CSE 604 Artificial Intelligence

Chapter 3 (part 2): Heuristic Search

Adapted from slides available in Russell & Norvig's textbook webpage

Dr. Ahmedul Kabir

Outline

- Heuristics
- Best-first search
- Greedy best-first search
- A^{*} search
- More on heuristics

Definition of heuristics

- A heuristic technique (/hjuːˈrɪstɪk/; Ancient Greek: εὑρίσκω, "find" or "discover"), often called simply a heuristic, is any approach to problem solving, learning, or discovery that employs a practical method not guaranteed to be optimal or perfect, but sufficient for the immediate goals.
- Heuristics can be mental shortcuts that ease the cognitive load of making a decision.
- Examples of this method include using a rule of thumb, an educated guess, or common sense.

Example: Driving from A to B

• The straight line distance is a heuristic to estimate the driving distance

Example: 8-puzzle problem

Best-first search

• Idea: use an evaluation function $f(n)$ for each node – estimate of "desirability"

Expand most desirable unexpanded node

• Implementation:

Order the nodes in fringe in decreasing order of desirability

- Special cases:
	- Greedy best-first search
	- A* search

Romania with step costs in km

Greedy best-first search

• Evaluation function $f(n) = h(n)$ (heuristic)

= estimate of cost from *n* to *goal*

- e.g., $h_{\text{SLD}}(n)$ = straight-line distance from *n* to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Properties of greedy best-first search

- Complete? No can get stuck in loops, e.g., when going from Iasi to Fagars: $Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow$
- Time? $O(b^m)$, but a good heuristic can give dramatic improvement
- Space? $O(b^m)$ -- keeps all nodes in memory
- Optimal? No

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function $f(n) = g(n) + h(n)$
- $g(n) = \text{cost so far to reach } n$
- $h(n)$ = estimated cost from *n* to goal
- *f(n)* = estimated total cost of path through *n* to goal

A^{*} search example

A* search example

Admissible heuristics

- A heuristic *h(n)* is admissible if for every node *n*, $h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from *n*.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- Theorem: If $h(n)$ is admissible, A^{*} using TREE-SEARCH is optimal

Optimality of A* (proof)

• Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let *n* be an unexpanded node in the fringe such that *n* is on a shortest path to an optimal goal *G*.

• We need to show: $f(n) < f(G_2)$

•

 $f(n) = g(n) + h(n)$ $\leq g(n) + c(n, G)$ since h is admissible $= g(G)$ \leq g(G₂) since G_2 is suboptimal $= f(G_2)$ $\text{since } h(G_2) = 0$

Consistent heuristics

• A heuristic is consistent if for every node *n*, every successor *n'* of *n* generated by any action *a*,

 $h(n) \leq c(n,a,n') + h(n')$

• If *h* is consistent, we have $f(n') = g(n') + h(n')$ $= g(n) + c(n,a,n') + h(n')$ \geq g(n) + h(n) $= f(n)$

- i.e., *f(n)* is non-decreasing along any path.
- Theorem: If $h(n)$ is consistent, A^* using GRAPH-SEARCH is optimal

Optimality of A*

- A* expands nodes in order of increasing *f* value
- Gradually adds "*f*-contours" of nodes
- Contour *i* has all nodes with $f=f_i$, where $f_i < f_{i+1}$

Properties of A*

- Complete? Yes (unless there are infinitely many nodes with $f \leq f(G)$
- Time? Exponential
- Space? Keeps all nodes in memory
- Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Start State

Goal State

 $\overline{\mu}$ $(S) = ?$

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Start State

Goal State

- $h_1(S) = ? 8$
- $h_2(S) = ? 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$

Dominance

- If $h_2(n) \ge h_1(n)$ for all *n* (both admissible)
- then h_2 dominates h_1
- *h*₂ is better for search
- Typical search costs (average number of nodes expanded):
- $d=12$ IDS = 3,644,035 nodes $A^*(h_1) = 227$ nodes A^{\ast} (h₂) = 73 nodes
- $d=24$ **IDS** = too many nodes $A^*_{12}(h_1) = 39,135$ nodes A^{\ast} (h₂) = 1,641 nodes
- Why is A^* so much better? Because it reduces the effective branching factor

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then *h² (n)* gives the shortest solution