A Step by Step Backpropagation Example

The Forward Pass

Here’s how we calculate the total net input for /i

netp, = wy *x 1, + Wy x 15 + by * 1
netp; = 0.15%0.05+02%x0.14+0.35%x1=0.3775
We then squash it using the logistic function to get the output of /i:

outy = Tt = b5 = 0.593260992

Carrying out the same process for /i, we get:

outyy = 0.596884378

We repeat this process for the output layer neurons, using the output from the

hidden layer neurons as inputs.

Here's the output for 01:

nety = ws * outy + we * outyy + by % 1

nety, = 0.4 % 0.59326 « 1 = 1.105905967

out,) =

Calculating the Total Error

We can now calculate the error for each output neuron using the squared error

function and sum them to get the total error:

Etotar = . 3(target — output)?

Some sources refer to the target as the ideal and the output as the actual.

The% is included so that exponent is cancelled when we differentiate later
on. The result is eventually multiplied by a learning rate anyway so it

doesn’t matter that we introduce a constant here.

For example, the target output for 01 is 0.01 but the neural network output

0.75136507, therefore its error is:

2 .
- = l){) |

0.01 — 0.75136507)* = 0.274811083

S (target, — outy)

E, =
Repeating this process for 02 (remembering that the target is 0.99) we get:

E,, = 0.023560026

The total error for the neural network is the sum of these errors:

The Backwards Pass

Our goal with backpropagation is to update each
of the weights in the network so that they cause
the actual output to be closer the target output,
thereby minimizing the error for each output
neuron and the network as a whole.

Visually, here’s what we’re doing:

L Oout,1 OF,;
output " Onet,y
h1

oul:;z)ut E o = Y(target 54 - out,)?

Ewtal = Eo1 + Eoz

Output Layer

Consider wWs. We want to know how much a change in W5 affects the total error,

AEotal

aka dws

9Piaal js read as “the partial derivative of Fi 011 With respect to ws™. You
dws ota

can also say “the gradient with respect to Ws"

By applying the chain rule we know that:

OFotai OFEiotal dout 1 onet 1

dws, doul dnet 1 dwy

Visually, here’s what we’re doing:

output
h1

oul:;z)ut E o = Y(target 54 - out,)?

Ewtal = Eo1 + Eoz

We need to figure out each piece in this equation.

First, how much does the total error change with respect to the output?

5 . \ 2 /
Eiotar = 5(target,; — outy)* + L arget o —

Ltarget,, —out,))> 1% —1+0

(0.01 — 0.75136507) = 0.74136507

Visually, here’s what we’re doing:

output
h1

oul:gut E o = Y(target o1 - out,,)?

Etota =Eo1 +Eo2

Next, how much does the output of 01 change with respect to its total net input?

The partial derivative of the logistic function is the output multiplied by 1 minus

the output:

H'HYLUL =

| +¢

Doutol — oyt (1 — outy) = 0.75136507(1 — 0.75136507) = 0.186815602

dInet,q

Visually, here’s what we’re doing:

output
h1

oul:;z)ut E o = Y(target 54 - out,)?

Ewtal = Eo1 + Eoz

Finally, how much does the total net input of o1 change with respect to W5?

H["]‘l‘__J = g * “'”ff.'l F We * ‘-‘-":';-?-l},-'.;-'f } |I.j._} *

= 1 * outy, * n'_'-:.,l_l "L 0+ 0= outp = 0.5¢

Updating the Weights

To decrease the error, we then subtract this value from the current weight

(optionally multiplied by some learning rate, eta, which we’ll set to 0.5):

L = 0.4 —0.5%0.082167041 = 0.35891648

Some sources use « (alpha) to represent the learning rate, others use 7}

(eta), and others even use € (epsilon).

We can repeat this process to get the new weights Ws, w7, and Wg:
wg = 0.408666186
w; = 0.511301270
wg = 0.561370121

We perform the actual updates in the neural network after we have the new

weights leading into the hidden layer neurons (ie, we use the original weights,

not the updated weightis, when we continue the backpropagation algorithm
below).

Hidden Layer

Next, we’ll continue the backwards pass by calculating new values for 1y, Ws,

ws, and Wy.

Big picture, here’s what we need to figure out:

Etta =Eo1+*Eo2

Starting with

dEq .
Mveity g~

.. 'I using values we calculated earlier:

We can calculate 5—

ol — (),74136507 % 0.186815602 = 0.138498562
tol

;- is equal to ws:

idovagf

& ot + Wg #* [.'r|'|'.'|||l_] -+ IJ,-_| £ |

(). 410)

Etotal =Eo1 +Eoz

0.138498562 * 0.40 = 0.055399425

. S
Following the same process for +— ~, we get:

92— _().0019049119

oAl

Therefore:

(0.055399425 + —0.019049119 0.036350306

L and then &2 for each

dnety Shay

Now that we have

al we need to figure out

weight:

oty 0.59326999/(1 (0.59326999) = 0.241300709

We calculate the partial derivative of the total net input to /i, with respect to
'y the same as we did for the output neuron:

Etotal =Eo1 +Eoz

Putting it all together:

— tal — ().036350306 = 0.241300709 * 0.05 = 0.000438568

0.15 — 0.5 = 0000438568 0.149780716

Repeating this for wo, w3, and w;

(0.19956143

0.24975114 Etotal =Eo1 +Eoz

().29950229

When we fed forward the 0.05 and 0.1 inputs originally, the error on
the network was 0.298371109.

It might not seem like much, but after repeating this process 10,000
times, for example, the error plummets to 0.0000351085.

ACKNOWLEDGEMENTS

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

