
1!

Chapter 5!
n  Lecture 5: Understanding Requirements!

Slide Set to accompany 
Software Engineering: A Practitioner’s Approach, 7/e "
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

2!

Requirements Engineering-I!
n  Inception—ask a set of questions that establish …!

n  basic understanding of the problem!
n  the people who want a solution!
n  the nature of the solution that is desired, and !
n  the effectiveness of preliminary communication and collaboration

between the customer and the developer!
n  Elicitation—elicit requirements from all stakeholders!
n  Elaboration—create an analysis model that identifies data,

function and behavioral requirements!
n  Negotiation—agree on a deliverable system that is realistic for

developers and customers!

3!

Requirements Engineering-II!
n  Specification—can be any one (or more) of the following:!

n  A written document!
n  A set of models!
n  A formal mathematical!
n  A collection of user scenarios (use-cases)!
n  A prototype!

n  Validation—a review mechanism that looks for!
n  errors in content or interpretation!
n  areas where clarification may be required!
n  missing information!
n  inconsistencies (a major problem when large products or systems

are engineered)!
n  conflicting or unrealistic (unachievable) requirements. !

n  Requirements management!

4!

Inception!
n  Identify stakeholders!

n  “who else do you think I should talk to?”!
n  Recognize multiple points of view!
n  Work toward collaboration!
n  The first questions	

n  Who is behind the request for this work?!
n  Who will use the solution?!
n  What will be the economic benefit of a successful

solution!
n  Is there another source for the solution that you

need?!

5!

Eliciting Requirements!
n  meetings are conducted and attended by both software

engineers and customers!
n  rules for preparation and participation are established!
n  an agenda is suggested !
n  a "facilitator" (can be a customer, a developer, or an outsider)

controls the meeting!
n  a "definition mechanism" (can be work sheets, flip charts, or wall

stickers or an electronic bulletin board, chat room or virtual
forum) is used!

n  the goal is !
n  to identify the problem!
n  propose elements of the solution!
n  negotiate different approaches, and!
n  specify a preliminary set of solution requirements!

6!

Eliciting Requirements!

Use QFD to
prioritize

requirements

informally
prioritize

requirements

formal prioritization?

Create Use-cases

yes no
Elicit r equirements

write scenario

define actors

complete template

draw use-case
diagram

Conduct FAST
meetings

Make lists of
functions, classes

Make lists of
constraints, etc.

7!

Elicitation Work Products!
n  a statement of need and feasibility.!
n  a bounded statement of scope for the system or product.!
n  a list of customers, users, and other stakeholders who

participated in requirements elicitation !
n  a description of the system’s technical environment.!
n  a list of requirements (preferably organized by function)

and the domain constraints that apply to each.!
n  a set of usage scenarios that provide insight into the use of

the system or product under different operating conditions.!
n  any prototypes developed to better define requirements.!

8!

Building the Analysis Model!
n  Elements of the analysis model!

n  Scenario-based elements!
•  Functional—processing narratives for software functions!
•  Use-case—descriptions of the interaction between an
“actor” and the system!

n  Class-based elements!
•  Implied by scenarios!

n  Behavioral elements!
•  State diagram!

n  Flow-oriented elements!
•  Data flow diagram!

9!

Use-Cases!
n  A collection of user scenarios that describe the thread of usage of a

system!
n  Each scenario is described from the point-of-view of an “actor”—a

person or device that interacts with the software in some way!
n  Each scenario answers the following questions:!

n  Who is the primary actor, the secondary actor (s)?!
n  What are the actor’s goals?!
n  What preconditions should exist before the story begins?!
n  What main tasks or functions are performed by the actor?!
n  What extensions might be considered as the story is described?!
n  What variations in the actor’s interaction are possible?!
n  What system information will the actor acquire, produce, or change?!
n  Will the actor have to inform the system about changes in the external

environment?!
n  What information does the actor desire from the system?!
n  Does the actor wish to be informed about unexpected changes?!

10!

Use-Case Diagram!

homeowner

Arms/disarms
system

Accesses system
via Internet

Reconfigures sensors
and related

system features

Responds to
alarm event

Encounters an
error condition

system
administrator

sensors

11!

Class Diagram!

Sensor

name/id
type
location
area
characteristics

identify()
enable()
disable()
reconfigure()

From the SafeHome system …!

12!

State Diagram!
Reading

Commands
System status = “ready”
Display msg = “enter cmd”
Display status = steady

Entry/subsystems ready
Do: poll user input panel
Do: read user input
Do: interpret user input

State name

State variables

State activities

13!

Negotiating Requirements!
n  Identify the key stakeholders!

n  These are the people who will be involved in the
negotiation!

n  Determine each of the stakeholders “win
conditions”!
n  Win conditions are not always obvious!

n  Negotiate!
n  Work toward a set of requirements that lead to “win-

win”!

14!

Validating Requirements - I!
n  Is each requirement consistent with the overall objective for the

system/product?!
n  Have all requirements been specified at the proper level of

abstraction? That is, do some requirements provide a level of
technical detail that is inappropriate at this stage?!

n  Is the requirement really necessary or does it represent an add-
on feature that may not be essential to the objective of the
system?!

n  Is each requirement bounded and unambiguous?!
n  Does each requirement have attribution? That is, is a source

(generally, a specific individual) noted for each requirement? !
n  Do any requirements conflict with other requirements?!

15!

Validating Requirements - II!
n  Is each requirement achievable in the technical environment

that will house the system or product?!
n  Is each requirement testable, once implemented?!
n  Does the requirements model properly reflect the information,

function and behavior of the system to be built.!
n  Has the requirements model been “partitioned” in a way that

exposes progressively more detailed information about the
system.!

n  Have requirements patterns been used to simplify the
requirements model. Have all patterns been properly
validated? Are all patterns consistent with customer
requirements?!

