
Processes
Moumita Asad

IIT, DU



Introduction: Process

► a program that is under execution

► forms a building block in distributed systems

2



Introduction: Thread

► a path of execution within a process 

► a process can contain multiple threads

► a thread executes its own piece of code, independently 

from other threads but no attempt is made to achieve a 

high degree of concurrency transparency

3



Thread Usage in 

Nondistributed Systems

► Problem: Consider a spreadsheet program that

maintains the dependencies between different cells

(whenever a cell is modified, all dependent cells are

automatically updated)

► When a user changes the value in a single cell, such a

modification can trigger a large series of computations

► If there is only a single thread of control, computation

cannot proceed while the program is waiting for input

► Likewise, it is not easy to provide input while

dependencies are being calculated

4



Thread Usage in 

Nondistributed Systems

► Problem: Consider a spreadsheet program that

maintains the dependencies between different cells

(whenever a cell is modified, all dependent cells are

automatically updated)

► Solution: have at least two threads of control

► one for handling interaction with the user

► one for updating the spreadsheet

5



Threads in Distributed 

Systems

► An important property of threads is that they can 

provide a convenient means of allowing blocking system 

calls without blocking the entire process in which the 

thread is running

► This property makes threads particularly attractive to 

use in distributed systems as it makes it much easier to 

express communication in the form of maintaining 

multiple logical connections at the same time

6



Multithreaded Clients

► To establish a high degree of distribution transparency, 

distributed systems that operate in wide-area networks 

may need to hide long interprocess message 

propagation times

► The usual way to hide communication latencies is to 

initiate communication and immediately proceed with 

something else

► Example: Web browsers

7



Multithreaded Clients

► Consider a Web document consists of an HTML file 

containing plain text along with a collection of images, 

icons, etc

► To fetch each element of a Web document, the browser 

has to set up a TCP-IP connection, read the incoming 

data, and pass it to a display component

► Setting up a connection as well as reading incoming 

data are inherently blocking operations

► When dealing with long distance communication, the 

time for each operation to complete may be relatively 

long

8



Multithreaded Clients

► A Web browser often starts with fetching the HTML page 

and subsequently displays it

► To hide communication latencies as much as possible, 

some browsers start displaying data while it is still 

coming in 

► While the text is made available to the user, including 

the facilities for scrolling and such, the browser 

continues with fetching other files that make up the 

page, such as the images. The latter are displayed as 

they are brought in

► The user need thus not wait until all the components of 

the entire page are fetched before the page is made 

available
9



Multithreaded Clients

► Developing the browser as a multithreaded client 

simplifies matters considerably

► As soon as the main HTML file has been fetched, 

separate threads can be activated to take care of 

fetching the other parts

► Each thread sets up a separate connection to the server 

and pulls in the data. Setting up a connection and 

reading data from the server can be programmed using 

the standard (blocking) system calls, assuming that a 

blocking call does not suspend the entire process

► Meanwhile, the user notices only delays in the display of 

images and such, but can otherwise browse through the 

document
10



Multithreaded Clients

► If the server is heavily loaded, or just plain slow, no 

real performance improvements will be noticed 

compared to pulling in the files that make up the page 

strictly one after the other

► In many cases, Web servers have been replicated across 

multiple machines, where each server provides exactly 

the same set of Web documents

► The replicated servers are located at the same site, and 

are known under the same name 

► When a request for a Web page comes in, the request is 

forwarded to one of the servers, often using a round-

robin strategy or some other load-balancing technique

► It allows data to be transferred in parallel 11



Multithreaded Servers

► Consider the organization of a file server that 

occasionally has to block waiting for the disk

► The file server normally waits for an incoming request 

for a file operation, subsequently carries out the 

request, and then sends back the reply

12



Multithreaded Servers

► Here one thread, the dispatcher, reads incoming 

requests for a file operation

► The requests are sent by clients to a well-known end 

point for this server. After examining the request, the 

server chooses an idle (i.e., blocked) worker thread and 

hands it the request

► The worker proceeds by performing a blocking read on 

the local file system, which may cause the thread to be 

suspended until the data are fetched from disk.

► If the thread is suspended, another thread is selected to 

be executed.

13


