
Refactoring

Code Smells

If it Stinks, change it!

65

What is Refactoring?

67

What is Refactoring?

A series of small steps, each of which changes the program’s

internal structure without changing its external

behavior - Martin Fowler

67

What is Refactoring?

A series of small steps, each of which changes the program’s

internal structure without changing its external

behavior - Martin Fowler

Verify no change in external behavior by

Testing

Using the right tool - IDE

Formal code analysis by tool

Being very, very careful

67

What if you hear...

68

What if you hear...

We’ll just refactor the code to support logging

68

What if you hear...

We’ll just refactor the code to support logging

68

What if you hear...

We’ll just refactor the code to support logging

Can you refactor the code so that it authenticates against LDAP instead of

Database?

68

What if you hear...

We’ll just refactor the code to support logging

Can you refactor the code so that it authenticates against LDAP instead of

Database?

68

What if you hear...

We’ll just refactor the code to support logging

Can you refactor the code so that it authenticates against LDAP instead of

Database?

We have too much duplicate code, we need to refactor the code to eliminate

duplication

68

What if you hear...

We’ll just refactor the code to support logging

Can you refactor the code so that it authenticates against LDAP instead of

Database?

We have too much duplicate code, we need to refactor the code to eliminate

duplication

68

What if you hear...

We’ll just refactor the code to support logging

Can you refactor the code so that it authenticates against LDAP instead of

Database?

We have too much duplicate code, we need to refactor the code to eliminate

duplication

This class is too big, we need to refactor it

68

What if you hear...

We’ll just refactor the code to support logging

Can you refactor the code so that it authenticates against LDAP instead of

Database?

We have too much duplicate code, we need to refactor the code to eliminate

duplication

This class is too big, we need to refactor it

68

What if you hear...

We’ll just refactor the code to support logging

Can you refactor the code so that it authenticates against LDAP instead of

Database?

We have too much duplicate code, we need to refactor the code to eliminate

duplication

This class is too big, we need to refactor it

Caching?

68

What if you hear...

We’ll just refactor the code to support logging

Can you refactor the code so that it authenticates against LDAP instead of

Database?

We have too much duplicate code, we need to refactor the code to eliminate

duplication

This class is too big, we need to refactor it

Caching?

68

Why do we Refactor?

70

Why do we Refactor?

Helps us deliver more business value faster

70

Why do we Refactor?

Helps us deliver more business value faster

Improves the design of our software

Combat’s “bit rot”

Easier to maintain and understand

Easier to facilitate change

More flexibility

Increased re-usability

70

Why do we Refactor?...

71

Why do we Refactor?...

Minimizes technical debt

71

Why do we Refactor?...

Minimizes technical debt

Keep development at speed

71

Why do we Refactor?...

Minimizes technical debt

Keep development at speed

To make the software easier to understand

Write for people, not the compiler

Understand unfamiliar code

71

Why do we Refactor?...

Minimizes technical debt

Keep development at speed

To make the software easier to understand

Write for people, not the compiler

Understand unfamiliar code

To help find bugs

refactor while debugging to clarify the code

71

Why do we Refactor?...

Minimizes technical debt

Keep development at speed

To make the software easier to understand

Write for people, not the compiler

Understand unfamiliar code

To help find bugs

refactor while debugging to clarify the code

To “Fix broken windows” - Pragmatic Programmers

71

Readability

Which code segment is easier to read?

Sample 1

if (date.Before(Summer_Start) || date.After(Summer_End)){
charge = quantity * winterRate + winterServiceCharge;

else charge = quantity * summerRate;

}

Sample 2

if (IsSummer(date)) {
charge = SummerCharge(quantity);

else charge = WinterCharge(quantity);

}

72

When should you refactor?

73

When should you refactor?

To add new functionality

refactor existing code until you understand it

refactor the design to make it simple to add

73

When should you refactor?

To add new functionality

refactor existing code until you understand it

refactor the design to make it simple to add

To find bugs

refactor to understand the code

73

When should you refactor?

To add new functionality

refactor existing code until you understand it

refactor the design to make it simple to add

To find bugs

refactor to understand the code

For code reviews

immediate effect of code review

allows for higher level suggestions

73

When should you refactor?

To add new functionality

refactor existing code until you understand it

Like championship refactor the design to make it simple to add

snooker players we are To find bugs

setting ourselves up for refactor to understand the code

our next shot For code reviews

immediate effect of code review

allows for higher level suggestions

73

The Two Hats

Adding Function
Refactoring

Does not add any new features

Does not add tests (but may change some)

Restructure the code to remove

redundancy

Add new capabilities to the

system

Adds new tests

Get the test working

74

How do we Refactor?

We look for Code-Smells

Things that we suspect are not quite right or will cause us severe pain if we do

not fix

77

2 Piece of Advice before Refactoring

78

2 Piece of Advice before Refactoring

Baby Steps

78

2 Piece of Advice before Refactoring

The Hippocratic Oath

First Do No Harm!
Baby Steps

78

Code Smells?

Code Smells identify frequently occurring design problems in a way

that is more specific or targeted than general design guidelines (like

“loosely coupled code” or “duplication-free code”). - Joshua K

A code smell is a design that duplicates, complicates, bloats or tightly

couples code

79

A short history of Code Smells

If it stinks, change it!

Kent Beck coined the term code smell to signify

something in code that needed to be changed.

80

Common Code Smells

Inappropriate Naming

Comments

Dead Code

Duplicated code

Primitive Obsession

Large Class

Lazy Class

Alternative Class with

Different Interface

Long Method

Long Parameter List

Switch Statements

Speculative Generality

Oddball Solution

Feature Envy

Refused Bequest

Black Sheep

Train Wreck

81

Inappropriate Naming

82

Inappropriate Naming

Names given to variables (fields) and methods should be clear and

meaningful.

82

Inappropriate Naming

Names given to variables (fields) and methods should be clear and

meaningful.

A variable name should say exactly what it is.

Which is better?

private string s; OR private string salary;

82

Inappropriate Naming

Names given to variables (fields) and methods should be clear and

meaningful.

A variable name should say exactly what it is.

Which is better?

private string s; OR private string salary;

A method should say exactly what it does.

Which is better?

public double calc (double s)

public double calculateFederalTaxes (double salary)

82

Comments

Comments are often used as deodorant

Comments represent a failure to express an idea in the code. Try to make your code

self-documenting or intention-revealing

When you feel like writing a comment, first try "to refactor so that the

comment becomes superfluous.

Remedies:

Extract Method

Rename Method

Introduce Assertion

83

Comment: “Grow the Array” smells

84

public class MyList
{

int INITIAL_CAPACITY = 10;
bool m_readOnly;
int m_size = 0;
int m_capacity;
string[] m_elements;

public MyList()
{

m_elements = new string[INITIAL_CAPACITY];
m_capacity = INITIAL_CAPACITY;

}

int GetCapacity() {
return m_capacity;

}
}

void AddToList(string element)
{

if (!m_readOnly)
{

int newSize = m_size + 1;
if (newSize > GetCapacity())
{

// grow the array
m_capacity += INITIAL_CAPACITY;
string[] elements2 = new string[m_capacity];
for (int i = 0; i < m_size; i++)

elements2[i] = m_elements[i];

m_elements = elements2;
}
m_elements[m_size++] = element;

}
}

Comment Smells Make-over

void AddToList(string element)
{

if (m_readOnly)
return;

if (ShouldGrow())
{

Grow();
}
StoreElement(element);

}

private void Grow()
{

m_capacity += INITIAL_CAPACITY;
string[] elements2 = new string[m_capacity];
for (int i = 0; i < m_size; i++)

elements2[i] = m_elements[i];

m_elements = elements2;
}

private void StoreElement(string element)
{

m_elements[m_size++] = element;
}

85

private bool ShouldGrow()
{

return (m_size + 1) > GetCapacity();
}

Smell: Comments

Rename Method

86

Smell: Comments

Extract Method

87

Smell: Comments

Extract Method

void PrintOwning(double amount){
PrintBanner();

// print details
System.Console.Out.WriteLine(“name: “+ name);
System.Console.Out.WriteLine(“amount: “+ amount);

}

87

Smell: Comments

Extract Method

void PrintOwning(double amount){
PrintBanner();

// print details
System.Console.Out.WriteLine(“name: “+ name);

System.Console.Out.WriteLine(“amount: “+ amount);
}

void PrintOwning(double amount){
PrintBanner();
PrintDetails(amount);

}

void PrintDetails(double amount){
System.Console.Out.WriteLine(“name: “+ name);
System.Console.Out.WriteLine(“amount: “+ amount);

}

87

Smell: Comments

Introduce Assertion

88

Smell: Comments

Introduce Assertion

double getExpenseLimit() {

// should have either expense limit or a primary project

return (_expenseLimit != NULL_EXPENSE) ? _expenseLimit :

_primaryProject.GetMemberExpenseLimit();
}

88

Smell: Comments

Introduce Assertion

double getExpenseLimit() {

// should have either expense limit or a primary project

return (_expenseLimit != NULL_EXPENSE) ? _expenseLimit :

_primaryProject.GetMemberExpenseLimit();
}

double getExpenseLimit() {

Assert(_expenseLimit != NULL_EXPENSE || _primaryProject != null,

“Both Expense Limit and Primary Project must not be null”);

return (_expenseLimit != NULL_EXPENSE) ? _expenseLimit :

_primaryProject.GetMemberExpenseLimit();

}

88

Long Method

89

Long Method

A method is long when it is too hard to quickly comprehend.

89

Long Method

A method is long when it is too hard to quickly comprehend.

Long methods tend to hide behavior that ought to be shared, which leads to

duplicated code in other methods or classes.

89

Long Method

A method is long when it is too hard to quickly comprehend.

Long methods tend to hide behavior that ought to be shared, which leads to

duplicated code in other methods or classes.

Good OO code is easiest to understand and maintain with shorter methods

with good names

89

Long Method

A method is long when it is too hard to quickly comprehend.

Long methods tend to hide behavior that ought to be shared, which leads to

duplicated code in other methods or classes.

Good OO code is easiest to understand and maintain with shorter methods

with good names

Remedies:

Extract Method

Replace Temp with Query

Introduce Parameter Object

Preserve Whole Object

Replace Method with Method Object.

Decompose Conditional

89

Long Method Example

private String toStringHelper(StringBuffer result)
{

result.append("<");
result.append(name);
result.append(attributes.toString());
result.append(">");
if (!value.equals(""))

result.append(value);
Iterator it = children().iterator();
while (it.hasNext())
{

TagNode node = (TagNode)it.next();
node.toStringHelper(result);

}
result.append("</");
result.append(name);
result.append(">");
return result.toString();

}

90

Long Method Makeover (Extract Method)

private void writeValueTo(StringBuffer result)
{

if (!value.equals(""))
result.append(value);

}

private void writeChildrenTo(StringBuffer result)
{

Iterator it = children().iterator();
while (it.hasNext())
{

TagNode node = (TagNode)it.next();
node.toStringHelper(result);

}
}

private String toStringHelper(StringBuffer result)
{

writeOpenTagTo(result);
writeValueTo(result);
writeChildrenTo(result);
writeEndTagTo(result);
return result.toString();

}

private void writeOpenTagTo(StringBuffer result)
{

result.append("<");
result.append(name);
result.append(attributes.toString());
result.append(">");

}
private void writeEndTagTo(StringBuffer result)
{

result.append("</");
result.append(name);
result.append(">");

}

91

Smell: Long Method

Replace Temp with Query

double basePrice = _quanity * _itemPrice;

if(basePrice > 1000) {

return basePrice * 0.95;

}

else {

return basePrice * 0.98;

}

92

Smell: Long Method

Replace Temp with Query

if(getBasePrice() > 1000) {

return getBasePrice() * 0.95;

}

else {

return getBasePrice() * 0.98;

}

double getBasePrice() {

return _quanitiy * itemPrice;

}

double basePrice = _quanity * _itemPrice;

if(basePrice > 1000) {

return basePrice * 0.95;

}

else {

return basePrice * 0.98;

}

92

Smell: Long Method

Introduce Parameter Object

94

Smell: Long Method

Preserve Whole Object

int low = daysTempRange().getLow();

int high = daysTempRange().getHigh();

withinPlan = plan.withinRange(low, high);

95

Smell: Long Method

Preserve Whole Object

int low = daysTempRange().getLow();

int high = daysTempRange().getHigh();

withinPlan = plan.withinRange(low, high);

withinPlan = plan.withinRange(daysTempRange());

95

Smell: Long Method

Replace Method with Method Object

//class Order...

double price() {

double primaryBasePrice;

double secondaryBasePrice;

double tertiaryBasePrice;

// long computation;

...
}

96

Smell: Long Method

Replace Method with Method Object

//class Order...

double price() {

double primaryBasePrice;

double secondaryBasePrice;

double tertiaryBasePrice;

// long computation;

...
}

96

Smell: Long Method

Decompose Conditional

You have a complicated conditional (if-then-else) statement.

Extract methods from the condition, then part, and else parts.

if (date.before (SUMMER_START) || date.after(SUMMER_END))

charge = quantity * _winterRate + _winterServiceCharge;

else charge = quantity * _summerRate;

if (notSummer(date))

charge = winterCharge(quantity);

else charge = summerCharge (quantity);

97

Example of Conditional Complexity

98

Long Parameter List

Methods that take too many parameters produce client code that is

awkward and difficult to work with.

Remedies:

Introduce Parameter Object

Replace Parameter with Method

Preserve Whole Object

174

Example

private void createUserInGroup() {
GroupManager groupManager = new GroupManager();
Group group = groupManager.create(TEST_GROUP, false,

GroupProfile.UNLIMITED_LICENSES, "",
GroupProfile.ONE_YEAR, null);

user = userManager.create(USER_NAME, group, USER_NAME, "jack",
USER_NAME, LANGUAGE, false, false, new Date(),
"blah", new Date());

}

175

Smell: Long Parameter List

Introduce Parameter Object

176

Smell: Long Parameter List

Introduce Parameter Object

Customer

AmoutInvoicedIn(Date start, Date end)
AmoutRecivedIn(Date start, Date end)
AmoutOverdueIn(Date start, Date end)

176

Smell: Long Parameter List

Introduce Parameter Object

Customer

AmoutInvoicedIn(Date start, Date end)
AmoutRecivedIn(Date start, Date end)
AmoutOverdueIn(Date start, Date end)

Customer

AmoutInvoicedIn(DateRange range)
AmoutRecivedIn(DateRange range)
AmoutOverdueIn(DateRange range)

176

Smell: Long Parameter List

Replace Parameter with Method

public double getPrice() {
int basePrice = _quantity * _itemPrice;
int discountLevel;
if (_quantity > 100)

discountLevel = 2;
else

discountLevel = 1;
double finalPrice = discountedPrice (basePrice, discountLevel);
return finalPrice;

}

private double discountedPrice (int basePrice, int discountLevel) {
if (discountLevel == 2)

return basePrice * 0.1;
else

return basePrice * 0.05;
}

177

Smell: Long Parameter List

Replace Parameter with Method

public double getPrice() {
int basePrice = _quantity * _itemPrice;
int discountLevel = getDiscountLevel();
double finalPrice = discountedPrice (basePrice, discountLevel);
return finalPrice;

}

private int getDiscountLevel() {
if (_quantity > 100) return 2;
else return 1;

}
private double discountedPrice (int basePrice, int discountLevel) {

if (getDiscountLevel() == 2) return basePrice * 0.1;
else return basePrice * 0.05;

}

177

Smell: Long Parameter List

Replace Parameter with Method

177

public double getPrice() {
int basePrice = _quantity * _itemPrice;
int discountLevel = getDiscountLevel();
double finalPrice = discountedPrice (basePrice);
return finalPrice;

}

private double discountedPrice (int basePrice) {
if (getDiscountLevel() == 2) return basePrice * 0.1;
else return basePrice * 0.05;

}

Smell: Long Parameter List

Preserve Whole Object

int low = daysTempRange().getLow();

int high = daysTempRange().getHigh();

withinPlan = plan.withinRange(low, high);

Smell: Long Parameter List

Preserve Whole Object

int low = daysTempRange().getLow();

int high = daysTempRange().getHigh();

withinPlan = plan.withinRange(low, high);

withinPlan = plan.withinRange(daysTempRange());

Feature Envy

A method that seems more interested in some other class than the one it is in.

Data and behavior that acts on that data belong together. When a method

makes too many calls to other classes to obtain data or functionality, Feature

Envy is in the air.

Remedies:

Move Field

Move Method

Extract Method

178

Example

Public class CapitalStrategy{
double capital(Loan loan)
{

if (loan.getExpiry() == NO_DATE && loan.getMaturity() != NO_DATE)
return loan.getCommitmentAmount() * loan.duration() * loan.riskFactor();

if (loan.getExpiry() != NO_DATE && loan.getMaturity() == NO_DATE)
{

if (loan.getUnusedPercentage() != 1.0)
return loan.getCommitmentAmount() * loan.getUnusedPercentage() *

loan.duration() * loan.riskFactor();
else

return (loan.outstandingRiskAmount() * loan.duration() * loan.riskFactor()) +
(loan.unusedRiskAmount() * loan.duration() * loan.unusedRiskFactor());

}

return 0.0;
}

} 179

Smell: Feature Envy

Move Field

180

Smell: Feature Envy

Move Method

181

Dead Code

Code that is no longer used in a system or related system is Dead Code.

Increased Complexity.

Accidental Changes.

More Dead Code

Remedies

114

Dead Code Example

A Loan class contains five constructors, three of which are shown below:

public class Loan…

public Loan(double commitment, int riskRating, Date maturity, Date expiry) { this(commitment, 0.00,

riskRating, maturity, expiry); }

public Loan(double commitment, double outstanding, int customerRating, Date maturity, Date expiry) {

this(null, commitment, outstanding, customerRating, maturity, expiry); }

public Loan(CapitalStrategy capitalStrategy, double commitment, int riskRating, Date maturity, Date expiry) {

this(capitalStrategy, commitment, 0.00, riskRating, maturity, expiry); } ... }

One of the above constructors is never called by a client. It is dead code.

115

Duplicated Code

The most pervasive and pungent smell in software

There is obvious or blatant duplication

Such as copy and paste

There are subtle or non-obvious duplications

Such as parallel inheritance hierarchies.

Similar algorithms

Remedies

Extract Method

Pull Up Field

Form Template Method

Substitute Algorithm

122

Ctl+C Ctl+V Pattern

123

Example Of Obvious Duplication

124

126

Levels of Duplication

127

Literal Duplication

Same for loop in 2 places

128

Semantic Duplication

1stLevel - For and For Each Loop

2ndLevel - Loop v/s Lines repeated

stack.push(1); stack.push(3);
stack.push(5); stack.push(10);
stack.push(15);

v/s

for(int i : asList(1,3,5,10,15))
stack.push(i);

129

Data Duplication

Some constant declared in 2 classes (test and

production)

130

Conceptual Duplication

2 Algorithm to Sort elements (Bubble sort and Quick sort)

132

Logical Steps - Duplication

Same set of steps repeat in different scenarios.

Ex: Same set of validations in various points in your

applications

134

Smell: Duplicate Code

Pull Up Field

136

Smell: Duplicate Code

Form Template Method

137

Smell: Duplicate Code

Substitute Algorithm

138

Smell: Duplicate Code

Substitute Algorithm
String foundPerson(String[] people){

for (int i = 0; i < people.length; i++) {
if (people[i].equals ("Don")){

return "Don";
}
if (people[i].equals ("John")){

return "John";
}
if (people[i].equals ("Kent")){

return "Kent";
}

}
return ""; }

138

Smell: Duplicate Code

Substitute Algorithm

String foundPerson(String[] people){

for (int i = 0; i < people.length; i++) {
if (people[i].equals ("Don")){

return "Don";
}
if (people[i].equals ("John")){

return "John";
}
if (people[i].equals ("Kent")){

return "Kent";
}

}
return "";

}

String foundPerson(String[] people){
List candidates = Arrays.asList(new String[] {"Don",

"John", "Kent"});
for (String person : people)

if (candidates.contains(person))
return person;

return "";
}

138

Speculative Generality

You get this smell when people say "Oh, I think we will need the ability to do that

someday" and thus want all sorts of hooks and special cases to handle things that

aren't required.

This odor exists when you have generic or abstract code that isn’t actually

needed today. Such code often exists to support future behavior, which may or may

not be necessary in the future.

Remedies

Collapse Hierarchy

Inline Class

Remove Parameter

105

Smell: Speculative Generality

Collapse Hierarchy

Salesman

104

Smell: Speculative Generality

Inline Class

109

Smell: Speculative Generality

Remove Parameter

110

Lazy Class

A class that isn't doing enough to carry its weight

We let the class die with dignity

Often this might be a class that used to pay its way but has been downsized
with refactoring. Or it might be a class that was added because of changes that
were planned but not made.

Remedies

Inline Class

Collapse Hierarchy

99

Lazy Clazz Example

public interface SomeInterface {
void methodOne();
void defaultMethod();

}
public abstract class LazyClazz implements SomeInterface {

public abstract void methodOne();
public void defaultMethod() {

//do nothing
}

}
public class WorkerClazz extends LazyClazz {

public void methodOne() {
// some actual code here

}
public void defaultMethod() {

//some more actual code
}

}

100

Another Lazy Class

public class Letter {
private final String content;

public Letter(String content) {
this.content = content;

}

public String getContent() {
return content;

}
}

102

Smell: Lazy Class

Inline Class

103

Smell: Lazy Class

Collapse Hierarchy

Salesman

104

Refused Bequest

This rather potent odor results when subclasses inherit code that they don’t want.

In some cases, a subclass may “refuse the bequest” by providing a do-nothing

implementation of an inherited method.

Remedies

Push Down Field

Push Down Method

116

Smell: Refused Bequest

Example of Refused Bequest

Salesman

104

Smell: Refused Bequest

Refused Bequest Make Over

104

Black Sheep

Sometimes a subclass or method doesn't fit in so well with its family.

A subclass that is substantially different in nature than other subclasses in the

hierarchy.

A method in a class that is noticeably different from other methods in the class.

118

Example

119

Primitive Obsession

This smell exists when primitives, such as strings, doubles, arrays or low-level

language components, are used for high-level operations instead of using classes.

This typically occurs when you haven’t yet seen how a higher-level

abstraction can clarify or simplify your code.

Remedies

Extract Class

Replace Data Value with Object

Replace Type Code with Class

Introduce Parameter Object

Replace Array with Object

160

Primitive Obsession Example

if (someString.indexOf("substring") != -1)

if(someString.contains("substring"))

161

Primitive Obsession Example

private void Grow() {
Object[] newElements = new Object[elements.length + 10];
for (int i = 0; i < size; i++)

newElements[i] = elements[i];

elements = newElements;
}

private void Grow() {
Object[] newElements = new Object[elements.length + INITIAL_CAPACITY];
System.arraycopy(elements, 0, newElements, 0, size);
elements = newElements;

}

161

Primitive Obsession Example

public class CompositeShape
{

IShape [] arr = new IShape[100];
int count = 0;

public void Add(IShape shape){
arr[count++] = shape;

}

public void Remove(IShape shape)
{

for (int i = 0; i < 100; i++)
{

if (shape == arr[i])
{

//code to remove
}

}
}

}
161

Primitive Obsessed Code - Make Over

public class CompositeShape
{

List<IShape> shapeList = new List<IShape>();

public void Add(IShape shape)
{

shapeList.Add(shape);
}

public void Remove(IShape shape)
{

shapeList.Remove(shape);
}

}

163

Smell: Primitive Obsession

Replace Array with Object

String[] row = new String[3];

row [0] = "Liverpool";

row [1] = "15";

167

Smell: Primitive Obsession

Replace Array with Object

String[] row = new String[2];

row [0] = "Liverpool";

row [1] = "15";

Performance row = new Performance("Liverpool", "15");

167

Oddball Solution

When a problem is solved one way throughout a system and the same problem is

solved another way in the same system, one of the solutions is the oddball or

inconsistent solution. The presence of this smell usually indicates subtly duplicated

code.

168

Oddball Solution Example

string LoadUserProfileAction::process()
{

//some code here
return process("ViewAction");

}
string UploadAction::process() {

//some code here
return process("ViewAction");

}
string ShowLoginAction::process() {

//some other code here
Action* viewAction = actionProcessor().get("ViewAction");
return viewAction->process();

}

169

Oddball Solution Example

private void grow() {
Object[] newElements = new Object[elements.length + 10];
for (int i = 0; i < size; i++)

newElements[i] = elements[i];

elements = newElements;
}

private void anotherGrow() {
Object[] newElements = new Object[elements.length + INITIAL_CAPACITY];
System.arraycopy(elements, 0, newElements, 0, size);
elements = newElements;

}

170

Smell: Odd Ball Solution

Substitute Algorithm
String foundPerson(String[] people){

for (int i = 0; i < people.length; i++) {
if (people[i].equals ("Don")){

return "Don";
}
if ("John".equals (people[i])){

return "John";
}
if (people[i].equals ("Kent")){

return "Kent";
}

}
return ""; }

171

Smell: Odd Ball Solution

Substitute Algorithm
String foundPerson(String[] people){

for (int i = 0; i < people.length; i++) {
if (people[i].equals ("Don")){

return "Don";
}
if ("John".equals (people[i])){

return "John";
}
if (people[i].equals ("Kent")){

return "Kent";

}
}

String foundPerson(String[] people){ List candidates =
Arrays.asList(new String[] {"Don", "John", "Kent"});
for (String person : people)

return ""; }

if (candidates.contains(person))
return person;

return ""; }

171

Large Class

Like people, classes suffer when they take on too many responsibilities.

GOD Objects

Fowler and Beck note that the presence of too many instance variables usually

indicates that a class is trying to do too much. In general, large classes typically

contain too many responsibilities.

Remedies

Extract Class

Replace Type Code with Class/Subclass

Replace Type Code with State/Strategy

Replace Conditional with Polymorphism

152

153

153

Smell: Large Class

Extract Class

154

Smell: Large Class

Replace Type Code with Class

155

Smell: Large Class

Replace Type Code with Subclasses

156

Smell: Large Class

Replace Type Code with State/Strategy

157

Smell: Large Class

Extract (Narrow) Interface

158

Switch Statement

This smell exists when the same switch statement (or “if…else if…else if”

statement) is duplicated across a system.

Such duplicated code reveals a lack of object-orientation and a missed

opportunity to rely on the elegance of polymorphism.

Remedies:

Replace Type Code with Polymorphism

Replace Type Code with State / Strategy

Replace Parameter with Explicit Methods

Introduce Null Object.

139

Switch Smell Examples

140

More Switch Smell Examples

142

Evil Switch Example

143

Smell: Switch Smell

Replace Type Code with Polymorphism

144

Smell: Switch Smell

Replace Parameter with Method

void setValue (String name, int value) {
if (name.equals("height"))

this.height = value;
else if (name.equals("width"))

this.width = value;
}

145

Smell: Switch Smell

Replace Parameter with Method

void setValue (String name, int value) {
if (name.equals("height"))

this.height = value;
else if (name.equals("width"))

this.width = value;
}

void setHeight(int h) {
this.height = h;

}

void setWidth (int w) {
this.width = w;

}

145

Smell: Switch Smell

Introduce Null Object

// In client class
Customer customer = site.getCustomer();
BillingPlan plan;
if (customer == null)

plan = BillingPlan.basic();
else

plan = customer.getPlan();

146

Smell: Switch Smell

Introduce Null Object

// In client class
Customer customer = site.getCustomer();

BillingPlan plan;

if (customer == null) plan = BillingPlan.basic();

else plan = customer.getPlan();

// In client class
Customer customer = site.getCustomer();

BillingPlan plan = customer.getPlan();

// In Null Customer

public BillingPlan getPlan(){

return BillingPlan.basic();

}

146

Refactoring & Patterns

There is a natural relation between patterns and refactorings. Patterns are where

you want to be; refactorings are ways to get there from somewhere else. - Martin

Fowler

182

Reference Reading

185

Further Information On

Code Smells and Refactoring

Wiki Discussion About Code Smells: http://c2.com/cgi/wiki?CodeSmell

Mika’s Smell Taxonomy: http://www.soberit.hut.fi/mmantyla/

BadCodeSmellsTaxonomy.htm

Bill Wake’s book, “Refactoring Workbook”

Refactoring Catalog Online: http://www.refactoring.com/catalog/index.html

Refactoring to Patterns Catalog Online: http://industriallogic.com/xp/

refactoring/catalog.html

186

References

[F] Fowler, Martin. Refactoring: Improving the Design of Existing Code.

Boston, MA: Addison-Wesley, 2000

[K] Kerievsky, Joshua. Refactoring to Patterns. Boston, MA: Addison-Wesley,

2005

187

