CSE 604
Artificial Intelligence

Chapter 3: Solving Problems by Searching

Adapted from slides available in Russell & Norvig’s textbook webpage

Dr. Ahmedul Kabir

IIT

Umversuty of Dhaka

Remember the Vacuum-cleaner world?

A ;B

LI5S 020

* Percepts: location and contents, e.o., [A, Dirt
p g y

* Actions: [¢ft, Right, Suck

Vacuum world state space graph

=

(=

LCIE.:Q o

—

>

LCI;‘Q

=) (&

E—

n

S

-

S

-

S

“‘QDH

State space: Set of all reachable states. In state space graph,

nodes/vertices = states, links/edges = actions

Formulation of a Problem

* A Problem 1s defined by the following items:

* Set of states the agent can be in, with a designated initial state
* Set of actions available to the agent

* Transition model describing what each action does (maps a
<state, action> pair to a state)

* Goal test which determines if a given state 1s a goal state

* A path cost function that assigns a numeric cost to each path

Vacuum world state space graph

>

* states? binary dirt and robot location. Any state can be initial state
* actions? Left, Right, Suck
* Transition model? As seen in the state space graph

* goal test? no dirt at all locations

* path cost? 1 per action

Example: The 8-puzzle

7 2 4 1

5 6 3 4

8 3 1 6 7
Start State Goal State

°* statesr?

* Aactions?

* ooal test?

* path cost?

Example: The 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

* states? locations of tiles

* actions? move blank left, right, up, down

* ooal test? = goal state (given)

* path cost? 1 per move

The 8-puzzle

“xample

™
£ «
o A
o/ -
< ™
- A
(&)
o g
.\\. !)y
X)
3=
o oAl e
B =Ans
//,
\
(m =
9 / o

. Down

N,

™| O

< |

S8
Mol N
|~ ©
a8
MmO N
- ™~ o
_BE

Partial state space graph

Example: Romania

=] Cradea
MNeamt
- a7
T4
lasi
AradlT
T . g2
Sibiu gq Fagams
113 a0 u M Vas|ui

o Rimnicu Vilcea

T|m|5u:-ara -
142
TN 1T
L1l - Lugu:-j Pitesti
a - " Hirs owva
M ehadia 101 . Urziceni
11 24
i 138 "
Dobreta L 130 Huchamst
[. 90
Craiova Eforie

-] Giurgiu

10

Search strategies

* A search strategy 1s defined by picking the order of node

expansion

* Strategies are evaluated along the following dimensions:
* completeness: does it always find a solution if one exists?
* time complexity: number of nodes generated
* space complexity: maximum number of nodes in memory

* optimality: does it always find a least-cost solution?

* Time and space complexity are measured in terms of
* /: maximum branching factor of the search tree
* J: depth of the least-cost solution
* 7z maximum depth of the state space (may be)

11

Uninformed search strategies

* Uninformed search strategies use only the information available
in the problem definition
* Breadth-first search
* Uniform-cost search
* Depth-first search

* Depth-limited search

* Iterative deepening search

Basic concept

* Frontier (or fringe): The set of all leaf nodes available for
expansion at any given point

* The basics of each algorithm:
e Start from initial node
* Expand adjacent nodes and put them in the frontier
* Choose the next node from the frontier for expansion

* Repeat until goal 1s found, or some ending criteria is met

* The algorithms differ in the way they choose the next node
from the frontier

13

Breadth-first search

* Expand shallowest unexpanded node

* Implementation:

* frontier is a FIFO queue, 1.e., new successors go at end

>@

14

Breadth-first search

* Expand shallowest unexpanded node

* Implementation:

* frontier is a FIFO queue, 1.e., new successors go at end

(4,
>(E ©

15

Breadth-first search

* Expand shallowest unexpanded node

* Implementation:

* frontier is a FIFO queue, 1.e., new successors go at end

A,
(B > (<

16

Breadth-first search

* Expand shallowest unexpanded node

* Implementation:

* frontier is a FIFO queue, 1.e., new successors go at end

(4]

PO © © @

17

Properties of breadth-first search

* Complete? Yes (1t 4 1s finite)

* Time? 1+b+PP+0+... +17 = O(b?)

* Space? O(F) (keeps every node in memory)

* Optimal? Yes (if cost =1 per step)

* Space is the bigger problem (more than time)

Uniform-cost search

* Expand least-cost unexpanded node

* Implementation:
* frontier = queue ordered by path cost

* Equivalent to breadth-first if step costs all equal

* Complete? Yes, if step cost = ¢

* Time? # of nodes with g < cost of optimal solution, O ("
¢) where C" is the cost of the optimal solution

* Space? # of nodes with g = cost of optimal solution,
O (b&ez'/z'ﬁg(C */ 8))

* Optimal? Yes — nodes expanded in increasing order of g(#)

19

Depth-first search

* Expand deepest unexpanded node

* frontier = LIFO stack, i.e., put successors at front

2©.

Depth-first search

* Expand deepest unexpanded node

* frontier = LIFO stack, i.e., put successors at front

21

Depth-first search

* Expand deepest unexpanded node

* frontier = LIFO stack, i.e., put successors at front

22

Depth-first search

* Expand deepest unexpanded node

* frontier = LIFO stack, i.e., put successors at front

23

Depth-first search

* Expand deepest unexpanded node

* frontier = LIFO stack, i.e., put successors at front

24

Depth-first search

* Expand deepest unexpanded node

* frontier = LIFO stack, i.e., put successors at front

25

Depth-first search

* Expand deepest unexpanded node

* frontier = LIFO stack, i.e., put successors at front

26

Depth-first search

* Expand deepest unexpanded node

* frontier = LIFO stack, i.e., put successors at front

27

Depth-first search

* Expand deepest unexpanded node

* frontier = LIFO stack, i.e., put successors at front

Depth-first search

* Expand deepest unexpanded node

* frontier = LIFO stack, i.e., put successors at front

29

Depth-first search

* Expand deepest unexpanded node

* frontier = LIFO stack, i.e., put successors at front

30

Depth-first search

* Expand deepest unexpanded node

* frontier = LIFO stack, i.e., put successors at front

31

Properties of depth-first search

* Complete? No: fails in infinite-depth spaces, spaces
with loops

* Modify to avoid repeated states along path

—> complete in finite spaces

* Time? O(b”): terrible it # is much larger than 4

* but if solutions are dense, may be much faster than

breadth-first
* Space? O(bm), 1.e., linear spacel
* Optimal? No

32

Depth-limited search

= depth-first search with depth limit / i.e., nodes at depth /have

NO SUCCESSOf1S

* Complete? No
 Time? O()

* Space? O(bl)

* Optimal? No

33

Iterative deepening search

= depth-limited search on repeat!
Limit /1s increased at each iteration until goal is found

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth< 0 to oo do
result +— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

34

[terative deepening search /=0

Limit =0 »(2) []

[terative deepening search /=1

Lmk=1 @ ® ./@\@ ./o\.
»(E) (0) [3

[terative deepening search /=2

Limit =2 +(2)
(5]

S e e

37

[terative deepening search /=

Limit =3 10

3

g
S dn

ReFay
i
s

38

Properties of iterative deepening search

* Complete? Yes

e Time? @+)i +d b + (A1) + ... + ¥ = O

* Space? O(bd)

* Optimal? Yes, if step cost = 1

39

Summary ot algorithms

Criterion Breadth- Uniform- Depth- Depth- [terative
First Cost First Limited Deepening
Complete? Yes” Yes®:? No No Yes“
Time omt)y oy o™ oW O(b?)
Space oY)y o'y Om) Ok O(bd)
Optimal? Yes®© Yes No No Yes©

40

