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❑ Suppose our image dimensions are 256 * 256 

❑ Neural network input: 256 * 256 * 3 = 196,608 features in total. 
(That’s a lot of features!) 

❑ From these 196,608 features, answer- is there a cat in the 
picture?

❑ 196,908 features means 196,908 + 1 = 196,909 parameters in 
one neuron.

❑ Neuron first takes some linear combination of the input 
features before applying an activation function.















❑ There were too many features and therefore too many parameters. We’d
need 256 * 256 * 3 + 1 = 196,609 parameters for each neuron. If we split
this into four different quadrants and use the exact same parameters for
all four quadrants, we only need 128 * 128 * 3 + 1 = 49,153 parameters —
a reduction by almost four times!

❑ It doesn’t matter where the cat is in the image, all it matters is that there
is a cat in the image. By using the same neuron for recognizing a cat in all
four quadrants, we address this issue since the ‘cat-recognizing neuron’
should tell us which quadrant has a cat!

What does this algorithm do in terms of addressing our 

earlier concerns?









QUESTION: Suppose we have an image of input size 256 * 256 * 3. We apply
a conv layer with filter size 3 * 3, stride 1, and depth 64.

➢ How many parameters do we have in our conv layer?
➢ What are the output dimensions of this conv layer?



Answer:

Number of parameters
We work out the case for depth = 1, since that’s just one neuron applied
throughout. This neuron takes in 3 * 3 * 3 (filter size * input channels)
features, and so the number of parameters for this one neuron are 3 * 3 * 3 +
1 = 28. We know that depth = 64, meaning there are 64 such neurons. This
gives us a total of 28 * 64 = 1,792 parameters.



Answer:
Output dimensions
Let’s think of it in the dimension of width first. We have a row of 256 pixels
in our original input image. At the start, the center of our filter (what the
neuron takes as input) will be at pixel 2, since we have a 3 * 3 filter. Thus,
since the leftmost side of the filter will be at pixel 1, the center of the filter
will be at pixel 2.

This filter moves rightwards by 1 pixel at each time to apply the neuron(s).
At the end of all our steps, the center of our filter will be at pixel 255, again
because we have a 3 * 3 filter (so pixel 256 will be taken up by the rightmost
side of the filter).

So given that the center of our filter starts at pixel 2 and ends at 255 while
moving 1 pixel each step, the math suggests that we’ve applied the neuron
254 times across the width. Similarly, we’ve applied the neuron 254 times
across the height. And since we have 64 neurons doing that (depth = 64),
our output dimensions are 254 * 254 * 64.





Step 4 & 5
Pooling



❑ The pooling layer applies to each individual depth channel separately.

❑ That is, the max-pooling operation does not take the maximum across the 

different depths; it only takes the maximum in a single depth channel.

❑ This is unlike the conv layer, which combines inputs from all the depth 

channels. 

❑ This also means that the depth size of our output layer does not and 

cannot change, unlike the conv layer where the output depth might be 

different from input depth.

❑ The purpose of the pooling layer, ultimately, is to reduce the spatial size 

(width and height) of the layers and it does not touch on the depth at all. 

❑ This reduces the number of parameters (and thus computation) required 

in future layers after this pooling layer

Pooling Layer



QUESTION: Suppose after our first conv layer (with pooling), we have an
output dimension of 256 * 256 * 64. We now apply a max-pooling (with filter
size 2x2 and stride 2) operation to this.

➢ what are the output dimensions after the max pooling layer?

ANSWER: 128 * 128 * 64, since the max-pool operator reduces the
dimensions on the width and height by half, while leaving the depth
dimension unchanged.



Fully Connected 
Layer (FC)



❑ One important benchmark that is commonly used amongst researchers in
Computer Vision is this challenge called ImageNet Large Scale Visual
Recognition Challenge (ILSVRC).

❑ ImageNet refers to a huge database of images, and the challenge of
ILSVRC is to accurately classify an input image into 1,000 separate object
categories.

❑ One of the models that was hailed at the turning point in using deep
learning is AlexNet, which won the ILSVRC in 2012





➢ Why does stacking so many layers together work, and what is each layer 
really doing?

✓ In the first few layers, the neural
network tries to extract out some low-
level features. These first few layers
then combine in subsequent layers to
form more and more complex features,
and in the end, figure out what
represents objects like cats, dogs etc.

➢ Why did the neural network pick out those features in particular in the 
first layer? 

✓ It just figured out that these are the best parameters to characterize the 
first few layers; they simply produced the minimal loss.































































































































❑ Images are a 3-dimensional array of features: each pixel in the 2-D space contains three
numbers from 0–255 corresponding to the Red, Green and Blue channels.

❑ Often, image data contains a lot of input features. A layer common in CNNs in the Conv
layer, which is defined by the filter size, stride, depth and padding.

❑ The Conv layer uses the same parameters and applies the same neuron(s) across different
regions of the image, thereby reducing the number of parameters.

❑ Another common layer in CNNs is the max-pooling layer, defined by the filter
size and stride, which reduces the spatial size by taking the maximum of the numbers within
its filter.

❑ We also typically use our traditional Fully-Connected layers at the end of our CNNs.

❑ AlexNet was a CNN which revolutionized the field of Deep Learning, and is built from conv
layers, max-pooling layers and FC layers.

❑ When many layers are put together, the earlier layers learn low-level features and combine
them in later layers for more complex representations.
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