
CSE 604

Artificial Intelligence

Chapter 3: Solving Problems by Searching

Dr. Ahmedul Kabir

Adapted from slides available in Russell & Norvig’s textbook webpage

Remember the Vacuum-cleaner world?

• Percepts: location and contents, e.g., [A, Dirty]

• Actions: Left, Right, Suck

Vacuum world state space graph

3

State space: Set of all reachable states. In state space graph,

nodes/vertices = states, links/edges = actions

Formulation of a Problem

•A Problem is defined by the following items:

• Set of states the agent can be in, with a designated initial state

• Set of actions available to the agent

• Transition model describing what each action does (maps a
<state, action> pair to a state)

• Goal test which determines if a given state is a goal state

• A path cost function that assigns a numeric cost to each path

4

Vacuum world state space graph

• states? binary dirt and robot location. Any state can be initial state

• actions? Left, Right, Suck

• Transition model? As seen in the state space graph

• goal test? no dirt at all locations

• path cost? 1 per action
5

Example: The 8-puzzle

• states?

• actions?

• goal test?

•path cost?

6

Example: The 8-puzzle

• states? locations of tiles

• actions? move blank left, right, up, down

• goal test? = goal state (given)

•path cost? 1 per move

7

Example: The 8-puzzle

8

Partial state space graph

Example: Romania

10

Search strategies

• A search strategy is defined by picking the order of node
expansion

• Strategies are evaluated along the following dimensions:
• completeness: does it always find a solution if one exists?

• time complexity: number of nodes generated

• space complexity: maximum number of nodes in memory

• optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of
• b: maximum branching factor of the search tree

• d: depth of the least-cost solution

• m: maximum depth of the state space (may be ∞)

11

Uninformed search strategies

• Uninformed search strategies use only the information available
in the problem definition

• Breadth-first search

• Uniform-cost search

• Depth-first search

• Depth-limited search

• Iterative deepening search

12

Basic concept

• Frontier (or fringe): The set of all leaf nodes available for
expansion at any given point

• The basics of each algorithm:
• Start from initial node

• Expand adjacent nodes and put them in the frontier

• Choose the next node from the frontier for expansion

• Repeat until goal is found, or some ending criteria is met

• The algorithms differ in the way they choose the next node
from the frontier

13

Breadth-first search

• Expand shallowest unexpanded node

• Implementation:
• frontier is a FIFO queue, i.e., new successors go at end

14

Breadth-first search

• Expand shallowest unexpanded node

• Implementation:
• frontier is a FIFO queue, i.e., new successors go at end

15

Breadth-first search

• Expand shallowest unexpanded node

• Implementation:
• frontier is a FIFO queue, i.e., new successors go at end

16

Breadth-first search

• Expand shallowest unexpanded node

• Implementation:
• frontier is a FIFO queue, i.e., new successors go at end

17

Properties of breadth-first search

•Complete? Yes (if b is finite)

•Time? 1+b+b2+b3+… +bd = O(bd)

•Space? O(bd) (keeps every node in memory)

•Optimal? Yes (if cost = 1 per step)

•Space is the bigger problem (more than time)

18

Uniform-cost search

• Expand least-cost unexpanded node

• Implementation:
• frontier = queue ordered by path cost

• Equivalent to breadth-first if step costs all equal

• Complete? Yes, if step cost ≥ ε

• Time? # of nodes with g ≤ cost of optimal solution, O(bceiling(C*/

ε)) where C* is the cost of the optimal solution

• Space? # of nodes with g ≤ cost of optimal solution,
O(bceiling(C*/ ε))

• Optimal? Yes – nodes expanded in increasing order of g(n)

19

Depth-first search

•Expand deepest unexpanded node

• Implementation:
• frontier = LIFO stack, i.e., put successors at front

20

Depth-first search

•Expand deepest unexpanded node

• Implementation:
• frontier = LIFO stack, i.e., put successors at front

21

Depth-first search

•Expand deepest unexpanded node

• Implementation:
• frontier = LIFO stack, i.e., put successors at front

22

Depth-first search

•Expand deepest unexpanded node

• Implementation:
• frontier = LIFO stack, i.e., put successors at front

23

Depth-first search

•Expand deepest unexpanded node

• Implementation:
• frontier = LIFO stack, i.e., put successors at front

24

Depth-first search

•Expand deepest unexpanded node

• Implementation:
• frontier = LIFO stack, i.e., put successors at front

25

Depth-first search

•Expand deepest unexpanded node

• Implementation:
• frontier = LIFO stack, i.e., put successors at front

26

Depth-first search

•Expand deepest unexpanded node

• Implementation:
• frontier = LIFO stack, i.e., put successors at front

27

Depth-first search

•Expand deepest unexpanded node

• Implementation:
• frontier = LIFO stack, i.e., put successors at front

28

Depth-first search

•Expand deepest unexpanded node

• Implementation:
• frontier = LIFO stack, i.e., put successors at front

29

Depth-first search

•Expand deepest unexpanded node

• Implementation:
• frontier = LIFO stack, i.e., put successors at front

30

Depth-first search

•Expand deepest unexpanded node

• Implementation:
• frontier = LIFO stack, i.e., put successors at front

31

Properties of depth-first search

•Complete? No: fails in infinite-depth spaces, spaces
with loops
• Modify to avoid repeated states along path
 complete in finite spaces

•Time? O(bm): terrible if m is much larger than d
• but if solutions are dense, may be much faster than

breadth-first

•Space? O(bm), i.e., linear space!

•Optimal? No

32

Depth-limited search

= depth-first search with depth limit l, i.e., nodes at depth l have
no successors

•Complete? No

•Time? O(bl)

•Space? O(bl)

•Optimal? No

33

Iterative deepening search

34

= depth-limited search on repeat!

Limit l is increased at each iteration until goal is found

Iterative deepening search l =0

35

Iterative deepening search l =1

36

Iterative deepening search l =2

37

Iterative deepening search l =3

38

Properties of iterative deepening search

• Complete? Yes

• Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

• Space? O(bd)

• Optimal? Yes, if step cost = 1

39

Summary of algorithms

40

