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Wumpus world



Wumpus World PEAS description

• Performance measure

– gold +1000, death -1000

– -1 per step, -10 for using the arrow

• Environment

– Squares adjacent to wumpus are smelly

– Squares adjacent to pit are breezy

– Glitter iff gold is in the same square

– Shooting kills wumpus if you are facing it

– Shooting uses up the only arrow

– Grabbing picks up gold if in same square

– Releasing drops the gold in same square

• Sensors: Stench, Breeze, Glitter, Bump, Scream

• Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot



Wumpus World Environment

• Partially Observable: only local perception

• Single-agent Wumpus is essentially a 

natural feature

• Deterministic outcomes exactly specified

• Sequential: rewards may come after 

many actions

• Static: Wumpus and Pits do not move

• Discrete: One state at a time



Exploring a wumpus world
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Exploring a wumpus world



Knowledge bases

• Knowledge base = set of  sentences in a formal language

• Declarative approach to building an agent (or other system):
– Tell it what it needs to know

• Then it can Ask itself  what to do - answers should follow from the KB

• Agents can be viewed at the knowledge level
i.e., what they know, regardless of  how implemented

• Or at the implementation level
– i.e., data structures in KB and algorithms that manipulate them



A simple knowledge-based agent

• The agent must be able to:
– Represent states, actions, etc.

– Incorporate new percepts

– Update internal representations of  the world

– Deduce hidden properties of  the world

– Deduce appropriate actions



Logic in general

• Logics are formal languages for representing information such 
that conclusions can be drawn

• Syntax defines the sentences in the language

• Semantics define the "meaning" of  sentences;
– i.e., define truth of  a sentence in a world

• E.g., the language of  arithmetic
– x+2 ≥ y is a sentence; x2+y > {} is not a sentence

– x+2 ≥ y is true iff  the number x+2 is no less than the number y

– x+2 ≥ y is true in a world where x = 7, y = 1

– x+2 ≥ y is false in a world where x = 0, y = 6



Entailment

• Entailment means that one thing follows from another:

KB ╞ α

• Knowledge base KB entails sentence α if  and only if  α 
is true in all worlds where KB is true

– E.g., x = 0 entails  xy = 0

– Entailment is a relationship between sentences (i.e., syntax) 
that is based on semantics



Models

• Logicians typically think in terms of  models, which are formally 
structured worlds with respect to which truth can be evaluated

• We say m is a model of a sentence α if  α is true in m

• M(α) is the set of  all models of  α

• Then KB ╞ α iff M(KB)  M(α)

– E.g. KB = Giants won and Reds won
α = Giants won



Entailment in the wumpus world

Situation after detecting nothing in 

[1,1], moving right, breeze in [2,1]

Consider possible models for KB

assuming only pits

3 Boolean choices  8 possible 

models



Wumpus models



• KB = wumpus-world rules + observations

Wumpus models



Wumpus models

• KB = wumpus-world rules + observations

• α1 = "[1,2] is safe", KB ╞ α1, proved by model checking



Wumpus models

• KB = wumpus-world rules + observations

• α2 = "[2,2] is safe", KB ╞ α2



Inference

• KB ├i α = sentence α can be derived from KB by procedure i

• Soundness: i is sound if  whenever KB ├i α, it is also true that 
KB╞ α

• Completeness: i is complete if  whenever KB╞ α, it is also true 
that KB ├i α 

• Preview: we will define a logic (first-order logic) which is 
expressive enough to say almost anything of  interest, and for 
which there exists a sound and complete inference procedure.

• That is, the procedure will answer any question whose answer 
follows from what is known by the KB.



Propositional logic: Syntax

• Propositional logic is the simplest logic – illustrates basic ideas

• The proposition symbols P1, P2 etc are sentences

– If  S is a sentence, S is a sentence (negation)

– If  S1 and S2 are sentences, S1  S2 is a sentence (conjunction)

– If  S1 and S2 are sentences, S1  S2 is a sentence (disjunction)

– If  S1 and S2 are sentences, S1  S2 is a sentence (implication)

– If  S1 and S2 are sentences, S1  S2 is a sentence (biconditional)



Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g. P1,2 P2,2 P3,1

false true false

With these symbols, 8 possible models, can be enumerated automatically.

Rules for evaluating truth with respect to a model m:

S is true iff  S is false  

S1  S2 is true iff  S1 is true    and S2 is true

S1  S2 is true iff  S1is true      or S2 is true

S1  S2 is true iff S1 is false    or S2 is true

i.e., is false iff S1 is true    and S2 is false

S1  S2 is true iff S1S2 is true  and  S2S1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

P1,2  (P2,2  P3,1) = true  (true  false) =  true  true = true



Truth tables for connectives



Wumpus world sentences

Let Pi,j be true if  there is a pit in [i, j].

Let Bi,j be true if  there is a breeze in [i, j].

 P1,1

B1,1

B2,1

• "Pits cause breezes in adjacent squares"

B1,1   (P1,2  P2,1)

B2,1   (P1,1  P2,2  P3,1)



Truth tables for inference



Inference by enumeration

• Depth-first enumeration of  all models is sound and complete 

• For n symbols, time complexity is O(2n), space complexity is O(n)



Logical equivalence

• Two sentences are logically equivalent iff true in same models: α 

≡ ß iff α╞ β and β╞ α



Validity and satisfiability

A sentence is valid if  it is true in all models,
e.g., True, A A, A  A, (A  (A  B))  B

Validity is connected to inference via the Deduction Theorem:
KB ╞ α if  and only if  (KB α) is valid

A sentence is satisfiable if  it is true in some model
e.g., A B, C

A sentence is unsatisfiable if  it is true in no models
e.g., AA

Satisfiability is connected to inference via the following:
KB ╞ α if  and only if  (KB α) is unsatisfiable



Proof  methods

• Proof  methods divide into (roughly) two kinds:

– Application of  inference rules

• Legitimate (sound) generation of  new sentences from old

• Proof = a sequence of  inference rule applications
Can use inference rules as operators in a standard search algorithm

• Typically require transformation of  sentences into a normal form

– Model checking

• truth table enumeration (always exponential in n)

• improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL)

• heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms



Conjunctive Normal Form (CNF)
conjunction of  disjunctions of  literals

E.g., (A  B)  (B  C  D)

• Resolution inference rule (for CNF):

li …  lk, m1 …  mn

li …  li-1  li+1 …  lk  m1 …  mj-1  mj+1 ...  mn

where li and mj are complementary literals, E.g.,

P1,3  P2,2, P2,2

P1,3

• Resolution is sound and complete 
for propositional logic

Resolution



Conversion to CNF

B1,1  (P1,2  P2,1)

1. Eliminate , replacing α  β with (α  β)(β  α).
(B1,1  (P1,2  P2,1))  ((P1,2  P2,1)  B1,1)

2. Eliminate , replacing α  β with α β.
(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

3. Move  inwards using de Morgan's rules and double-negation:
(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

4. Apply distributivity law ( over ) and flatten:
(B1,1  P1,2  P2,1)  (P1,2  B1,1)  (P2,1  B1,1)



Resolution algorithm

• Proof  by contradiction, i.e., show KBα unsatisfiable



Resolution example

• KB = (B1,1  (P1,2 P2,1))  B1,1           α = P1,2

KB
¬α



In-class Example

If  the unicorn is mythical, then it is immortal, but if  it is 

not mythical, then it is a mortal mammal. If  the unicorn is 

either immortal or a mammal, then it is horned. The 

unicorn is magical if  it is horned. 

Prove that the unicorn is both magical and horned. 

(Adapted from Barwise and Etchemendy, 1993.)



Forward and backward chaining

• Horn Form (restricted)
KB = conjunction of  Horn clauses

– Horn clause = Clause with at most one positive literal
• proposition symbol;  or

• (conjunction of  symbols)  symbol

– E.g., C  (B  A)  (C  D  B)

• Modus Ponens (for Horn Form): complete for Horn KBs

α1, … ,αn, α1 …  αn  β

β

• Can be used with forward chaining or backward chaining.

• These algorithms are very natural and run in linear time



Forward chaining

• Idea: fire any rule whose premises are satisfied in the KB,

– add its conclusion to the KB, until query is found



Forward chaining algorithm

• Forward chaining is sound and complete for Horn KB



Forward chaining example
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FC derives every atomic sentence that is entailed by KB

1. FC reaches a fixed point where no new atomic sentences are derived

2. Consider the final state as a model m, assigning true/false to symbols

3. Every clause in the original KB is true in m

a1  …  ak  b

4. Hence m is a model of  KB

5. If  KB╞ q, q is true in every model of  KB, including m

Proof  of  completeness



Backward chaining

Idea: work backwards from the query q:

to prove q by BC,

check if  q is known already, or

prove by BC all premises of  some rule concluding q

Avoid loops: check if  new subgoal is already on the goal stack

Avoid repeated work: check if  new subgoal

1. has already been proved true, or

2. has already failed



Backward chaining example
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Forward vs. backward chaining

• FC is data-driven, automatic, unconscious processing,
– e.g., object recognition, routine decisions

• May do lots of  work that is irrelevant to the goal 

• BC is goal-driven, appropriate for problem-solving,
– e.g., Where are my keys? How do I get into a PhD program?

• Complexity of  BC can be much less than linear in size of  KB



Summary

• Logical agents apply inference to a knowledge base to derive new information 
and make decisions

• Basic concepts of  logic:
– syntax: formal structure of  sentences

– semantics: truth of  sentences wrt models

– entailment: necessary truth of  one sentence given another

– inference: deriving sentences from other sentences

– soundness: derivations produce only entailed sentences

– completeness: derivations can produce all entailed sentences

• Wumpus world requires the ability to represent partial and negated 
information, reason by cases, etc.

• Resolution is complete for propositional logic. Forward, backward chaining 
are linear-time, complete for Horn clauses

• Propositional logic lacks expressive power


