Intensity Transformation and
Spatial Filtering



Spatial Domain vs. Transform Domain

Spatial domain

image plane itself, directly process the intensity values of
the image plane

Transform domain

process the transform coefficients, not directly process the
intensity values of the image plane
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Spatial Domain Process

g(x,y)=TLT(X,¥)])

f (X,Y):Input image

g(X, y) :output Image

T :an operator on f defined over
a neighborhood of point (X, y)



Origin ™\

Spatial Domain Process

Image f

— (x,y)

3 X 3 neighborhood of (x, y)
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Spatial domain

FIGURE 3.1

A3 X3
neighborhood
about a point
(x,y)in an image
in the spatial
domain. The
neighborhood is
moved from pixel
to pixel in the
image to generate
an output image.



Spatial Domain Process

Intensity transformation function
S=T(r)

s =T(r) s=T(r) a b

FIGURE 3.2
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Some Basic Intensity Transformation

3L /4

Lj2

Output intensity level, s

L/4
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Functions

Negative

nth root

Log

Idei/
I

nth power

Inverse log

L /4 )

Input intensity level, r

3L /4

L—-1

FIGURE 3.3 Some
basic intensity
transformation
functions. All
curves were
scaled to fit in the
range shown.



Image Negatives

L—-1
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| Image negatives
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Example: Image Negatives

ab

FIGURE 3.4

(a) Original digital
mammogram.

(b) Negative
image obtained
using the negative
transformation

in Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)

Small
lesion



Log Transformations

L-1 -
' Log Transformations
Negative
nth root S — C Iog(1+ r)
3L/4 — B
?%' Log
E‘ nth power
£ LpE a
S
L/4 B
Identity Inverse log
0 /4-—’/I |

v L/4 L/2 3L /4 L—1

Input intensity level, r
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Example: Log Transformations

ab

FIGURE 3.5

(a) Fourier
spectrum.

(b) Result of
applying the log
transformation in
Eq. (3.2-2) with
c=1.

8/30/2023 10
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Power-Law (Gamma) Transformations

Output intensity level, s

L-1

3L /4

L/2

L/4

L/4

Input intensity level, r

S=cCr’

FIGURE 3.6 Plots
of the equation

s = cr’ for
various values of
v (¢ = 1in all
cases). All curves
were scaled to fit
in the range
shown.
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Example: Gamma

ab
cd

FIGURE 3.8

(a) Magnetic
resonance

image (MRI) of a
fractured human
spine.

(b)-(d) Results of
applying the
transformation in
Eq. (3.2-3) with

Transformations

¢ =1and
v = 0.6,04,and
0.3, respectively.

(Original image
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University

Medical Center.) o
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Example: Gamma Transformations

FIGURE 3.9

(a) Aerial image.
(b)—(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ = 1and

v = 3.0, 4.0,and
5.0, respectively.
(Original image
for this example

courtesy of
NASA.)
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Piecewise-Linear Transformations

Contrast Stretching

— Expands the range of intensity levels in an image so that it spans
the full intensity range of the recording medium or display device.

What is contrast?

Contrast is the difference between the maximum and minimum pixel
intensity.

Intensity-level Slicing

— Highlighting a specific range of intensities in an image often is of
interest.

8/30/2023 14
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ab
e vl

FIGURE 3.10
Contrast stretching.
(a) Form of
transformation
function. (b) A
low-contrast image.
(c) Result of
contrast stretching.
(d) Result of
thresholding.
(Original image
courtesy of Dr.
Roger Heady,
Research School of
Biological Sciences,
Australian National
University,
Canberra,
Australia.)
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ab L—1
FIGURE 3.11 (a) This

Highlight the major
blood vessels and
study the shape of the
flow of the contrast
medium (to detect
blockages, etc.)

Measuring the actual
flow of the contrast

—— medium as a function

FIGURE 3.12 (a) Aortic angiog : : : mation of the type illustrated in Fig.
3.11(a), with the range of inte _Of time in a series of end of the gray scale. (¢) Result of

using the transformation in Fig 1MaAges lack, so that grays in the area of the 16
blood vessels and kidneys were p youT OTTZITa agewourtesy of Dr. Thomas R. Gest, University of

Michigan Medical School.)



Bit-plane Slicing

One 8-bit byte 7 Bit plane 8
/ (most significant)
prd
pra

|
:; I Bit plane 1
. (least significant)
// |
P

FIGURE 3.13
Bit-plane
representation of
an 8-bit image.
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Bit-plane Slicing

abc
e L
o il i
FIGURE 3.14 (a) An 8-bit gray-scale image of size 500 X 1192 pixels. (b) through (i) Bit planes 1 through 8,

with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.

NEW MEXICO TECH

SCIENCE- ENGINEERIMNG - RESEARCH - UNIVERSITY




Bit-plane Slicing

Q
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ablie

FIGURE 3.15 Images reconstructed using (a) bit planes 8 and 7; (b) bit planes 8, 7, and 6; and (c) bit planes 8,
7,6, and 5. Compare (c) with Fig. 3.14(a).
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Histogram Processing

Histogram Equalization
Histogram Matching
Local Histogram Processing

Using Histogram Statistics for Image Enhancement

8/30/2023
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Histogram Processing

Histogram h(r ) =n,
r is the k" intensity value
n, IS the number of pixels in the image with intensity r,

nk
MN
n, : the number of pixels in the image of

Normalized histogram  p(r,) =

size M x N with Intensity r,

8/30/2023 21
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Histogram of dark image
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Histogram Equalization

The intensity levels in an image may be viewed as
random variables in the interval [0, L-1].
Let p.(r) and p,(s) denote the probability density

function (PDF) of random variables r and s.
p+(r) ps(s)

A

— Eq. (3.3-4) —~

L -1

0 L—1 0 I -1

ab

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying the transformation in
8/302023 Eq. (3.3-4) to all intensity levels, r. The resulting intensities, s, have a uniform PDEF, 23

independently of the form of the PDF of the r’s.
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Histogram Equalization

Discrete values:

s =T(5)=(L-D Y p, (1)

**** Please see the referenced book for the proof

24



Example: Histogram Equalization

Suppose that a 3-bit image (L=8) of size 64 x 64 pixels (MN = 4096)
has the intensity distribution shown in following table.

Get the histogram equalization transformation function and give the
p.(s,) for each s,.

Ty ny pr(r L) — ”fi/ MN
7o = 0 790 0.19
rn=1 1023 0.25
rn =2 850 0.21
r; =3 656 0.16
ry, = 4 329 0.08
rs=5 245 0.06
re = 6 122 0.03
ry=1 81 0.02




Example: Histogram Equalization

Tk N pAry) = ng/MN
ro=20 790 0.19
r =1 1023 0.25
rn =2 850 0.21
ry=3 656 0.16
n=4 329 0.08
rs =5 245 0.06
rs =6 122 0.03
=1 81 0.02
0
So=T(r,) =7, p,(r;) =7%0.19=1.33 51

j =0

s, =T(r)= 7Zpr(r) 7%x(0.19+0.25)=3.08 — 3

S, —455 — 5 S, =567/ —>6
s, =6.23 —6 Ss =6.65 —7
S =6.80 — 7/ s,=7.00 -7

8/30/2023
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Example: Histogram Equalization

pr(rk) Sk
[
.2:'& o . ,
204 | °
541 | 2+ 5
T 42 X T() |
10 + | . 2.8 + !
STl T e L4 |
| A T —t—t—t———t> 1,
0123 456 7 0123456 7
abc

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original
histogram. (b) Transformation function. (c) Equalized histogram.
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FIGURE 3.20 Left column: images from Flg 3.16. Center column: corresponding histogram-
equalized images. Right column: histograms of the images in the center column.
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Question

Is histogram equalization always good?

NO

aind B

NEW MEXICO TECH
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Histogram Matching

Histogram matching (histogram specification)
— generate a processed image that has a specified histogram

Let p,(r) and p, (z) denote the continous probability
density functions of the variables r and z. p, (z) Is the
specified probability density function.

Let s be the random variable with the probability

s=T(r)=(L=-D] p,(W)dw
Define a random variable z with the probability

G(2) =(L-D] p,()dt =

8/30/2023 30
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Local Histogram Processing

Define a neighborhood and move its center from pixel to
pixel

At each location, the histogram of the points in the
neighborhood is computed. Either histogram equalization or
histogram specification transformation function is obtained

Map the intensity of the pixel centered in the neighborhood

Move to the next location and repeat the procedure

31



Local Histogram Processing: Example

ab e

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local
histogram equalization applied to (a), using a neighborhood of size 3 X 3.

8/30/2023 32



Spatial Filtering

A spatial filter (also known as spatial masks, kernels,
templates, and windows) consists of (a) a neighborhood,
and (b) a predefined operation

Filtering creates a new pixel with coordinates equal to
the coordinates of the center of the neighbourhood

Linear spatial filtering of an image of size Mx/N with a filter
of size mxn is given by the expression

g(x,y)= Za: > w(s,t) f(x+s,y+t)

s=—at=-b

8/30/2023 33
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inmge origin

Spatial Filtering

Image

Image pixels —/
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Filter coefficients
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fix+1.y)

flx+ 1, y+ 1)

Pixels of image
section under filter
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Spatial Correlation

The correlation of a filter w(x, y) of size mxn
with an image f (X, y), denoted as w(Xx, y)»f (X, y)

w(X, y) ¥ T (X, y) = Z Zw(s t) f (X+S,Yy+t)

S=—at=

8/30/2023
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Spatial Convolution

The convolution of a filter w(x, y) of size mxn
with an image f (X, y), denoted as w(x, y)xf (X, y)

w(X, y) % f (X, y)—ZZW(s t)f(x—s,y—t)

S=—at=

8/30/2023
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Ve Origin

8/30/2C

0
0
0
0
0

]
]

0
]

Jfx,y)
()
()
()
0
()

(a)
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FIGURE 3.30
Correlation
(middle row) and
convolution (last
row) of a 2-D
filter with a 2-D
discrete, unit
impulse. The Os
are shown in gray
to simplify visual
analysis.
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Smoothing Spatial Filters

Smoothing filters are used for blurring and for noise
reduction

Blurring is used in removal of small details and bridging of
small gaps in lines or curves

Smoothing spatial filters include linear filters and nonlinear
filters.

38



Spatial Smoothing Linear Filters

The general implementation for filtering an M x N image
with a weighted averaging filter of size mxn Is given

Za: Zblw(s,t) f(X+s,y+t)
g(x,y) ===

Z ZW(S t)

S=—at=

where m=2a+1 n=2b+1.

8/30/2023 39



Two Smoothing Averaging Filter Masks

8/30/2023

-3

(]

I~3

ab

FIGURE 3.32 Two
3 X 3 smoothing
(averaging) filter
masks. The
constant multipli-
er in front of each
mask is equal to 1
divided by the
sum of the values
of its coefficients,
as is required to
compute an
average.
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FIGURE 3.33 (a) Original image, of size 500 > 500 pixels. (b)—(f) Results of smoothing
with square averaging filter masks of sizes m = 3,5,9,15, and 35, respectively. The black
squares at the top are of sizes 3, 5,9, 15,25, 35, 45, and 55 pixels, respectively: their borders
are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels
wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25

pixels, and their borders are 15 pixels apart; their intensity levels range from 0% to 100%
black in increments of 20%. The background of the image is lﬂ%% black. The noisy
rectangles are of size 50 x 120 pixels.
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Example: Gross Representation of Objects

abc

FIGURE 3.34 (a) Image of size 528 X 485 pixels from the Hubble Space Telescope. (b) Image filtered with a
15 X 15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

8/30/2023 42



Order-statistic (Nonlinear) Filters

— Nonlinear

— Based on ordering (ranking) the pixels contained in the
filter mask

— Replacing the value of the center pixel with the value
determined by the ranking result

E.g., median filter, max filter, min filter

Median filters are popular. It can remove random noise, especially sa/t-and-

DPEepPper noise.

Max filters and min filters are popular in convolutional neural network

8/30/2023
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Example: Use of Median Filtering for Noise Reduction

abe

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with
a 3 X 3 averaging mask. (c) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr.
Joseph E. Pascente, Lixi, Inc.)
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Sharpening Spatial Filters

Foundation

Laplacian Operator
Unsharp Masking and Highboost Filtering

Using First-Order Derivatives for Nonlinear Image
Sharpening — The Gradient

45



Sharpening Spatial Filters: Foundation

The first-order derivative of a one-dimensional function f(x)
is the difference

ﬂ: f(x+1)— f(x)
OX

The second-order derivative of f(x) as the difference

azz =f(x+1)+ f(x-1)—-2f(x)
OX
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Intensity
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FIGURE 3.36
Illustration of the
first and second
derivatives of a
1-D digital
function
representing a
section of a
horizontal
intensity profile
from an image. In
(a) and (c) data
points are joined
by dashed lines as
a visualization aid.
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Sharpening Spatial Filters: Laplace Operator

The second-order isotropic derivative operator is the
Laplacian for a function (image) f(x,y)

2 2
V*f _9 I +8 Z
2 ox: oy
axz =f(x+Ly)+ f(x=-1,y)-2f(X,Y)
o f
PY: =f(x,y+)+ (X, y=-1D)-21(x,y)

Vif = f(x+1Ly)+ f(x=1Ly)+ f(x,y+1)+ f(x,y-1)
-41(x,Y)
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Sharpening Spatial Filters: Laplace Operator

ab
0 1 0 1 1 1 c d

FIGURE 3.37

(a) Filter mask used
1 —4 1 1 —8 1 to implement

Eq. (3.6-6).

(b) Mask used to

0 1 0 1 1 1 implement an
extension of this
equation that
includes the

0 -1 0 -1 -1 —1 :
diagonal terms.
(c) and (d) Two

1 4 _1 _1 3 _1 {j{ther implementa-
tions of the
Laplacian found
frequently in

0 -1 0 -1 -1 1

practice.
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Sharpening Spatial Filters: Laplace Operator

Image sharpening in the way of using the Laplacian:

g(x,y)=f(x,y)+c| VZE(xy)]
where,
f(x,Yy) Is Input image,
g(x,y) Is sharpenend images,
c=-1if V*f(x,y) corresponding to Fig. 3.37(a) or (b)
and ¢ =1 if either of the other two filters is used.
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a
b c
d e

FIGURE 3.38

(a) Blurred image
of the North Pole
of the moon.

(b) Laplacian
without scaling.
(c) Laplacian with
scaling. (d) Image
sharpened using
the mask in Fig.
3.37(a). (e) Result
of using the mask
in Fig. 3.37(b).
(Original image
courtesy of
NASA.)
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Unsharp Masking and Highboost Filtering

Unsharp masking

Sharpen images consists of subtracting an unsharp (smoothed)
version of an image from the original image

e.g., printing and publishing industry
Steps

1. Blur the original image

2. Subtract the blurred image from the original

3. Add the mask to the original

52



Unsharp Masking and Highboost Filtering

Let f(x,y) denote the blurred image, unsharp masking is

gmask (X’ y) = f (X1 y) _?(X! y)
Then add a weighted portion of the mask back to the original
g(x,y)=1(X,y) +k*gpq (x,y) k=0

when k >1, the process is referred to as highboost filtering.
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/Ol'iginal signal

e
Blurred signal
il

Unsharp mask

/\

N/

Sharpened signal

Unsharp Masking: Demo

e o o

FIGURE 3.39 1-D
illustration of the
mechanics of
unsharp masking.
(a) Original
signal. (b) Blurred
signal with
original shown
dashed for refere-
nce. (c) Unsharp
mask. (d) Sharp-
ened signal,
obtained by
adding (c) to (a).
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Unsharp Masking and Highboost Filtering: Example

D | P-X E ::GURE 3.40

(a) Original
TS | image.
U H EJ‘§<E (b) Result of

blurring with a
Gaussian filter.

oo o

(c) Unsharp
mask. (d) Result
of using unsharp
masking.

(e) Result of
using highboost
filtering.




Image Sharpening based on First-Order Derivatives

For function f (X, y), the gradient of f at coordinates (x, y)
IS defined as

i

B 9% | | ox
Vf:grad(f)z_gy_— of
| Oy _

The magnitude of vector Vf, denoted as M (X, y)

Gradient Image M (X, y) = mMag (Vf) — \/gxz T gy2
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Image Sharpening based on First-Order Derivatives

The magnitude of vector Vf, denoted as M (X, y)
M (x, y) =mag(Vf) =./g,” +9,°

M, y)~9,|+]g,

M(X, y) =l zg —Z5 | +] 25 — 7,

8/30/2023 57



Image Sharpening based on First-Order Derivatives

Roberts Cross-gradient Operators
M(X,y) ~| Ly = Ls |+ Zs_zal

Sobel Operators
M(X,Yy) ~| (27 +2Z3 + Z9) - (21 +22, + 23) |

2y 14 | 43 +|(z,+ 22, +2,) — (2, + 22, + 7,) |
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Image Sharpening

8/30/2023

<1 ) 3

T4 <5 <6

27 5 Zy
-1 0 0 -1
0 1 1 0
-1 -2 -1 —1 0
0 0 0 -2 0
1 2 1 -1 0

hased on First-Order Derivatives

a
b c
de

FIGURE 3.41

A 3 X 3region of
an image (the zs
are intensity
values).

(b)—(c) Roberts
cross gradient
operators.
(d)-(e) Sobel
operators. All the
mask coefficients
sum to zero, as
expected of a
derivative
operator.
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Example

ab

FIGURE 3.42

(a) Optical image
of contact lens
(note defects on
the boundary at 4
and 5 o’clock).
(b) Sobel
gradient.
(Original image
courtesy of Pete
Sites, Perceptics

Corporation.)
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Example:

Combining
Spatial
Enhancement
Methods

Goal:

Enhance the
image by
sharpening it
and by bringing
out more of the
skeletal detail

8/30/2023

ab
c d

FIGURE 3.43

(a) Image of
whole body bone
scan.

(b) Laplacian of
(a).(c) Sharpened
image obtained by
adding (a) and (b).
(d) Sobel gradient
of (a).
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Example:

Combining
Spatial
Enhancement
Methods

Goal:

Enhance the
image by
sharpening it
and by bringing
out more of the
skeletal detail

8/30/2023

e f
g h

FIGURE 3.43
(Continued)

(e) Sobel image
smoothed with a
S5 X 5 averaging
filter. (f) Mask
image formed by
the product of (c)
and (e).

(g) Sharpened
image obtained
by the sum of (a)
and (f). (h) Final
result obtained by
applying a power-
law transformation
to (g). Compare
(¢) and (h) with
(a). (Original
image courtesy of
G.E. Medical
Systems.)
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