
P R E S E N T E D B Y S A N G E E T A M E H T A

E E C S 8 1 0

U N I V E R S I T Y O F K A N S A S

O C T O B E R 2 0 0 8

Design Patterns

2

Contents

2/23/2022University of Kansas

2

 Introduction to OO concepts

 Introduction to Design Patterns

 What are Design Patterns?

 Why use Design Patterns?

 Elements of a Design Pattern

 Design Patterns Classification

 Pros/Cons of Design Patterns

 Popular Design Patterns

 Conclusion

 References

3

What are Design Patterns?

 What Are Design Patterns?

 Wikipedia definition

 “a design pattern is a general repeatable solution to a

commonly occurring problem in software design”

 Quote from Christopher Alexander

 “Each pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the

solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same way

twice” (GoF,1995)

2/23/2022

3

University of Kansas

4

Why use Design Patterns?

Good Design

Maintainability

Extensibility

Scalability

Testability

Reusablilty

Design Principles

Program to an interface, not an implementation

High cohesion

Low coupling

Open-Closed

Separation of concerns

Design Patterns

Singleton

Abstract Factory

DAO

Strategy

Decorator

T
h
e
 ro

a
d
 to

 g
o
o
d
 d

e
sig

n

2/23/2022University of Kansas

5

Why use Design Patterns?

 Design Objectives

 Good Design (the “ilities”)

 High readability and maintainability

 High extensibility

 High scalability

 High testability

 High reusability

2/23/2022University of Kansas

6

Why use Design Patterns?

2/23/2022University of Kansas

7

Elements of a Design Pattern

 A pattern has four essential elements (GoF)

 Name

 Describes the pattern

 Adds to common terminology for facilitating communication (i.e.

not just sentence enhancers)

 Problem

 Describes when to apply the pattern

 Answers - What is the pattern trying to solve?

2/23/2022University of Kansas

8

Elements of a Design Pattern (cont.)

 Solution

 Describes elements, relationships, responsibilities, and

collaborations which make up the design

 Consequences

 Results of applying the pattern

 Benefits and Costs

 Subjective depending on concrete scenarios

2/23/2022University of Kansas

9

Design Patterns Classification

A Pattern can be classified as

 Creational

 Structural

 Behavioral

2/23/2022University of Kansas

10

Pros/Cons of Design Patterns

 Pros

 Add consistency to designs by solving similar problems the same

way, independent of language

 Add clarity to design and design communication by enabling a

common vocabulary

 Improve time to solution by providing templates which serve as

foundations for good design

 Improve reuse through composition

2/23/2022University of Kansas

11

Pros/Cons of Design Patterns

 Cons

 Some patterns come with negative consequences (i.e. object

proliferation, performance hits, additional layers)

 Consequences are subjective depending on concrete scenarios

 Patterns are subject to different interpretations, misinterpretations,

and philosophies

 Patterns can be overused and abused Anti-Patterns

2/23/2022University of Kansas

12

Popular Design Patterns

 Let’s take a look

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

2/23/2022University of Kansas

13

Strategy Definition

Defines a family of algorithms, encapsulates
each one, and makes them interchangeable.

Strategy lets the algorithm vary
independently from clients that use it.

2/23/2022University of Kansas

Design Principles

 Identify the aspects of your application that vary and separate them

from what stays the same

 Program to an interface, not an implementation

 Favor composition over inheritance

2/23/2022University of Kansas

14

15

Strategy – Class diagram

Context

- strategy: Strategy

+ Context(Strategy)

+ contextInterface() : void

ConcreteStrategyA

+ algorithmInterface() : void

ConcreteStrategyB

+ algorithmInterface() : void

ConcreteStrategyC

+ algorithmInterface() : void

«interface»

Strategy

+ algorithmInterface() : void

-strategy

2/23/2022University of Kansas

16

Strategy - Problem

2/23/2022University of Kansas

class Class Model

Cla ss1

Duck

+ display() : void
+ quack() : void

MallardDuck

+ display() : void

RedHeadDuck

+ display() : void

RubberDuck

+ display() : void

Strategy - Solution

18

Strategy

 Pros

 Provides encapsulation

 Hides implementation

 Allows behavior change at runtime

 Cons

 Results in complex, hard to understand code if overused

2/23/2022University of Kansas

19

Observer Definition

Defines a one-to-many dependency between objects so
that when one object changes state, all of its

dependents are notified and updated automatically.

2/23/2022University of Kansas

Design Principles

 Identify the aspects of your application that vary and separate them

from what stays the same

 Program to an interface, not an implementation

 Favor composition over inheritance

 Strive for loosely coupled designs between objects that interact

2/23/2022University of Kansas

20

21

Observer – Class diagram

2/23/2022University of Kansas

22

Observer - Problem

2/23/2022University of Kansas

Observer - Solution

24

Observer

 Pros

 Abstracts coupling between Subject and Observer

 Supports broadcast communication

 Supports unexpected updates

 Enables reusability of subjects and observers independently of each

other

 Cons

 Exposes the Observer to the Subject (with push)

 Exposes the Subject to the Observer (with pull)

2/23/2022University of Kansas

25

Singleton Definition

Ensure a class only has one instance and provide a
global point of access to it.

2/23/2022University of Kansas

26

Singleton – Class diagram

2/23/2022University of Kansas

Singleton - Problem

Singleton - Solution

29

Singleton

cmp Proxy

public class Singleton {
 private static Singleton instance = null;
 protected Singleton() {
 //Exists only to defeat instantiation.
 }

 public static Singleton getInstance() {
 if(instance == null) {
 instance = new Singleton();
 }

 return instance;
}

public class SingletonInstantiator {
 public SingletonInstantiator() {
 Singleton instance = Singleton.getInstance();
 Singleton anotherInstance = new Singleton();

 }

2/23/2022University of Kansas

30

Singleton

 Pros

 Increases performance

 Prevents memory wastage

 Increases global data sharing

 Cons

 Results in multithreading issues

2/23/2022University of Kansas

31

Patterns & Definitions – Group 1

 Strategy

 Observer

 Singleton

 Allows objects to be notified

when state changes

 Ensures one and only one

instance of an object is created

 Encapsulates inter-changeable

behavior and uses delegation to

decide which to use

2/23/2022University of Kansas

31

2/23/2022University of Kansas

32

Patterns & Definitions – Group 1

 Strategy

 Observer

 Singleton

 Allows objects to be notified

when state changes

 Ensures one and only one

instance of an object is created

 Encapsulates inter-changeable

behavior and uses delegation

to decide which to use

2/23/2022University of Kansas

32

2/23/2022University of Kansas

33

Patterns & Definitions – Group 1

 Strategy

 Observer

 Singleton

 Allows objects to be notified

when state changes

 Ensures one and only one

instance of an object is created

 Encapsulates inter-changeable

behavior and uses delegation

to decide which to use

2/23/2022University of Kansas

33

2/23/2022University of Kansas

34

Patterns & Definitions – Group 1

 Strategy

 Observer

 Singleton

 Allows objects to be notified

when state changes

 Ensures one and only one

instance of an object is created

 Encapsulates inter-changeable

behavior and uses delegation to

decide which to use

2/23/2022University of Kansas

34

2/23/2022University of Kansas

35

Decorator Definition

Attaches additional responsibilities to an object

dynamically. Decorators provide a flexible alternative

to sub-classing for extending functionality.

2/23/2022University of Kansas

Design Principles

 Identify the aspects of your application that vary and separate them

from what stays the same

 Program to an interface, not an implementation

 Favor composition over inheritance

 Strive for loosely coupled designs between objects that interact

 Classes should be open for extension, but closed for modification

2/23/2022University of Kansas

36

Decorator – Class diagram

class Decorator

Component

+ methodA() : void
+ methodB() : void

ConcreteComponent

+ methodA() : void
+ methodB() : void

Decorator

+ methodA() : void
+ methodB() : void

ConcreteDecoratorA

- wrappedObj: Component

+ methodA() : void
+ methodB() : void
+ newBehavior() : void

ConcreteDecoratorB

- wrappedObj: Component

+ methodA() : void
+ methodB() : void

38

Decorator - Problem

class Decorator

Bev e rage

- descriptio n: String

- milk: boolean

- soy: boolean

- whip: boolean

+ cost() : double

{

//Add all the condiment's costs to the beverage cost

//The boolean methods help in determining if the

condiments

//have been added to the beverage.

//return the total cost

}

+ getDescriptio n() : String

+ hasMilk() : boolean

+ hasSoy() : boolean

+ hasWhip() : boolean

+ setMilk(boolean) : void

+ setSoy(boolean) : void

+ setWhip(boolean) : void

DarkRoast

+ cost() : double

{

 return 1.99 + super.cost()

 //return the beverage's cost and add it to the result of call ing

 //the superclass, Beverage's cost

}

+ DarkRoast () : void

{

 description = "Most Excellent Dark Roast"

}

Espresso

+ cost() : double

{

 return 2.10 + super.cost();

}

+ Espresso() : void

{

 description = "Very fine Espresso"

}

2/23/2022University of Kansas

39

Decorator - Solution

class Decorator

Beverage

- description: String = "Unknown Beverage"

+ cost() : double
{

//An abstract method. Implemented in the subclasses.

}

+ getDescription() : String
{
 return description;
}

DarkRoast

+ cost() : double
{
 return 1.99;
}

+ DarkRoast() : void
{
 description = "Most Excellent Dark
Roast"
}

Espresso

+ cost() : double
{
 return 2.10 ;
}

+ Espresso() : void
{
 description = "Very fine Espresso"
}

CondimentDecorator

+ getDescription() : String
{

 //abstract method..Do nothing

}

Mocha

- beverage: Beverage

+ cost() : double
{
 //Adds the cost of the condiment to the cost of
the decorated beverage
 return .20 + beverage.cost();

}
+ getDescription() : String

{
 //Attaches the name of the condiment to the
beverage name
 return beverage.getDescription + ", Mocha";
}

+ Mocha(Beverage) : void
{
 //Stores a reference to the Beverage in
consideration.
 this.beverage = beverage;
}

Milk

- beverage: Beverage

+ cost() : double
+ getDescription() : String

2/23/2022University of Kansas

40

Decorator

 Pros

 Extends class functionality at runtime

 Helps in building flexible systems

 Works great if coded against the abstract component type

 Cons

 Results in problems if there is code that relies on the concrete

component’s type

2/23/2022University of Kansas

41

Proxy Definition

Provides a surrogate or placeholder for another object

to control access to it

2/23/2022University of Kansas

42

Proxy – Class diagram

2/23/2022University of Kansas

43

Proxy - Problem

2/23/2022University of Kansas

Proxy - Solution

45

Proxy

 Pros

 Prevents memory wastage

 Creates expensive objects on demand

 Cons

 Adds complexity when trying to ensure freshness

2/23/2022University of Kansas

46

Facade Definition

Provides a unified interface to a set of interfaces in a

subsystem. Façade defines a higher level interface

that makes the subsystem easier to use.

2/23/2022University of Kansas

Design Principles

 Identify the aspects of your application that vary and separate them

from what stays the same

 Program to an interface, not an implementation

 Favor composition over inheritance

 Strive for loosely coupled designs between objects that interact

 Classes should be open for extension, but closed for modification

 Principle of least knowledge – talk only to your immediate friends

2/23/2022University of Kansas

47

48

Façade – Class diagram

2/23/2022University of Kansas

49

Façade - Problem

2/23/2022University of Kansas

Façade - Solution

51

Facade

 Pros

 Makes code easier to use and understand

 Reduces dependencies on classes

 Decouples a client from a complex system

 Cons

 Results in more rework for improperly designed Façade class

 Increases complexity and decreases runtime performance for large

number of Façade classes

2/23/2022University of Kansas

52

Adapter Definition

Converts the interface of a class into another interface

the clients expect. Adapter lets classes work together

that couldn’t otherwise because of incompatible

interfaces.

2/23/2022University of Kansas

53

Adapter – Class diagram

2/23/2022University of Kansas

54

Adapter - Problem

2/23/2022University of Kansas

Adapter - Solution

56

Adapter

 Pros

 Increases code reuse

 Encapsulates the interface change

 Handles legacy code

 Cons

 Increases complexity for large number of changes

2/23/2022University of Kansas

57

Patterns & Definitions – Group 2

 Decorator

 Proxy

 Façade

 Adapter

 Simplifies the interface of

a set of classes

 Wraps an object and

provides an interface to it

 Wraps an object to

provide new behavior

 Wraps an object to control

access to it

2/23/2022University of Kansas

57

2/23/2022University of Kansas

58

Patterns & Definitions – Group 2

 Decorator

 Proxy

 Façade

 Adapter

 Simplifies the interface of

a set of classes

 Wraps an object and

provides an interface to it

 Wraps an object to

provide new behavior

 Wraps an object to control

access to it

2/23/2022University of Kansas

58

2/23/2022University of Kansas

59

Patterns & Definitions – Group 2

 Decorator

 Proxy

 Façade

 Adapter

 Simplifies the interface of

a set of classes

 Wraps an object and

provides an interface to it

 Wraps an object to

provide new behavior

 Wraps an object to control

access to it

2/23/2022University of Kansas

59

2/23/2022University of Kansas

60

Patterns & Definitions – Group 2

 Decorator

 Proxy

 Façade

 Adapter

 Simplifies the interface of

a set of classes

 Wraps an object and

provides an interface to it

 Wraps an object to

provide new behavior

 Wraps an object to control

access to it

2/23/2022University of Kansas

60

2/23/2022University of Kansas

61

Patterns & Definitions – Group 2

 Decorator

 Proxy

 Façade

 Adapter

 Simplifies the interface of

a set of classes

 Wraps an object and

provides an interface to it

 Wraps an object to

provide new behavior

 Wraps an object to control

access to it

2/23/2022University of Kansas

61

2/23/2022University of Kansas

62

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

2/23/2022University of Kansas

62

2/23/2022University of Kansas

63

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

 Behavioral

2/23/2022University of Kansas

63

2/23/2022University of Kansas

64

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

 Behavioral

 Behavioral

2/23/2022University of Kansas

64

2/23/2022University of Kansas

65

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

 Behavioral

 Behavioral

 Creational

2/23/2022University of Kansas

65

2/23/2022University of Kansas

66

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

 Behavioral

 Behavioral

 Creational

 Structural

2/23/2022University of Kansas

66

2/23/2022University of Kansas

67

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

 Behavioral

 Behavioral

 Creational

 Structural

 Structural

2/23/2022University of Kansas

67

2/23/2022University of Kansas

68

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

 Behavioral

 Behavioral

 Creational

 Structural

 Structural

 Structural

2/23/2022University of Kansas

68

2/23/2022University of Kansas

69

Pattern Classification

 Strategy

 Observer

 Singleton

 Decorator

 Proxy

 Façade

 Adapter

 Behavioral

 Behavioral

 Creational

 Structural

 Structural

 Structural

 Structural

2/23/2022University of Kansas

69

2/23/2022University of Kansas

Conclusion - Design Principles

 Identify the aspects of your application that vary and separate them

from what stays the same

 Program to an interface, not an implementation

 Favor composition over inheritance

 Strive for loosely coupled designs between objects that interact

 Classes should be open for extension, but closed for modification

 Principle of least knowledge – talk only to your immediate friends

2/23/2022University of Kansas

70

71

Conclusion

Good Design

Maintainability

Extensibility

Scalability

Testability

Reusablilty

Design Principles

Program to an interface, not an implementation

High cohesion

Low coupling

Open-Closed

Separation of concerns

Design Patterns

Singleton

Abstract Factory

DAO

Strategy

Decorator

T
h
e
 ro

a
d
 to

 g
o
o
d
 d

e
sig

n

2/23/2022University of Kansas

72

References

 Design Patterns: Elements of Reusable Object-Oriented Software.

Gamma, Helm, Johnson, and Vlissides (GoF). Addison-Wesley, 1995.

 Head First Design Patterns. Freeman and Freeman. O’REILLY, 2004.

 Design Patterns Explained. Shalloway and Trott. Addison-Wesley,

2002.

 Patterns of Enterprise Application Architecture. Fowler. Addison-

Wesley, 2003.

 Core J2EE Pattern Catalog, Sun Developer Network,

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessOb

ject.html

 Object Oriented Software Construction. Meyer, Prentice Hall, 1988.

2/23/2022

72

University of Kansas

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

73

References

 Wikipedia, The Free Encyclopedia

 http://en.wikipedia.org/wiki/Singleton_pattern

 http://en.wikipedia.org/wiki/Observer_pattern

 http://en.wikipedia.org/wiki/Strategy_pattern

 http://en.wikipedia.org/wiki/Decorator_pattern

 http://en.wikipedia.org/wiki/Design_Patterns

 http://en.wikipedia.org/wiki/Anti-pattern

 http://en.wikipedia.org/wiki/Open/closed_principle

 http://c2.com/ppr/wiki/JavaIdioms/JavaIdioms.html

2/23/2022University of Kansas

Questions?

2/23/2022University of Kansas

74

Thank You!

2/23/2022University of Kansas

75

