
Micro Service
Architecture



Agenda
● Session 1: Evolution of Software Architecture
● Session 2: Basics of Microservice Architecture
● Session 3: 

○ Hands on experiences on Microservice Architecture
○ Case Studies

■ WiNiT
■ TEQ



Raisul Islam
Lead Engineer & Solution Architect

Skype: raisulislam.bs23
Mobile: +88 01911 810019
Email: raisulislam@brainstation-23.com



My Experience
● 10+ years development experience 

in .NET and Python
● 5+ years working experience as a 

Solution Architect and 
Development Manager

● Designed 25+ Solution 
Architectures

● Experienced in Micro Service and 
Distributed System Architecture

● Experienced with AWS Serverless 
Architecture

● Worked on 45+ Projects in following 
business domains:

○ E-Commerce
○ ERP
○ Educational Institution
○ Defence Organization
○ Transportation and Fleet 

Management
○ HRM
○ Supply Chain
○ CRM and Customer Support
○ Mobile App and Game Development
○ Public facing Web Application with 

Big Data Handling



Evolution of Software Architecture



● What is Software Architecture
● Importance of Software Architecture
● Steps of Software Architecture
● Well-Architected Framework
● Evolution of Software Architecture
● Monolithic Architecture 
● Monolithic to Microservice transformation
● Strategies to migrate Monolithic to Microservice



What is Software Architecture
● Software Architecture represents the 

blueprint of a system
● It defines a structured solution to meet 

all the technical and operational 
requirements

● Software Architecture is always an 
Evolving process

● Its must frequently evolve to cope with 
changing requirements



Importance of Software 
Architecture

● A software architecture is the 
foundation of a software 
system

● Developing a software is 
similar to constructing a 
building

● Scalability, Performance, 
Security and Usability is 
highly dependent on the 
Software Architecture

There is a saying, “Failing to plan is 
planning to fail”



Steps of Software Architecture
● Capture architecturally significant 

requirements
● Design an architecture
● Evaluate the architecture
● Document the architecture

Software Architecture is an iterative and 
evolving process. If the architecture can not 
be evolved, the software is not sustainable.



Well-Architected Framework
● The Well-Architected framework has 

been developed to build the most 
secure, high-performing, resilient, and 
efficient infrastructure for the 
applications

● This framework provides a consistent 
approach for customers and partners to 
evaluate architectures, and provides 
guidance to help implement designs 
that will scale with your application 
needs over time



Well-Architected Framework (Cont.)



Evolution of Software Architecture
● 1980s: Most of the 

applications were console 
based application build on 
Monolithic applications

● 1990s: Windows came to 
the limelight, Desktop 
applications were 
developed

● 2000s: Internet changed 
everything, web 
applications dominated

● 2010s: Cloud Technologies 
came in front, Cloud 
overtaken on-premises

● 2020s: 



Monolithic Architecture
● The Monolithic application describes a 

single-tiered software application in 
which different components combined 
into a single program from a single 
platform

● It's designed to be self-contained
● Single point to serve all request. 

Characteristics:

● Simple to develop
● Simple to deploy
● Simple to scale horizontally
● Easy to test
● It's easy to start but hard to expand
● Hard to maintain — If Application is too 

large and complex



Monolithic -> Microservice Transformation
● Scalability is one of the primary 

motivations for moving to a 
microservice architecture.

● First breakdown the Monolithic 
applications in multiple segments

● Never jump directly to the Service 
Oriented Architecture, rather try to 
split the application part by part

● Multi-tier Architecture can be a good 
approach to break down the 
Monolithic applications



Strategies to migrate Monolith to Microservice
Strategy 1 - Stop Digging:

● The Law of Holes says that whenever 
you are in a hole you should stop 
digging. This is great advice to follow 
when the monolithic application has 
become unmanageable

● Stop making the monolith bigger
● Put that new code in a standalone 

microservice.



Strategies to migrate Monolith to Microservice (Cont.)
Strategy 2 – Split Frontend and Backend:

● A strategy that shrinks the monolithic application is 
to split the presentation layer from the business 
logic and data access layers

● A typical enterprise application consists of at least 
three different types of components:

○ Presentation layer – Components that handle HTTP 
requests and implement either a (REST) API or an 
HTML‑based web UI. In an application that has a 
sophisticated user interface, the presentation tier is 
often a substantial body of code.

○ Business logic layer – Components that are the core 
of the application and implement the business rules.

○ Data‑access layer – Components that access 
infrastructure components such as databases and 
message brokers.

● There is usually a clean separation between the 
presentation logic on one side and the business and 
data‑access logic on the other



Strategies to migrate Monolith to Microservice (Cont.)
Strategy 3 – Extract Services:

● Prioritizing Which Modules to Convert 
into Services

● Figuring out which modules to convert 
first is often challenging. A good 
approach is to start with a few modules 
that are easy to extract

● It is also beneficial to extract modules 
that have resource requirements 
significantly different from those of the 
rest of the monolith

● After extracting a module, turns the 
module into a standalone service



Example
Traditional Ecommerce Website



Questions



Microservice Architecture



● Basic Understanding
● Characteristics
● How it works!
● Advantages
● Challenges
● When to use!
● When not to use!
● Docker



Microservice - Basic Understanding
Microservice architecture is an architectural style that structures an application 
as a collection of services that are -

● Highly maintainable and testable
● Loosely coupled
● Independently deployable
● Organized around business capabilities
● Each service is owned by a small team

The microservice architecture enables the rapid, frequent and reliable delivery 
of large, complex applications. It also enables an organization to evolve its 
technology stack.



Microservice - Characteristics
● Every service should function as an independent component and consider 

as a product
● Every service must be loosely coupled
● Decentralized Technology
● Decentralized Data Model
● Scale where necessary
● Design with fault tolerance
● Services are reusable
● Supports Agile development
● Deployable independently



Microservice - How it works!



Microservice - Advantages
● The microservices can be independently tested and deployed. The smaller 

the unit of deployment, the easier the deployment.
● They can be implemented in different languages and frameworks. For 

each microservice, best technology can be chosen for its particular use 
case.

● They can be managed by different teams. The boundary between 
microservices makes it easier to dedicate a team to one or several 
microservices.

● Team works only with specific services so don’t need to have the complete 
business knowledge of the overall system and dependencies

● Microservice is designed for failure. By having clear boundaries between 
services, it's easier to determine what to do if a service is down.



Microservice - Challenges
● Distribution: Distributed systems are harder to program, since remote 

calls are slow and are always at risk of failure.
● Eventual Consistency: Maintaining strong consistency is extremely 

difficult for a distributed system, which means everyone has to manage 
eventual consistency.

● Operational Complexity: Need a mature operations team to manage 
lots of services, which are being redeployed regularly

● Security: Microservices communicate over a network and In some 
circumstances, this can be seen as a security concern



Microservice - When to use!
● Business model is proven and is mature enough to adopt microservices
● Support for different variety of clients that includes desktop browsers, 

mobile browsers and native mobile applications.
● Monolithic application migration due to improvements needed in 

scalability, manageability, agility or speed of delivery.
● Independent business applications or services reused across multiple 

channels. For example, payment services, login services, flight search 
services, customer profile services, notification services, etc.



Microservice - When not to use!
● Microservices are solutions to complex concerns and if the business 

doesn’t have complex issues, consider that there is no system in place to 
handle the complexities of microservices.

● Using microservices can prove to offer contrary consequences if the team 
size is not good enough to handle the tasks involved. This will only result 
in the delay of delivery.

● Implementing microservices for the sake of it can be hampering as well. If 
the application does not require to be broken down into microservices, 
does not require to apply microservice. There is no absolute necessity 
that all applications should be broken down to microservices. There are 
those that are simple by their nature and functionality.



Docker & The Rise of Microservices
● Docker is the world's leading software 

containerization platform.
● It encapsulates the microservice into 

what we call as Docker container which 
can then be independently maintained 
and deployed.

● Each of these containers will be 
responsible for one specific business 
functionality



Docker & The Rise of Microservices
Docker architecture

The Docker architecture is broken in three 
different components and are all needed to 
set up the Docker environment:

● Docker Client: Communicates with the Docker 
host by sending it a CLI command that Docker 
can understand.

● Docker Host: This platform executes the 
request from the CLI Docker Client; the 
platform can be on your computer or in the 
cloud.

● Docker Registry: Stores Docker images.

Microservices orchestration

Docker has three tools for microservices orchestration:

● Docker Machine: You can ask any cloud vendor for a 
Docker Machine instance. You can provide them a file 
and say I need this container, they will help you set 
up a Docker daemon, and you’ll be running the 
command line as if you’re somewhere on the cloud.

● Docker Composer: You would need it where you 
have one or more containers that support one use 
case. It allows you to define all your images and 
containers. It defines various ports or allies where 
containers can talk to each other. And using docker 
machine you can run this on the cloud.

● Docker Swarm: Allows you to orchestrate on a much 
larger scale.



Serverless Architecture



● Microservice - Serverless
● How it works
● Why use serverless?
● When to Choose Serverless?
● Must have in Serverless Architecture
● Challenges



Microservice - Serverless
● Serverless architecture is a way 

to build and run applications 
and services without having to 
manage infrastructure.

● It is also known as Function as a 
Service(Faas).

● Fundamentally, its is about 
writing and running backend 
code without have to provision, 
scale, and maintain own server 
systems or own long-lived 
server applications.

● Focus on your application, not 
on the infrastructure



Serverless Architecture 
Sample for AWS



How it works
● Each Serverless function runs in its own container. 
● When a function is created, packages it into a new container and then 

executes that container on a multi-tenant cluster of machines managed 
by vendor service. 

● Before the functions start running, each function's container is allocated 
its necessary RAM and CPU capacity.

● When a function is started in response to an event, there may be a small 
amount of latency between the event and when the function run. It is 
called cold start time.



Why use Serverless?
Reduced Operational 
Responsibilities

Pay for value

Increased Agility and 
Innovation

Automated high 
availability

Built in Fault Tolerance

Flexible scaling



When to Choose 
Serverless?

● Unpredictable user base
● HIgher availability
● Automatic and Dynamic 

scaling
● Lower runtime costs
● Consistent performance
● Services that don't need to 

run all the time
● High latency background 

tasks like multimedia or data 
processing

● Architecture is service 
oriented 



Must have in Serverless Architecture
● API and Microservices Design
● Event-driven Architectures and 

Asynchronous Messaging Patterns
● Lambda Computing Environment 

and Programming Model
● Serverless Identity Management, 

Authentication, and Authorization
● End-to-End Security Techniques
● Application Observability with 

Comprehensive Logging, Metrics, 
and Tracing



Challenges
● Less control over the infrastructures and system.
● Less opportunity of attaching other operational tools.
● Need to deploy every function separately.
● Limited runtime.



Example
Single Sign On (SSO)



Questions



Hands on experiences with Docker



Microservice Prototype

https://github.com/raisul-bs23/django-microservice-prototype.git

https://github.com/raisul-bs23/django-microservice-prototype.git


Real Life Applications



WiNiT - Microservice Based on Serverless Arch.



WiNiT - AWS Services



WiNiT - Mobile Backend Architecture



WiNiT - Web Portal Backend Architecture



WiNiT - Some Statistics (January, 2021)
API Gateway Requests 298 M Requests

CloudFront Data Transfer Out 343 GB

CloudWatch Logs 104 GB

S3 Data Requests 150 M Requests

DynamoDB 3 B ReadRequestUnits
435 M WriteRequestUnits

Lambda 300 M Requests
50 M Lambda-GB-Second

Simple Queue Service 4 M Requests



TEQ - Transformation

● Started with the 
Monolithic Architecture 
in 2016

● Started to split 
components in Multiple 
Modules and Layers in 
mid 2017

● Started the migration in 
Service Oriented 
Architectures from Q4 
2020.

● Plan to start dividing 
services into more 
particles from Q2 2021 



References
● https://docs.aws.amazon.com/lambda/latest/dg/welcome.html 
● https://www.serverless.com/aws-lambda
● https://martinfowler.com/microservices/
● https://microservices.io/
● https://subscription.packtpub.com/book/application_development/9781788624

060
● https://www.nginx.com/blog/refactoring-a-monolith-into-microservices/
● https://en.wikipedia.org/wiki/Law_of_holes
● https://developer.ibm.com/articles/breaking-down-docker-and-microservices/
● https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.so

rt-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://www.serverless.com/aws-lambda#how-does-aws-lambda-work
https://martinfowler.com/microservices/
https://microservices.io/
https://subscription.packtpub.com/book/application_development/9781788624060
https://subscription.packtpub.com/book/application_development/9781788624060
https://www.nginx.com/blog/refactoring-a-monolith-into-microservices/
https://en.wikipedia.org/wiki/Law_of_holes
https://developer.ibm.com/articles/breaking-down-docker-and-microservices/
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc


Questions



Thank you


