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Convolutional Neural Networks




O Suppose our image dimensions are 256 * 256

d Neural network input: 256 * 256 * 3 = 196,608 features in total.
(That’s a lot of features!)

d From these 196,608 features, answer- is there a cat in the
picture?
d 196,908 features means 196,908 + 1 = 196,909 parameters in

one neuron.

O Neuron first takes some linear combination of the input
features before applying an activation function.



Summary: Images are a 3-dimensional array of features: each pixel in the
2-D space contains three numbers from 0-255 (inclusive) corresponding to

the Red, Green and Blue channels. Often, image data contains a lot of input

features.

Recall from above that the nature of images is such that:

1. There are a lot of ‘input features’, each corresponding to the R, G and B

value of each pixel, which thus requires a lot of parameters.

2. A cat in the top left or a cat in the bottom right of the image should give

similar outputs.



At this point, perhaps we can consider the following method. Suppose we

have an image we want to test:

An image of size 256x256 we wish to test whether there is a cat or not



Here is our algorithm:

Step 1: Split the image into four equal quadrants. Let’s take the image size
to originally be 256 * 256 * 3(channels). Then, each quadrant of the image

will have 128 * 128 * 3 features.




Step 2: Apply a neuron for the top-left quadrant to convert the 128 * 128 * 3
features into one single number. Just for intuition’s sake (although this is
not entirely accurate), let’s say this neuron is in charge of recognizing a cat
within the 128 * 128 * 3 features:

We apply the neuron which takes in the 128 * 128 * 3 features in the top-left quadrant



Step 3: Apply the exact same neuron for the top-right quadrant, the bottom-
left quadrant and the bottom-right quadrant. This is called parameter

sharing, since we use the exact same neuron for all four quadrants.

We apply the exact same neuron with the exact same parameters to all four quadrants of the image



Step 4: After applying that neuron for all four quadrants, we have four
different numbers (intuitively speaking, these numbers represent whether

there is a cat or not in each of the quadrants).

0.9 0.01

0.3 0.01

We get four different output numbers even though we apply the same neuron since the inputs are different
(although the parameters are the same)

Remember that we get four different numbers because we put different
input features, even though the function (and the parameters remain the

same).



What does this algorithm do in terms of addressing our
earlier concerns?

O There were too many features and therefore too many parameters. We’d
need 256 * 256 * 3 + 1 = 196,609 parameters for each neuron. If we split
this into four different quadrants and use the exact same parameters for
all four quadrants, we only need 128 * 128 * 3 + 1 = 49,153 parameters —
a reduction by almost four times!

O It doesn’t matter where the cat is in the image, all it matters is that there
is a cat in the image. By using the same neuron for recognizing a cat in all
four quadrants, we address this issue since the ‘cat-recognizing neuron’
should tell us which quadrant has a cat!



A Convolution layer has these few hyper-parameters that we can specify:

e Filter size. This corresponds to how many input features in the width
and height dimensions one neuron takes in. In our earlier example, the
filter size was 128 * 128 because each neuron looked at 128 * 128 pixels
spatially (width and height). We always assume that we do not split up
the image by its depth (or the channels), only the width and height. So if
we specify the filter size, the number of parameters in our neuron is
filter_width * filter_height * input_depth + 1. In our example, the
number of parameters are 128 * 128 * 3 + 1 = 49,153. Typically
though, a reasonable filter size might be more along the order of 3 * 3 or
5% 5.



e Stride. Sometimes a cat doesn’t appear nicely in the quadrants but might
appear somewhere in the middle of two (or more) quadrants. In that
case, perhaps we should apply our neuron not just exclusively in the four
quadrants, but we want to apply the neuron in overlapping regions as
well. Stride is simply how many pixels we want to move (towards the
right/down direction) when we apply the neuron again. In our earlier
example, we moved with stride 128 so we went to the next quadrant
immediately without visiting any overlapping region. More commonly,

we typically move with stride 1 or 2.

Stride

Filter width

A convolution layer with filter width, filter height and stride. Note that while the red and blue boxes look at

different areas, they use the same parameters.



* Depth. In our earlier example, we applied just one neuron to identify
whether there was a cat or not and share the parameters by applying the
same neuron in each quadrant. Suppose we wanted another neuron to
identify whether there was a dog or not as well. This neuron would be
applied in the same way as the cat-identifying neuron, but have different
parameters and therefore a different output for each quadrant. How
would this change our parameter and output size? Well, if we had two
such neurons, we’'d have (128 * 128 * 3 + 1) * 2 = 98,3006 parameters.
And at the end of Step 4, we’ll have 2 * 2 * 2 = 8 output numbers. The
first two terms, 2 * 2, refers to the height and width (of our four
quadrant areas) and the last term, 2, refers to the fact that we had two
different neurons applied to each quadrant. This last term is what we
call depth.



QUESTION: Suppose we have an image of input size 256 * 256 * 3. We apply
a conv layer with filter size 3 * 3, stride 1, and depth 64.

» How many parameters do we have in our conv layer?
» What are the output dimensions of this conv layer?



Answer:

Number of parameters

We work out the case for depth = 1, since that’s just one neuron applied
throughout. This neuron takes in 3 * 3 * 3 (filter size * input channels)
features, and so the number of parameters for this one neuron are 3 * 3 * 3 +
1 = 28. We know that depth = 64, meaning there are 64 such neurons. This
gives us a total of 28 * 64 = 1,792 parameters.




Answer:

Output dimensions

Let’s think of it in the dimension of width first. We have a row of 256 pixels
in our original input image. At the start, the center of our filter (what the
neuron takes as input) will be at pixel 2, since we have a 3 * 3 filter. Thus,
since the leftmost side of the filter will be at pixel 1, the center of the filter
will be at pixel 2.

This filter moves rightwards by 1 pixel at each time to apply the neuron(s).
At the end of all our steps, the center of our filter will be at pixel 255, again
because we have a 3 * 3 filter (so pixel 256 will be taken up by the rightmost
side of the filter).

So given that the center of our filter starts at pixel 2 and ends at 255 while
moving 1 pixel each step, the math suggests that we’ve applied the neuron
254 times across the width. Similarly, we’ve applied the neuron 254 times
across the height. And since we have 64 neurons doing that (depth = 64),
our output dimensions are 254 * 254 * 64.



At this point, you might be wondering: well, what if I wanted output
dimensions of 256 * 256 * 64 so that the height and width of our output
remains the same as the input dimensions? Here, [ will introduce a new

concept to deal with that exactly:

* Padding. Recall that the center of the 3x3 filter started at pixel 2
(instead of at pixel 1) and ended at pixel 255 (instead of at pixel 256).
To make the center the filter start at pixel 1, we can pad the image with a
border of ‘0’s, like this:

This is an example of padding a 3x3 image with a padding border of size 1. This ensures that the center of a

33 filter will begin at pixel 1 of the original image.



Step4 & 5
Pooling

More generally, a pooling layer has a filter size and a stride, similar to a
convolution layer. Let’s take the simple example of an input with depth 1
(i.e. it only has 1 depth slice). If we apply a max-pool with filter size 2x2

and stride 2, so there is no overlapping region, we get:

Single depth slice

Ji1l1]2]4
max pool with 2x2 filters
5|6|7|8 and stride 2
312|110 314
112]|13)| 4
» -

Max-pooling with filter 2 and stride 2. Note that a max-pool layer of filter 2 and stride 2 is commaonly seen in
many models today. Image taken from CS231N notes: http:/cs231n.github.io/convolutional-networks/

This max-pool seems very similar to a conv layer, except that there are no
parameters (since it just takes the maximum of the four numbers it sees
within the filter). When we introduce depth, however, we see more

differences between the pooling layer and the conv layer.



Pooling Layer

O The pooling layer applies to each individual depth channel separately.

O That is, the max-pooling operation does not take the maximum across the
different depths; it only takes the maximum in a single depth channel.

O This is unlike the conv layer, which combines inputs from all the depth
channels.

O This also means that the depth size of our output layer does not and
cannot change, unlike the conv layer where the output depth might be
different from input depth.

O The purpose of the pooling layer, ultimately, is to reduce the spatial size
(width and height) of the layers and it does not touch on the depth at all.

O This reduces the number of parameters (and thus computation) required
in future layers after this pooling layer



QUESTION: Suppose after our first conv layer (with pooling), we have an
output dimension of 256 * 256 * 64. We now apply a max-pooling (with filter
size 2x2 and stride 2) operation to this.

> what are the output dimensions after the max pooling layer?

ANSWER: 128 * 128 * 64, since the max-pool operator reduces the
dimensions on the width and height by half, while leaving the depth
dimension unchanged.



Fully Connected
Layer (FC)

The last layer that commonly appears in CNNs is one that we've seen before
in earlier parts — and that is the Fully-Connected (FC) layer. The FC layer is
the same as our standard neural network — every neuron in the next layer

takes as input every neuron in the previous layer’s output. Hence, the name
Fully Connected, since all neurons in the next layer are always connected to
all the neurons in the previous layer. To show a familiar diagram we've seen

in Part 1a:
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Image taken from CS231N Notes (http://cs231n.github.io/neural-networks-1/)

We usually use FC layers at the very end of our CNNs. So when we reach
this stage, we can flatten the neurons into a one-dimensional array of
features. If the output of the previous layer was 7 * 7 * 5, we can flatten
them into a row of 7¥7%5 = 245 features as our input layer in the above

diagram. Then, we apply the hidden layers as per usual.



O One important benchmark that is commonly used amongst researchers in
Computer Vision is this challenge called ImageNet Large Scale Visual
Recognition Challenge (ILSVRC).

O ImageNet refers to a huge database of images, and the challenge of
ILSVRC is to accurately classify an input image into 1,000 separate object
categories.

O One of the models that was hailed at the turning point in using deep
learning is AlexNet, which won the ILSVRC in 2012



AlexNet's architecture can be summarized somewhat as follows:
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A simplistic view of the AlexNet Architecture, where some details have been omitted

As you can see, AlexNet is simply made out of the building blocks of:

Conv Layers (with ReLU acitvations)

Max Pool Layers

FC Layers

Softmax Layers



» Why does stacking so many layers together work, and what is each layer
really doing?

We can visualize some of the intermediate layers. This is a visualization of
the first conv layer of AlexNet:

v In the first few layers, the neural
network tries to extract out some low-
level features. These first few layers
then combine in subsequent layers to
form more and more complex features,
and in the end, figure out what
represents objects like cats, dogs etc.

A visualization of the first conv layer in AlexNet. Image taken from CS231N notes:
http://cs231n.github.io/understanding-cnn/

» Why did the neural network pick out those features in particular in the
first layer?

v' It just figured out that these are the best parameters to characterize the
first few layers; they simply produced the minimal loss.
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Step 1 — Convolution
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Step 1 - Convolution
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Step 1 - Convolution
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Step 1 - Convolution
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Step 1 - Convolution

Edge Enhance:
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Step 1 - Convolution

Edge Detect:
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Step 1 - Convolution
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Step 1 - Convolution
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Convolutional Neural Networks
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Step 2 - Max Pooling



Step 2 - Max Pooling

Feature Map



Step 2 - Max Pooling
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Step 2 - Max Pooling
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Step 2 - Max Pooling

Max Pooling

O | = | = | Ol O

o | | O | = | =
=IO
N = D o= S

= 1O | = |O]|O

Feature Map

Pooled Feature Map
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Step 2 - Max Pooling
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Step 2 - Max Pooling
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Step 2 - Max Pooling
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Convolutional Neural Networks
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Step 3 - Flattening



Step 3 - Flattening
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Step 3 - Flattening
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Step 3 - Flattenin
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Convolutional Neural Networks

STEP 1: Convolution
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Step 4 - Full Connection
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Step 4 - Full Connection
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Step 4 - Full Connection




Summary



Images are a 3-dimensional array of features: each pixel in the 2-D space contains three
numbers from 0—255 corresponding to the Red, Green and Blue channels.

Often, image data contains a lot of input features. A layer common in CNNs in the Conv
layer, which is defined by the filter size, stride, depth and padding.

The Conv layer uses the same parameters and applies the same neuron(s) across different
regions of the image, thereby reducing the number of parameters.

Another common layer in CNNs is the max-pooling layer, defined by the filter
size and stride, which reduces the spatial size by taking the maximum of the numbers within
its filter.

We also typically use our traditional Fully-Connected layers at the end of our CNNs.

AlexNet was a CNN which revolutionized the field of Deep Learning, and is built from conv
layers, max-pooling layers and FC layers.

When many layers are put together, the earlier layers learn low-level features and combine
them in later layers for more complex representations.
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