

2

Contents

2/23/2022University of Kansas

2

 Introduction to OO concepts

 Introduction to Design Patterns

 What are Design Patterns?

 Why use Design Patterns?

 Elements of a Design Pattern

 Design Patterns Classification

 Pros/Cons of Design Patterns

 Popular Design Patterns

 Conclusion

 References

3

What are Design Patterns?

 What Are Design Patterns?

 Wikipedia definition

 “a design pattern is a general repeatable solution to a

commonly occurring problem in software design”

 Quote from Christopher Alexander

 “Each pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the

solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same way

twice” (GoF,1995)

2/23/2022

3

University of Kansas

4

Why use Design Patterns?

Good Design

Maintainability

Extensibility

Scalability

Testability

Reusablilty

Design Principles

Program to an interface, not an implementation

High cohesion

Low coupling

Open-Closed

Separation of concerns

Design Patterns

Singleton

Abstract Factory

DAO

Strategy

Decorator

T
h
e
 ro

a
d
 to

 g
o
o
d
 d

e
sig

n

2/23/2022University of Kansas

5

Why use Design Patterns?

 Design Objectives

 Good Design (the “ilities”)

 High readability and maintainability

 High extensibility

 High scalability

 High testability

 High reusability

2/23/2022University of Kansas

6

Why use Design Patterns?

2/23/2022University of Kansas

7

Elements of a Design Pattern

 A pattern has four essential elements (GoF)

 Name

 Describes the pattern

 Adds to common terminology for facilitating communication (i.e.

not just sentence enhancers)

 Problem

 Describes when to apply the pattern

 Answers - What is the pattern trying to solve?

2/23/2022University of Kansas

8

Elements of a Design Pattern (cont.)

 Solution

 Describes elements, relationships, responsibilities, and

collaborations which make up the design

 Consequences

 Results of applying the pattern

 Benefits and Costs

 Subjective depending on concrete scenarios

2/23/2022University of Kansas

9

Design Patterns Classification

A Pattern can be classified as

 Creational

 Structural

 Behavioral

2/23/2022University of Kansas

10

Pros/Cons of Design Patterns

 Pros

 Add consistency to designs by solving similar problems the same

way, independent of language

 Add clarity to design and design communication by enabling a

common vocabulary

 Improve time to solution by providing templates which serve as

foundations for good design

 Improve reuse through composition

2/23/2022University of Kansas

11

Pros/Cons of Design Patterns

 Cons

 Some patterns come with negative consequences (i.e. object

proliferation, performance hits, additional layers)

 Consequences are subjective depending on concrete scenarios

 Patterns are subject to different interpretations, misinterpretations,

and philosophies

 Patterns can be overused and abused  Anti-Patterns

2/23/2022University of Kansas

12

Popular Design Patterns

 Let’s take a look

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

2/23/2022University of Kansas

13

Strategy Definition

Defines a family of algorithms, encapsulates
each one, and makes them interchangeable.

Strategy lets the algorithm vary
independently from clients that use it.

2/23/2022University of Kansas

Design Principles

 Identify the aspects of your application that vary and separate them

from what stays the same

 Program to an interface, not an implementation

 Favor composition over inheritance

2/23/2022University of Kansas

14

15

Strategy – Class diagram

Context

- strategy: Strategy

+ Context(Strategy)

+ contextInterface() : void

ConcreteStrategyA

+ algorithmInterface() : void

ConcreteStrategyB

+ algorithmInterface() : void

ConcreteStrategyC

+ algorithmInterface() : void

«interface»

Strategy

+ algorithmInterface() : void

-strategy

2/23/2022University of Kansas

16

Strategy - Problem

2/23/2022University of Kansas

class Class Model

Cla ss1

Duck

+ display() : void
+ quack() : void

MallardDuck

+ display() : void

RedHeadDuck

+ display() : void

RubberDuck

+ display() : void

Strategy - Solution

18

Strategy

 Pros

 Provides encapsulation

 Hides implementation

 Allows behavior change at runtime

 Cons

 Results in complex, hard to understand code if overused

2/23/2022University of Kansas

19

Observer Definition

Defines a one-to-many dependency between objects so
that when one object changes state, all of its

dependents are notified and updated automatically.

2/23/2022University of Kansas

Design Principles

 Identify the aspects of your application that vary and separate them

from what stays the same

 Program to an interface, not an implementation

 Favor composition over inheritance

 Strive for loosely coupled designs between objects that interact

2/23/2022University of Kansas

20

21

Observer – Class diagram

2/23/2022University of Kansas

22

Observer - Problem

2/23/2022University of Kansas

Observer - Solution

24

Observer

 Pros

 Abstracts coupling between Subject and Observer

 Supports broadcast communication

 Supports unexpected updates

 Enables reusability of subjects and observers independently of each

other

 Cons

 Exposes the Observer to the Subject (with push)

 Exposes the Subject to the Observer (with pull)

2/23/2022University of Kansas

25

Singleton Definition

Ensure a class only has one instance and provide a
global point of access to it.

2/23/2022University of Kansas

26

Singleton – Class diagram

2/23/2022University of Kansas

Singleton - Problem

Singleton - Solution

29

Singleton

cmp Proxy

public class Singleton {
 private static Singleton instance = null;
 protected Singleton() {
 //Exists only to defeat instantiation.
 }

 public static Singleton getInstance() {
 if(instance == null) {
 instance = new Singleton();
 }

 return instance;
}

public class SingletonInstantiator {
 public SingletonInstantiator() {
 Singleton instance = Singleton.getInstance();
 Singleton anotherInstance = new Singleton();

 }

2/23/2022University of Kansas

30

Singleton

 Pros

 Increases performance

 Prevents memory wastage

 Increases global data sharing

 Cons

 Results in multithreading issues

2/23/2022University of Kansas

31

Patterns & Definitions – Group 1

 Strategy

 Observer

 Singleton

 Allows objects to be notified

when state changes

 Ensures one and only one

instance of an object is created

 Encapsulates inter-changeable

behavior and uses delegation to

decide which to use

2/23/2022University of Kansas

31

2/23/2022University of Kansas

32

Patterns & Definitions – Group 1

 Strategy

 Observer

 Singleton

 Allows objects to be notified

when state changes

 Ensures one and only one

instance of an object is created

 Encapsulates inter-changeable

behavior and uses delegation

to decide which to use

2/23/2022University of Kansas

32

2/23/2022University of Kansas

33

Patterns & Definitions – Group 1

 Strategy

 Observer

 Singleton

 Allows objects to be notified

when state changes

 Ensures one and only one

instance of an object is created

 Encapsulates inter-changeable

behavior and uses delegation

to decide which to use

2/23/2022University of Kansas

33

2/23/2022University of Kansas

34

Patterns & Definitions – Group 1

 Strategy

 Observer

 Singleton

 Allows objects to be notified

when state changes

 Ensures one and only one

instance of an object is created

 Encapsulates inter-changeable

behavior and uses delegation to

decide which to use

2/23/2022University of Kansas

34

2/23/2022University of Kansas

35

Decorator Definition

Attaches additional responsibilities to an object

dynamically. Decorators provide a flexible alternative

to sub-classing for extending functionality.

2/23/2022University of Kansas

Design Principles

 Identify the aspects of your application that vary and separate them

from what stays the same

 Program to an interface, not an implementation

 Favor composition over inheritance

 Strive for loosely coupled designs between objects that interact

 Classes should be open for extension, but closed for modification

2/23/2022University of Kansas

36

Decorator – Class diagram

class Decorator

Component

+ methodA() : void
+ methodB() : void

ConcreteComponent

+ methodA() : void
+ methodB() : void

Decorator

+ methodA() : void
+ methodB() : void

ConcreteDecoratorA

- wrappedObj: Component

+ methodA() : void
+ methodB() : void
+ newBehavior() : void

ConcreteDecoratorB

- wrappedObj: Component

+ methodA() : void
+ methodB() : void

38

Decorator - Problem

class Decorator

Bev e rage

- descriptio n: String

- milk: boolean

- soy: boolean

- whip: boolean

+ cost() : double

{

//Add all the condiment's costs to the beverage cost

//The boolean methods help in determining if the

condiments

//have been added to the beverage.

//return the total cost

}

+ getDescriptio n() : String

+ hasMilk() : boolean

+ hasSoy() : boolean

+ hasWhip() : boolean

+ setMilk(boolean) : void

+ setSoy(boolean) : void

+ setWhip(boolean) : void

DarkRoast

+ cost() : double

{

 return 1.99 + super.cost()

 //return the beverage's cost and add it to the result of call ing

 //the superclass, Beverage's cost

}

+ DarkRoast () : void

{

 description = "Most Excellent Dark Roast"

}

Espresso

+ cost() : double

{

 return 2.10 + super.cost();

}

+ Espresso() : void

{

 description = "Very fine Espresso"

}

2/23/2022University of Kansas

39

Decorator - Solution

class Decorator

Beverage

- description: String = "Unknown Beverage"

+ cost() : double
{

//An abstract method. Implemented in the subclasses.

}

+ getDescription() : String
{
 return description;
}

DarkRoast

+ cost() : double
{
 return 1.99;
}

+ DarkRoast() : void
{
 description = "Most Excellent Dark
Roast"
}

Espresso

+ cost() : double
{
 return 2.10 ;
}

+ Espresso() : void
{
 description = "Very fine Espresso"
}

CondimentDecorator

+ getDescription() : String
{

 //abstract method..Do nothing

}

Mocha

- beverage: Beverage

+ cost() : double
{
 //Adds the cost of the condiment to the cost of
the decorated beverage
 return .20 + beverage.cost();

}
+ getDescription() : String

{
 //Attaches the name of the condiment to the
beverage name
 return beverage.getDescription + ", Mocha";
}

+ Mocha(Beverage) : void
{
 //Stores a reference to the Beverage in
consideration.
 this.beverage = beverage;
}

Milk

- beverage: Beverage

+ cost() : double
+ getDescription() : String

2/23/2022University of Kansas

40

Decorator

 Pros

 Extends class functionality at runtime

 Helps in building flexible systems

 Works great if coded against the abstract component type

 Cons

 Results in problems if there is code that relies on the concrete

component’s type

2/23/2022University of Kansas

41

Proxy Definition

Provides a surrogate or placeholder for another object

to control access to it

2/23/2022University of Kansas

42

Proxy – Class diagram

2/23/2022University of Kansas

43

Proxy - Problem

2/23/2022University of Kansas

Proxy - Solution

45

Proxy

 Pros

 Prevents memory wastage

 Creates expensive objects on demand

 Cons

 Adds complexity when trying to ensure freshness

2/23/2022University of Kansas

46

Facade Definition

Provides a unified interface to a set of interfaces in a

subsystem. Façade defines a higher level interface

that makes the subsystem easier to use.

2/23/2022University of Kansas

Design Principles

 Identify the aspects of your application that vary and separate them

from what stays the same

 Program to an interface, not an implementation

 Favor composition over inheritance

 Strive for loosely coupled designs between objects that interact

 Classes should be open for extension, but closed for modification

 Principle of least knowledge – talk only to your immediate friends

2/23/2022University of Kansas

47

48

Façade – Class diagram

2/23/2022University of Kansas

49

Façade - Problem

2/23/2022University of Kansas

Façade - Solution

51

Facade

 Pros

 Makes code easier to use and understand

 Reduces dependencies on classes

 Decouples a client from a complex system

 Cons

 Results in more rework for improperly designed Façade class

 Increases complexity and decreases runtime performance for large

number of Façade classes

2/23/2022University of Kansas

52

Adapter Definition

Converts the interface of a class into another interface

the clients expect. Adapter lets classes work together

that couldn’t otherwise because of incompatible

interfaces.

2/23/2022University of Kansas

53

Adapter – Class diagram

2/23/2022University of Kansas

54

Adapter - Problem

2/23/2022University of Kansas

Adapter - Solution

56

Adapter

 Pros

 Increases code reuse

 Encapsulates the interface change

 Handles legacy code

 Cons

 Increases complexity for large number of changes

2/23/2022University of Kansas

57

Patterns & Definitions – Group 2

 Decorator

 Proxy

 Façade

 Adapter

 Simplifies the interface of

a set of classes

 Wraps an object and

provides an interface to it

 Wraps an object to

provide new behavior

 Wraps an object to control

access to it

2/23/2022University of Kansas

57

2/23/2022University of Kansas

58

Patterns & Definitions – Group 2

 Decorator

 Proxy

 Façade

 Adapter

 Simplifies the interface of

a set of classes

 Wraps an object and

provides an interface to it

 Wraps an object to

provide new behavior

 Wraps an object to control

access to it

2/23/2022University of Kansas

58

2/23/2022University of Kansas

59

Patterns & Definitions – Group 2

 Decorator

 Proxy

 Façade

 Adapter

 Simplifies the interface of

a set of classes

 Wraps an object and

provides an interface to it

 Wraps an object to

provide new behavior

 Wraps an object to control

access to it

2/23/2022University of Kansas

59

2/23/2022University of Kansas

60

Patterns & Definitions – Group 2

 Decorator

 Proxy

 Façade

 Adapter

 Simplifies the interface of

a set of classes

 Wraps an object and

provides an interface to it

 Wraps an object to

provide new behavior

 Wraps an object to control

access to it

2/23/2022University of Kansas

60

2/23/2022University of Kansas

61

Patterns & Definitions – Group 2

 Decorator

 Proxy

 Façade

 Adapter

 Simplifies the interface of

a set of classes

 Wraps an object and

provides an interface to it

 Wraps an object to

provide new behavior

 Wraps an object to control

access to it

2/23/2022University of Kansas

61

2/23/2022University of Kansas

62

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

2/23/2022University of Kansas

62

2/23/2022University of Kansas

63

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

 Behavioral

2/23/2022University of Kansas

63

2/23/2022University of Kansas

64

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

 Behavioral

 Behavioral

2/23/2022University of Kansas

64

2/23/2022University of Kansas

65

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

 Behavioral

 Behavioral

 Creational

2/23/2022University of Kansas

65

2/23/2022University of Kansas

66

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

 Behavioral

 Behavioral

 Creational

 Structural

2/23/2022University of Kansas

66

2/23/2022University of Kansas

67

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

 Behavioral

 Behavioral

 Creational

 Structural

 Structural

2/23/2022University of Kansas

67

2/23/2022University of Kansas

68

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

 Behavioral

 Behavioral

 Creational

 Structural

 Structural

 Structural

2/23/2022University of Kansas

68

2/23/2022University of Kansas

69

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

 Behavioral

 Behavioral

 Creational

 Structural

 Structural

 Structural

 Structural

2/23/2022University of Kansas

69

2/23/2022University of Kansas

Conclusion - Design Principles

 Identify the aspects of your application that vary and separate them

from what stays the same

 Program to an interface, not an implementation

 Favor composition over inheritance

 Strive for loosely coupled designs between objects that interact

 Classes should be open for extension, but closed for modification

 Principle of least knowledge – talk only to your immediate friends

2/23/2022University of Kansas

70

71

Conclusion

Good Design

Maintainability

Extensibility

Scalability

Testability

Reusablilty

Design Principles

Program to an interface, not an implementation

High cohesion

Low coupling

Open-Closed

Separation of concerns

Design Patterns

Singleton

Abstract Factory

DAO

Strategy

Decorator

T
h
e
 ro

a
d
 to

 g
o
o
d
 d

e
sig

n

2/23/2022University of Kansas

72

References

 Design Patterns: Elements of Reusable Object-Oriented Software.

Gamma, Helm, Johnson, and Vlissides (GoF). Addison-Wesley, 1995.

 Head First Design Patterns. Freeman and Freeman. O’REILLY, 2004.

 Design Patterns Explained. Shalloway and Trott. Addison-Wesley,

2002.

 Patterns of Enterprise Application Architecture. Fowler. Addison-

Wesley, 2003.

 Core J2EE Pattern Catalog, Sun Developer Network,

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessOb

ject.html

 Object Oriented Software Construction. Meyer, Prentice Hall, 1988.

2/23/2022

72

University of Kansas

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

73

References

 Wikipedia, The Free Encyclopedia

 http://en.wikipedia.org/wiki/Singleton_pattern

 http://en.wikipedia.org/wiki/Observer_pattern

 http://en.wikipedia.org/wiki/Strategy_pattern

 http://en.wikipedia.org/wiki/Decorator_pattern

 http://en.wikipedia.org/wiki/Design_Patterns

 http://en.wikipedia.org/wiki/Anti-pattern

 http://en.wikipedia.org/wiki/Open/closed_principle

 http://c2.com/ppr/wiki/JavaIdioms/JavaIdioms.html

2/23/2022University of Kansas

Questions?

2/23/2022University of Kansas

74

Thank You!

2/23/2022University of Kansas

75

