Syllabus and Study guide for AI Final exam

Sources

- Russell & Norvig's textbook (AIMA)
- Slides available in the AIMA book website
- Slides posted via Google classroom

Study guide

• The exam is **cumulative**, i.e., everything taught in this course will be covered in the final exam. But I have trimmed some topics, as you will see in the table.

Syllabus

Ch.	Subject	Topics/Skills required
2	Intelligent Agents	 Understanding PEAS description Understanding the characteristics of environments (static/dynamic, stochastic/deterministic, etc.) Understanding different types of models (model-based, utility based, etc.)
3	Search	• Understanding all blind and heuristic search techniques (BFS, DFS, Greedy, A* etc.) and ability to solve mathematical problems related to these.
5	Adversarial Search	 Understand minimax and alpha-beta pruning and ability to solve simple mathematical problems related to these. Understand techniques to make game tree search faster (cut-off search, move ordering, etc.)
7,8	Logic	 Translating English sentences to and from propositional logic and first order logic Converting sentences to and from CNF and Horn form Applying resolution, forward and backward chaining on propositional logic statements
13	Quantifying Uncertainty	• Understanding basic notions of probability, conditional probability, independence, full joint distribution, Bayes' rule
14	Probabilistic Reasoning	 Understanding conditional independence Understanding the basic principle of Bayesian Networks Ability to make inference given the topology and conditional probability tables of a given Bayesian network

15	Temporal Reasoning	 Understanding the basic principles of a Markov process Ability to perform basic calculations given the transition table of a Markov process Understanding the basic principles of a Hidden Markov Model (HMM) Ability to make inference (filtering) given the transition and emission probabilities of a Hidden Markov Model
18	Basic Machine Learning	 Knowing the basics of three major types of machine learning (supervised, unsupervised, reinforcement) Knowing the function of basic ML tasks: preprocessing, feature extraction, model construction and model evaluation Knowing concepts related to supervised learning: training, testing, model complexity, overfitting, underfitting