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Remember the Vacuum-cleaner world?
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* Percepts: location and contents, e.o., [A, Dirt
p g y

* Actions: [ ¢ft, Right, Suck



Vacuum world state space graph
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State space: Set of all reachable states. In state space graph,

nodes/vertices = states, links/edges = actions



Formulation of a Problem

* A Problem 1s defined by the following items:

* Set of states the agent can be in, with a designated initial state
* Set of actions available to the agent

* Transition model describing what each action does (maps a
<state, action> pair to a state)

* Goal test which determines if a given state 1s a goal state

* A path cost function that assigns a numeric cost to each path



Vacuum world state space graph
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* states? binary dirt and robot location. Any state can be initial state
* actions? Left, Right, Suck
* Transition model? As seen in the state space graph

* goal test? no dirt at all locations

* path cost? 1 per action




Example: The 8-puzzle

7 2 4 1

5 6 3 4

8 3 1 6 7
Start State Goal State

°* statesr?

* Aactions?

* ooal test?

* path cost?




Example: The 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

* states? locations of tiles

* actions? move blank left, right, up, down

* ooal test? = goal state (given)

* path cost? 1 per move




The 8-puzzle
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Partial state space graph



Example: Romania
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Search strategies

* A search strategy 1s defined by picking the order of node

expansion

* Strategies are evaluated along the following dimensions:
* completeness: does it always find a solution if one exists?
* time complexity: number of nodes generated
* space complexity: maximum number of nodes in memory

* optimality: does it always find a least-cost solution?

* Time and space complexity are measured in terms of
* /: maximum branching factor of the search tree
* J: depth of the least-cost solution
* 7z maximum depth of the state space (may be )
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Uninformed search strategies

* Uninformed search strategies use only the information available
in the problem definition
* Breadth-first search
* Uniform-cost search
* Depth-first search

* Depth-limited search

* Iterative deepening search



Basic concept

* Frontier (or fringe): The set of all leaf nodes available for
expansion at any given point

* The basics of each algorithm:
e Start from initial node
* Expand adjacent nodes and put them in the frontier
* Choose the next node from the frontier for expansion

* Repeat until goal 1s found, or some ending criteria is met

* The algorithms differ in the way they choose the next node
from the frontier
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Breadth-first search

* Expand shallowest unexpanded node

* Implementation:

* frontier is a FIFO queue, 1.e., new successors go at end

>@

14



Breadth-first search

* Expand shallowest unexpanded node

* Implementation:

* frontier is a FIFO queue, 1.e., new successors go at end
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Breadth-first search

* Expand shallowest unexpanded node

* Implementation:

* frontier is a FIFO queue, 1.e., new successors go at end
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(B > (<

16



Breadth-first search

* Expand shallowest unexpanded node

* Implementation:

* frontier is a FIFO queue, 1.e., new successors go at end
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Properties of breadth-first search

* Complete? Yes (1t 4 1s finite)

* Time? 1+b+PP+0+... +17 = O(b?)

* Space? O(F) (keeps every node in memory)

* Optimal? Yes (if cost =1 per step)

* Space is the bigger problem (more than time)



Uniform-cost search

* Expand least-cost unexpanded node

* Implementation:
* frontier = queue ordered by path cost

* Equivalent to breadth-first if step costs all equal

* Complete? Yes, if step cost = ¢

* Time? # of nodes with g < cost of optimal solution, O ("
¢) where C" is the cost of the optimal solution

* Space? # of nodes with g = cost of optimal solution,
O (b&ez'/z'ﬁg(C */ 8))

* Optimal? Yes — nodes expanded in increasing order of g(#)
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Depth-first search

* Expand deepest unexpanded node

* frontier = LIFO stack, i.e., put successors at front
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search

* Expand deepest unexpanded node

* frontier = LIFO stack, i.e., put successors at front
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Properties of depth-first search

* Complete? No: fails in infinite-depth spaces, spaces
with loops

* Modify to avoid repeated states along path

—> complete in finite spaces

* Time? O(b”): terrible it # is much larger than 4

* but if solutions are dense, may be much faster than

breadth-first
* Space? O(bm), 1.e., linear spacel
* Optimal? No
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Depth-limited search

= depth-first search with depth limit / i.e., nodes at depth /have

NO SUCCESSOf1S

* Complete? No
 Time? O()

* Space? O(bl)

* Optimal? No
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Iterative deepening search

= depth-limited search on repeat!
Limit /1s increased at each iteration until goal is found

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth< 0 to oo do
result +— DEPTH-LIMITED-SEARCH( problem, depth)
if result # cutoff then return result
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[terative deepening search /=0

Limit =0 »(2) [ ]




[terative deepening search /=1
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[terative deepening search /=2

Limit =2 +(2)
(5]
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[terative deepening search /=

Limit =3 10
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Properties of iterative deepening search

* Complete? Yes

e Time? @+ )i +d b + (A1) + ... + ¥ = O

* Space? O(bd)

* Optimal? Yes, if step cost = 1
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Summary ot algorithms

Criterion Breadth- Uniform- Depth- Depth- [terative
First Cost First Limited  Deepening
Complete? Yes” Yes®:? No No Yes“
Time omt)y oy o™ oW O(b?)
Space oY)y o'y Om) Ok O(bd)
Optimal? Yes®© Yes No No Yes©
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