
1

Distributed Systems

Architectures

Moumita Asad

IIT, DU

2

Overview

• Distributed systems are often complex pieces of

software

• To master this complexity, systems must be properly

organized

• Two key organization:

1. Software architecture: the logical organization of a

distributed system into software components

2. System architecture: the placement of software

components on physical machines

3

Software Architecture

• Important styles of architecture for distributed

systems:
– Layered Architectures

– Object-Oriented, Service-Oriented Architectures,
Microservices

– Publish-Subscribe Architectures

4

Layered Architectural Style

• Components are

organized in layers

• Components on a

higher layer make

downcalls (send

requests to a lower

layer)

• Lower layer

components respond to

higher layer requests

5

Layered Architectural Style

• Google Docs consists of 3 layers:

1. Interface layer: you request to see the latest doc from

your drive.

2. Processing layer: processes your request and asks for

the information from the data layer.

3. Data layer: stores persistent data (your file) and

provides access to higher-level layers.

• The data layer returns the information to the

processing layer which in turn sends it to the interface

where you can view and edit it.

6

Layered Architectural Style

7

Object-based Architectural Styles

• A programming methodology

• Logical components are grouped together as objects

• Each object has its own encapsulated data set, referred

to as the object’s state.

• An object’s method is the operations performed on

that data.

• Objects are connected through procedure call

mechanisms (an object “calls” on another object for

specific requests)

8

Object-based Architectural Styles

9

Service-Oriented Architecture

• An interface (the

Enterprise Service

Bus unifies all

services together and

exposes APIs for the

frontend clients to

communicate with the

Providers layer

10

Microservices

• Microservices are smaller than services in an SOA,

less tightly coupled, and more lightweight

11

Difference between SOA and Microservices

• SOA is “coarse grained”, meaning it focuses on large,

business-domain functionalities

• Microservices is much “finer grained”, creating a mesh

of functionalities that each has a single focus called a

bounded context

12

Publish-Subscribe Architectures

• A loosely coupled architecture that allows processes to

easily join or leave.

• The key difference here is how services communicate.

– Instead of calling and getting a response, services send

one-way, usually asynchronous messages, generally not

to a specific receiver.

– They rely on a configurator, administrator, or developer

to configure who’ll receive what message.

– In some cases, the receivers themselves can sign up to

receive messages.

13

Publish-Subscribe Architectures

• Example: how you get your breaking news push

notifications. The Washington Post, for instance,

publishes a news item categorized as “breaking news”

and whoever subscribes to these updates will receive it

14

Remarks

• Software architectures aim at achieving distribution

transparency (at a reasonable level)

• However, it requires making trade-offs between

performance, fault tolerance, ease-of-programming,

and so on

• There is no single solution that will meet the

requirements for all possible distributed applications

15

System Architecture

• Encompasses decisions as to

– Where to place specific software components

– Should certain components be placed on the same

server or on different machines?

• Broadly 2 categories

1. Centralized architecture

2. Decentralized architecture

16

Centralized Architecture: Client-Server System

• Server: a process implementing a specific service (e.g.

database service)

• Client: a process requesting that service from a server

• The client sends the request and waits for the reply

(request-reply behavior)

17

Communication between Client-Server

1. Connectionless protocol

– Usage: when the underlying network is fairly reliable

(e.g., local-area networks)

– Advantage: efficient

– What if a message gets lost?

18

What if a Message Gets Lost?

• let the client resend the request when no reply message

comes in

• Problem: the client cannot detect whether the original

request message was lost or the transmission of the

reply failed

• If the reply was lost, then resending a request may

result in performing the operation twice

19

What if a Message Gets Lost?

• If the operation was "transfer $10,000 from my bank

account," it would be better that we simply reported an

error instead

• If the operation was "tell me how much money I have

left," it would be perfectly acceptable to resend the

request

• When an operation can be repeated multiple times

without harm, it is said to be idempotent

• Since some requests are idempotent and others are not

it should be clear that there is no single solution for

dealing with lost messages

20

Communication between Client-Server

2. Connection-oriented protocol

– whenever a client requests a service, it first sets up a

connection to the server before sending the request. The

server generally uses that same connection to send the

reply message, after which the connection is torn down

– Usage: good for wide-area systems in which

communication is inherently unreliable

– Disadvantage: relatively low performance

21

Distribution of Client-Server Application

• (Physically) two-tiered architecture

– Two types of machines:

1. a client machine with the user interface

2. the server interface containing the program

implementing the process and the data

22

Variations of Physically Two-Tiered Architecture

23

Distribution of Client-Server Application

• (Physically) three-tiered

architectures

– The application is spread

across three machines-

one client and two servers

– One of the servers also

has to act as a client

• One of the servers may

need input from the other

server to process the

client request, acting as a

client

24

Decentralized Architectures

• Processes that constitute a peer-to-peer system are all

equal

• Each process will act as a client and a server at the

same time (which is also referred to as acting as a

servant)

• Two types of overlay (logical) networks exist

1. Structured

2. Unstructured

25

Structured Peer-to-Peer Architectures

• The most-used procedure is to organize the processes

through a distributed hash table (DHT)

• In a DHT -based system, data items are assigned a

random key from a large identifier space, such as a

128-bit or 160-bit identifier

• Likewise, nodes in the system are also assigned a

random number from the same identifier space

• The key of a data item is mapped to the identifier of a

node

• When looking up a data item, the network address of

the node responsible for that data item is returned

26

Structured Peer-to-Peer Architectures

• In the Chord system,

the nodes are logically

organized in a ring such

that a data item with

key k is mapped to the

node with the smallest

identifier id ~ k. This

node is referred to as

the successor of key k

and denoted as succ(k)

27

Structured Peer-to-Peer Architectures

• To actually look up the

data item, an application

running on an arbitrary

node would then call the

lookup(k) function which

would subsequently return

the network address of

succ(k)

• Next, the application can

contact the node to obtain

a copy of the data item

28

• When a node wants to join

the system, it generates a

random identifier id

– if the identifier space is

large enough and the

random number generator

is of good quality, the

probability of generating

an identifier that is

already assigned to an

actual node is close to

zero

29

Structured Peer-to-Peer Architectures

• Then, the node can simply do a lookup on id, which

will return the network address of succ(id)

• Next, the joining node can simply contact succ(id) and

its predecessor and insert itself in the ring

• This scheme requires that each node also stores

information on its predecessor

• Insertion also yields that each data item whose key is

now associated with node id, is transferred from

succ(id)

30

Structured Peer-to-Peer Architectures

• To leave the system, node id informs its departure to

its predecessor and successor, and transfers its data

items to succ(id)

31

Structured Peer-to-Peer Architectures

• Content Addressable

Network (CAN) deploys a d-

dimensional Cartesian

coordinate space, which is

completely partitioned among

all the nodes that participate

in the system

• Every data item in CAN is

assigned a unique point in

this space, after which it is

also clear which node is

responsible for that data

32

Structured Peer-to-Peer Architectures

• When a node P wants to

join a CAN system, it

picks an arbitrary point

from the coordinate space

and subsequently looks up

the node Q in whose

region that point falls

• Node Q then splits its

region into two halves and

one half is assigned to the

node P

33

Structured Peer-to-Peer Architectures

• Nodes keep track of their

neighbors (nodes responsible

for adjacent region)

• When splitting a region, the

joining node P can easily

come to know who its new

neighbors are by asking node

Q

• The data items for which

node P is now responsible are

transferred from node Q

34

Structured Peer-to-Peer Architectures

35

Resources

• https://thenewstack.io/primer-understanding-software-

and-system-architecture/

• https://scoutapm.com/blog/soa-vs-microservices

