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What are Design Patterns?

 What Are Design Patterns?

 Wikipedia definition

 “a design pattern is a general repeatable solution to a 

commonly occurring problem in software design”

 Quote from Christopher Alexander

 “Each pattern describes a problem which occurs over and over 

again in our environment, and then describes the core of the 

solution to that problem, in such a way that you can use this 

solution a million times over, without ever doing it the same way 

twice” (GoF,1995)
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Why use Design Patterns?

Good Design 

Maintainability

Extensibility

Scalability

Testability

Reusablilty

Design Principles

Program to an interface, not an implementation

High cohesion

Low coupling

Open-Closed

Separation of concerns

Design Patterns
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Why use Design Patterns?

 Design Objectives

 Good Design (the “ilities”) 

 High readability and maintainability

 High extensibility

 High scalability

 High testability

 High reusability
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Why use Design Patterns?
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Elements of a Design Pattern

 A pattern has four essential elements (GoF)

 Name

 Describes the pattern

 Adds to common terminology for facilitating communication (i.e. 

not just sentence enhancers)

 Problem

 Describes when to apply the pattern

 Answers - What is the pattern trying to solve?
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Elements of a Design Pattern (cont.)

 Solution

 Describes elements, relationships, responsibilities, and 

collaborations which make up the design

 Consequences

 Results of applying the pattern

 Benefits and Costs

 Subjective depending on concrete scenarios
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Design Patterns Classification

A Pattern can be classified as

 Creational

 Structural 

 Behavioral
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Pros/Cons of Design Patterns

 Pros

 Add consistency to designs by solving similar problems the same 

way, independent of language

 Add clarity to design and design communication by enabling a 

common vocabulary 

 Improve time to solution by providing templates which serve as 

foundations for good design

 Improve reuse through composition
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Pros/Cons of Design Patterns

 Cons

 Some patterns come with negative consequences (i.e. object 

proliferation, performance hits, additional layers)

 Consequences are subjective depending on concrete scenarios 

 Patterns are subject to different interpretations, misinterpretations, 

and philosophies 

 Patterns can be overused and abused  Anti-Patterns
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Popular Design Patterns

 Let’s take a look

 Strategy

 Observer 

 Singleton

 Decorator

 Proxy

 Façade

 Adapter
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Strategy Definition

Defines a family of algorithms, encapsulates 
each one, and makes them interchangeable.  

Strategy lets the algorithm vary 
independently from clients that use it.
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Design Principles

 Identify the aspects of your application that vary and separate them 

from what stays the same

 Program to an interface, not an implementation

 Favor composition over inheritance

2/23/2022University of Kansas

14



15

Strategy – Class diagram

Context

- strategy:  Strategy

+ Context(Strategy)

+ contextInterface() : void

ConcreteStrategyA

+ algorithmInterface() : void

ConcreteStrategyB

+ algorithmInterface() : void

ConcreteStrategyC

+ algorithmInterface() : void

«interface»

Strategy

+ algorithmInterface() : void

-strategy
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Strategy - Problem
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class Class Model

Cla ss1

Duck

+ display() : void
+ quack() : void

MallardDuck

+ display() : void

RedHeadDuck

+ display() : void

RubberDuck

+ display() : void



Strategy - Solution
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Strategy

 Pros

 Provides encapsulation

 Hides implementation

 Allows behavior change at runtime

 Cons

 Results in complex, hard to understand code if overused
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Observer Definition

Defines a one-to-many dependency between objects so 
that when one object changes state, all of its 

dependents are notified and updated automatically.
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Design Principles

 Identify the aspects of your application that vary and separate them 

from what stays the same

 Program to an interface, not an implementation

 Favor composition over inheritance

 Strive for loosely coupled designs between objects that interact
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Observer – Class diagram
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Observer - Problem
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Observer - Solution
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Observer

 Pros

 Abstracts coupling between Subject and Observer

 Supports broadcast communication

 Supports unexpected updates

 Enables reusability of subjects and observers independently of each 

other

 Cons

 Exposes the Observer to the Subject (with push)

 Exposes the Subject to the Observer (with pull)
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Singleton Definition

Ensure a class only has one instance and provide a 
global point of access to it.
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Singleton – Class diagram
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Singleton - Problem



Singleton - Solution
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Singleton

cmp Proxy

public class Singleton {
       private static Singleton instance = null;
       protected Singleton() {
           //Exists only to defeat instantiation.
       }

       public static Singleton getInstance() {
           if(instance == null) {
             instance = new Singleton();
           }
   
          return instance;
}

public class SingletonInstantiator {
    public SingletonInstantiator() {
      Singleton instance = Singleton.getInstance();
      Singleton anotherInstance = new Singleton();
      ......
 }
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Singleton

 Pros

 Increases performance

 Prevents memory wastage

 Increases global data sharing

 Cons

 Results in multithreading issues 
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Patterns & Definitions – Group 1

 Strategy

 Observer

 Singleton

 Allows objects to be notified 

when state changes

 Ensures one and only one 

instance of an object is created

 Encapsulates inter-changeable 

behavior and uses delegation to 

decide which to use
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Patterns & Definitions – Group 1
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Decorator Definition

Attaches additional responsibilities to an object 

dynamically.  Decorators provide a flexible alternative 

to sub-classing for extending functionality.
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Design Principles

 Identify the aspects of your application that vary and separate them 

from what stays the same

 Program to an interface, not an implementation

 Favor composition over inheritance

 Strive for loosely coupled designs between objects that interact

 Classes should be open for extension, but closed for modification
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Decorator – Class diagram

class Decorator

Component

+ methodA() : void
+ methodB() : void

ConcreteComponent

+ methodA() : void
+ methodB() : void

Decorator

+ methodA() : void
+ methodB() : void

ConcreteDecoratorA

- wrappedObj:  Component

+ methodA() : void
+ methodB() : void
+ newBehavior() : void

ConcreteDecoratorB

- wrappedObj:  Component

+ methodA() : void
+ methodB() : void
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Decorator - Problem

class Decorator

Bev e rage

- descriptio n:  String

- milk:  boolean

- soy:  boolean

- whip:  boolean

+ cost() :  double

{

//Add all the condiment's costs to the beverage cost

//The boolean methods help in determining if the 

condiments

//have been added to the beverage.

//return the total cost

}

+  getDescriptio n() : String

+ hasMilk() : boolean

+ hasSoy() : boolean

+ hasWhip() : boolean

+ setMilk(boolean) : void

+ setSoy(boolean) : void

+ setWhip(boolean) : void

DarkRoast

+ cost() :  double

{

   return 1.99 + super.cost()

  //return the beverage's cost and add it to the result of call ing

  //the superclass, Beverage's cost

}

+  DarkRoast () : void

{

   description = "Most Excellent Dark Roast"

}

Espresso

+ cost() :  double

{

   return 2.10 + super.cost();

}

+  Espresso() : void

{

  description = "Very fine Espresso"

}
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Decorator - Solution

class Decorator

Beverage

- description:  String = "Unknown Beverage"

+ cost() : double
{

//An abstract method.  Implemented in the subclasses.

}

+ getDescription() : String
{
  return description;
}

DarkRoast

+ cost() : double
{
   return 1.99;
}

+ DarkRoast() : void
{
   description = "Most Excellent Dark 
Roast"
}

Espresso

+ cost() : double
{
   return 2.10 ;
}

+ Espresso() : void
{
  description = "Very fine Espresso"
}

CondimentDecorator

+ getDescription() : String
{

  //abstract method..Do nothing

}

Mocha

- beverage:  Beverage

+ cost() : double
{
  //Adds the cost of the condiment to the cost of 
the decorated beverage
  return .20 + beverage.cost();

}
+ getDescription() : String

{
 //Attaches the name of the condiment to the 
beverage name
  return beverage.getDescription + ", Mocha";
}

+ Mocha(Beverage) : void
{
  //Stores a reference to the Beverage in 
consideration.
  this.beverage = beverage;
}

Milk

- beverage:  Beverage

+ cost() : double
+ getDescription() : String
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Decorator

 Pros

 Extends class functionality at runtime

 Helps in building flexible systems

 Works great if coded against the abstract component type

 Cons

 Results in problems if there is code that relies on the concrete 

component’s type
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Proxy Definition

Provides a surrogate or placeholder for another object 

to control access to it
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Proxy – Class diagram
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Proxy - Problem
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Proxy - Solution
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Proxy

 Pros

 Prevents memory wastage

 Creates expensive objects on demand

 Cons

 Adds complexity when trying to ensure freshness
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Facade Definition

Provides a unified interface to a set of interfaces in a 

subsystem.  Façade defines a higher level interface 

that makes the subsystem easier to use.
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Design Principles

 Identify the aspects of your application that vary and separate them 

from what stays the same

 Program to an interface, not an implementation

 Favor composition over inheritance

 Strive for loosely coupled designs between objects that interact

 Classes should be open for extension, but closed for modification

 Principle of least knowledge – talk only to your immediate friends
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Façade – Class diagram
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Façade - Problem
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Façade - Solution
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Facade

 Pros

 Makes code easier to use and understand

 Reduces dependencies on classes

 Decouples a client from a complex system

 Cons

 Results in more rework for improperly designed Façade class

 Increases complexity and decreases runtime performance for large 

number of Façade classes
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Adapter Definition

Converts the interface of a class into another interface 

the clients expect.  Adapter lets classes work together 

that couldn’t otherwise because of incompatible 

interfaces.
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Adapter – Class diagram
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Adapter - Problem
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Adapter - Solution
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Adapter

 Pros

 Increases code reuse

 Encapsulates the interface change

 Handles legacy code 

 Cons

 Increases complexity for large number of changes
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Patterns & Definitions – Group 2

 Decorator

 Proxy

 Façade

 Adapter

 Simplifies the interface of 

a set of classes

 Wraps an object and 

provides an interface to it

 Wraps an object to 

provide new behavior

 Wraps an object to control 

access to it
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Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter
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Pattern Classification
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Pattern Classification
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Conclusion - Design Principles

 Identify the aspects of your application that vary and separate them 

from what stays the same

 Program to an interface, not an implementation

 Favor composition over inheritance

 Strive for loosely coupled designs between objects that interact

 Classes should be open for extension, but closed for modification

 Principle of least knowledge – talk only to your immediate friends
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Conclusion

Good Design 
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Reusablilty

Design Principles
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Questions?
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Thank You!
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