CSE 604 Artificial Intelligence

Chapter 3: Solving Problems by Searching

Adapted from slides available in Russell & Norvig's textbook webpage

Dr. Ahmedul Kabir

Remember the Vacuum-cleaner world?

- Percepts: location and contents, e.g., [A, Dirty]
- Actions: Left, Right, Suck.

Vacuum world state space graph

State space: Set of all reachable states. In state space graph, nodes/vertices = states, links/edges = actions

Formulation of a Problem

- A Problem is defined by the following items:
 - Set of states the agent can be in, with a designated initial state
 - Set of actions available to the agent
 - Transition model describing what each action does (maps a <state, action> pair to a state)
 - Goal test which determines if a given state is a goal state
 - A path cost function that assigns a numeric cost to each path

Vacuum world state space graph

- states? binary dirt and robot location. Any state can be initial state
- <u>actions?</u> Left, Right, Suck
- <u>Transition model</u>? As seen in the state space graph
- goal test? no dirt at all locations
- path cost? 1 per action

Example: The 8-puzzle

7	2	4
5		6
8	3	1

Start State

Goal State

- <u>states?</u>
- <u>actions?</u>
- goal test?
- path cost?

Example: The 8-puzzle

Start State

Goal State

- <u>states?</u> locations of tiles
- <u>actions?</u> move blank left, right, up, down
- <u>goal test?</u> = goal state (given)
- <u>path cost?</u> 1 per move

Example: The 8-puzzle

Partial state space graph

Search strategies

- A search strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
 - completeness: does it always find a solution if one exists?
 - time complexity: number of nodes generated
 - space complexity: maximum number of nodes in memory
 - optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
 - *b*: maximum branching factor of the search tree
 - *d*: depth of the least-cost solution
 - *m*: maximum depth of the state space (may be ∞)

Uninformed search strategies

- Uninformed search strategies use only the information available in the problem definition
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening search

Basic concept

• Frontier (or fringe): The set of all leaf nodes available for expansion at any given point

- The basics of each algorithm:
 - Start from initial node
 - Expand adjacent nodes and put them in the frontier
 - Choose the next node from the frontier for expansion
 - Repeat until goal is found, or some ending criteria is met
- The algorithms differ in the way they choose the next node from the frontier

- Expand shallowest unexpanded node
- Implementation:
 - frontier is a FIFO queue, i.e., new successors go at end

- Expand shallowest unexpanded node
- Implementation:
 - frontier is a FIFO queue, i.e., new successors go at end

- Expand shallowest unexpanded node
- Implementation:
 - frontier is a FIFO queue, i.e., new successors go at end

- Expand shallowest unexpanded node
- Implementation:
 - frontier is a FIFO queue, i.e., new successors go at end

Properties of breadth-first search

• <u>Complete?</u> Yes (if *b* is finite)

- <u>Time?</u> $1+b+b^2+b^3+\ldots+b^d = O(b^d)$
- <u>Space?</u> $O(b^d)$ (keeps every node in memory)
- <u>Optimal?</u> Yes (if cost = 1 per step)
- Space is the bigger problem (more than time)

Uniform-cost search

- Expand least-cost unexpanded node
- Implementation:
 - *frontier* = queue ordered by path cost
- Equivalent to breadth-first if step costs all equal
- <u>Complete?</u> Yes, if step $cost \ge \varepsilon$
- <u>Time?</u> # of nodes with $g \leq \text{cost}$ of optimal solution, $O(b^{\text{ceiling}(C^*/\varepsilon)})$ where C^* is the cost of the optimal solution
- <u>Space</u>? # of nodes with $g \leq \text{cost}$ of optimal solution, $O(b^{\text{ceiling}(C^*/\epsilon)})$
- <u>Optimal?</u> Yes nodes expanded in increasing order of *g*(*n*)

- Expand deepest unexpanded node
- Implementation:
 - *frontier* = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - *frontier* = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - *frontier* = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - *frontier* = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - *frontier* = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - *frontier* = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - *frontier* = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - *frontier* = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - *frontier* = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - *frontier* = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - *frontier* = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - *frontier* = LIFO stack, i.e., put successors at front

Properties of depth-first search

- <u>Complete?</u> No: fails in infinite-depth spaces, spaces with loops
 - Modify to avoid repeated states along path
 - \rightarrow complete in finite spaces
- <u>Time?</u> $O(b^m)$: terrible if *m* is much larger than *d*
 - but if solutions are dense, may be much faster than breadth-first
- <u>Space?</u> O(bm), i.e., linear space!

• <u>Optimal?</u> No

Depth-limited search

= depth-first search with depth limit /, i.e., nodes at depth / have
no successors

- <u>Complete?</u> No
- <u>Time?</u> O(b¹)
- <u>Space?</u> O(bl)
- <u>Optimal?</u> No

= depth-limited search on repeat!
Limit / is increased at each iteration until goal is found

function ITERATIVE-DEEPENING-SEARCH(*problem*) returns a solution, or failure

```
inputs: problem, a problem
```

```
for depth \leftarrow 0 to \infty do

result \leftarrow DEPTH-LIMITED-SEARCH(problem, depth)

if result \neq cutoff then return result
```

Limit = 0

Properties of iterative deepening search

- <u>Complete?</u> Yes
- <u>Time?</u> $(d+1)b^0 + d b^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$
- <u>Space?</u> *O(bd)*
- <u>Optimal?</u> Yes, if step cost = 1

Summary of algorithms

Criterion	Breadth-	Uniform-	Depth-	Depth-	Iterative
	First	Cost	First	Limited	Deepening
Complete? Time Space Optimal?	Yes ^a $O(b^d)$ $O(b^d)$ Yes ^c	Yes ^{a,b} $O(b^{1+\lfloor C^*/\epsilon \rfloor})$ $O(b^{1+\lfloor C^*/\epsilon \rfloor})$ Yes	No $O(b^m)$ $O(bm)$ No	No $O(b^\ell)$ $O(b\ell)$ No	$\begin{array}{c} {\rm Yes}^a \\ O(b^d) \\ O(bd) \\ {\rm Yes}^c \end{array}$