
CSE 604

Artificial Intelligence

Chapter 3 (part 2): Heuristic Search

Dr. Ahmedul Kabir

Adapted from slides available in Russell & Norvig’s textbook webpage

Outline

• Heuristics

• Best-first search

• Greedy best-first search

• A* search

• More on heuristics

Definition of heuristics

• A heuristic technique (/hjuːˈrɪstɪk/; Ancient Greek: εὑρίσκω,

"find" or "discover"), often called simply a heuristic, is any

approach to problem solving, learning, or discovery that employs

a practical method not guaranteed to be optimal or perfect, but

sufficient for the immediate goals.

• Heuristics can be mental shortcuts that ease the cognitive load

of making a decision.

• Examples of this method include using a rule of thumb,

an educated guess, or common sense.

https://en.wikipedia.org/wiki/Heuristic

Example: Driving from A to B

• The straight line distance is a heuristic to estimate the driving

distance

Example: 8-puzzle problem

Which state is “closer” to

the goal state?

How can we quantify this?

Best-first search

• Idea: use an evaluation function f(n) for each node

– estimate of "desirability“

Expand most desirable unexpanded node

• Implementation:

Order the nodes in fringe in decreasing order of
desirability

• Special cases:

– Greedy best-first search

– A* search

Romania with step costs in km

Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic)

= estimate of cost from n to goal

• e.g., hSLD(n) = straight-line distance from n to Bucharest

• Greedy best-first search expands the node that appears

to be closest to goal

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Properties of greedy best-first search

• Complete? No – can get stuck in loops, e.g., when

going from Iasi to Fagars:

Iasi Neamt Iasi Neamt

• Time? O(bm), but a good heuristic can give dramatic

improvement

• Space? O(bm) -- keeps all nodes in memory

• Optimal? No

A* search

• Idea: avoid expanding paths that are already expensive

• Evaluation function f(n) = g(n) + h(n)

• g(n) = cost so far to reach n

• h(n) = estimated cost from n to goal

• f(n) = estimated total cost of path through n to goal

A* search example

A* search example

A* search example

A* search example

A* search example

A* search example

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state

from n.

• An admissible heuristic never overestimates the cost to reach the

goal, i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual road distance)

• Theorem: If h(n) is admissible, A* using TREE-SEARCH is

optimal

Optimality of A* (proof)

• Suppose some suboptimal goal G2 has been generated and is in the fringe. Let

n be an unexpanded node in the fringe such that n is on a shortest path to an

optimal goal G.

•

• We need to show: f(n) < f(G2)

• f(n) = g(n) + h(n)

≤ g(n) + c(n, G) since h is admissible

= g(G)

< g(G2) since G2 is suboptimal

= f(G2) since h(G2) = 0

Consistent heuristics

• A heuristic is consistent if for every node n, every successor n' of n generated
by any action a,

h(n) ≤ c(n,a,n') + h(n')

• If h is consistent, we have

f(n') = g(n') + h(n')

= g(n) + c(n,a,n') + h(n')

≥ g(n) + h(n)

= f(n)

• i.e., f(n) is non-decreasing along any path.

• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Optimality of A*

• A* expands nodes in order of increasing f value

• Gradually adds "f-contours" of nodes

• Contour i has all nodes with f=fi, where fi < fi+1

Properties of A*

• Complete? Yes (unless there are infinitely many nodes

with f ≤ f(G))

• Time? Exponential

• Space? Keeps all nodes in memory

• Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ?

• h2(S) = ?

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8

• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

• If h2(n) ≥ h1(n) for all n (both admissible)

• then h2 dominates h1

• h2 is better for search

• Typical search costs (average number of nodes expanded):

• d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes
A*(h2) = 73 nodes

• d=24 IDS = too many nodes
A*(h1) = 39,135 nodes
A*(h2) = 1,641 nodes

• Why is A* so much better?

Because it reduces the effective branching factor

Dominance

Relaxed problems

• A problem with fewer restrictions on the actions is called a
relaxed problem

• The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any adjacent
square, then h2(n) gives the shortest solution

