
Hierarchical and Density 

Based Clustering



 Clusters are created iteratively, using clusters
created in previous step

 Construction of a hierarchy of clusters
(dendrogram) merging clusters with minimum
distance

 Use distance matrix as clustering criteria.

 The Hierarchical method works by grouping data
objects(records) into a tree of clusters.

 Classified Further as

◼ Agglomerative Hierarchical Clustering

◼ Divisive Hierarchical Clustering

Hierarchical Clustering



Dendrogram

 Dendrogram: a tree data
structure which illustrates
hierarchical clustering
techniques.

 Each level shows clusters
for that level.

◼ Leaf – individual clusters

◼ Root – one cluster

 A cluster at level i is the
union of its children
clusters at level i+1.



Hierarchical Clustering

 Clusters are created in levels actually creating
sets of clusters at each level.

 Agglomerative
◼ Initially each item in its own cluster

◼ Iteratively clusters are merged together

◼ Bottom Up

 Divisive
◼ Initially all items in one cluster

◼ Large clusters are successively divided

◼ Top Down
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Distance Between Clusters

 Single Link: smallest distance between points

 Complete Link: largest distance between points
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Distance Between Clusters

 Average Link: average distance between points

 Centroid: distance between centroids

  ),( ),( , yxdavgjid
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Agglomerative Algorithm

 The agglomerative method is basically a bottom-up
approach which involves the following steps. An
implementation however may include some variation
of these steps
1. Allocate each point to a cluster of its own. Thus we start

with n clusters for n objects.
2. Create a distance matrix by computing distances between

all pairs of clusters either using, for example, the single-
link metric or the complete-link metric. Some other metric
may also be used. Sort these distances in ascending
order.

3. Find the two clusters that have the smallest distance
between them

4. Remove the pair of objects and merge them.
5. If there is only one cluster left then stop.
6. Compute all distances from the new cluster and update

the distance matrix after the merger and go to Step 3.



Agglomerative Algorithm

 Allocate each point to a cluster and compute the
distance matrix

 Show the half portion of the matrix



Agglomerative Algorithm

 Consider the following data.

Student Age Marks1 Marks2 Marks
3

S1 18 73 75 57

S2 18 79 85 75

S3 23 70 70 52

S4 20 55 55 55

S5 22 85 86 87

S6 19 91 90 89

S7 20 70 65 60

S8 21 53 56 59

S9 19 82 82 60

S10 47 75 76 77



Agglomerative Example

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 0

S2 34 0

S3 18 52 0

S4 42 76 36 0

S5 57 23 67 95 0

S6 66 32 82 106 15 0

S7 18 46 16 30 65 76 0

S8 44 74 40 8 91 104 28 0

S9 20 22 36 60 37 46 30 58 0

S10 52 44 60 90 55 70 60 86 58 0



Agglomerative Algorithm

 The smallest distance is 8 between S4 and S8.

 Combine them as cluster C1 and update the table
by putting the C1 into the place where S4 was.

 All distance except those with cluster C1 remain
unchanged.



Agglomerative Algorithm

Student Age Marks1 Marks2 Mark
s3

S1 18 73 75 57

S2 18 79 85 75

S3 23 70 70 52

C1 20.5 54 55.5 57

S5 22 85 86 87

S6 19 91 90 89

S7 20 70 65 60

S9 19 82 82 60

S10 47 75 76 77



Agglomerative Algorithm

S1 S2 S3 C1 S5 S6 S7 S9 S10

S1 0

S2 34 0

S3 18 52 0

C1 41 75 38 0

S5 57 23 67 93 0

S6 66 32 82 105 15 0

S7 18 46 16 29 65 76 0

S9 20 22 36 59 37 46 30 0

S10 52 44 60 88 55 70 60 58 0



Agglomerative Example

 The smallest distance is now 15 between 
S5 and S6.

 Combine and update the table.



Agglomerative Algorithm

Student Age Marks1 Marks2 Mark
s3

S1 18 73 75 57

S2 18 79 85 75

S3 23 70 70 52

C1 20.5 54 55.5 57

C2 20.5 88 88 88

S7 20 70 65 60

S9 19 82 82 60

S10 47 75 76 77



Agglomerative Algorithm

S1 S2 S3 C1 C2 S7 S9 S10

S1 0

S2 34 0

S3 18 52 0

C1 41 75 38 0

C2 61.5 27.5 74.5 97.5 0

S7 18 46 16 29 69.5 0

S9 20 22 36 59 41.5 30 0

S10 52 44 60 88 62.5 60 58 0



Agglomerative Example

 Merge S3 and S7 and put them as C3.

 Continue the process.



Agglomerative Example



 Let’s now see a simple example: a hierarchical clustering of 
distances in kilometers between some Italian cities. The 
method used is single-linkage.

 Single Link: smallest distance between points

 Input distance matrix (L = 0 for all the clusters):

Agglomerative Example



Agglomerative Algorithm

 The nearest pair of cities is MI and TO, at 
distance 138.

BA FI MI NA RM TO

BA 0

FI 662 0

MI 877 295 0

NA 255 468 754 0

RM 412 268 564 219 0

TO 996 400 138 869 669 0



Agglomerative Algorithm

 The level of the new cluster is L(MI/TO) = 138 and the new 
sequence number is m = 1.

 The distance from the compound object to another object is
equal to the shortest distance from any member of the
cluster to the outside object.



BA FI MI NA RM TO

BA 0

FI 662 0

MI 877 295 0

NA 255 468 754 0

RM 412 268 564 219 0

TO 996 400 138 869 669 0

Agglomerative Algorithm

 Dist(MI/TO, BA)=min{Dist(MI,BA), Dist(TO,BA)}

 Min{877, 996}

 877

877



BA FI MI NA RM TO

BA 0

FI 662 0

MI 877 295 0

NA 255 468 754 0

RM 412 268 564 219 0

TO 996 400 138 869 669 0

Agglomerative Algorithm

 Dist(MI/TO, FI)=min{Dist(MI,FI), Dist(TO,FI)}

 Min{295, 400}

 295

295



BA FI MI NA RM TO

BA 0

FI 662 0

MI 877 295 0

NA 255 468 754 0

RM 412 268 564 219 0

TO 996 400 138 869 669 0

Agglomerative Algorithm

 Dist(MI/TO, NA)=min{Dist(MI,NA), Dist(TO,NA)}

 Min{754, 869}

 754
754



BA FI MI NA RM TO

BA 0

FI 662 0

MI 877 295 0

NA 255 468 754 0

RM 412 268 564 219 0

TO 996 400 138 869 669 0

Agglomerative Algorithm

 Dist(MI/TO, RM)=min{Dist(MI,RM), Dist(TO,RM)}

 Min{564, 669}

 564
564



BA FI MI/TO NA RM

BA 0

FI 662 0

MI/TO 877 295 0

NA 255 468 754 0

RM 412 268 564 219 0

 After merging MI with TO we obtain 

the following matrix:

Agglomerative Example



BA FI MI/TO NA RM

BA 0

FI 662 0

MI/TO 877 295 0

NA 255 468 754 0

RM 412 268 564 219 0

 min d(i,j) = d(NA,RM) = 219 

 merge NA and RM into a new cluster called 
NA/RM,  L(NA/RM) = 219

 m = 2 

Agglomerative Example



BA FI MI/TO NA/RM

BA 0

FI 662 0

MI/TO 877 295 0

NA/RM 255 268 564 0

 After merging NA with RM we obtain 

the following matrix: 

Agglomerative Example



 min d(i,j) = d(BA,NA/RM) = 255 

 merge BA and NA/RM into a new cluster 
called BA/NA/RM 

 L(BA/NA/RM) = 255

 m = 3
BA FI MI/TO NA/RM

BA 0

FI 662 0

MI/TO 877 295 0

NA/RM 255 268 564 0

Agglomerative Example



BA/NA/RM FI MI/TO

BA/NA/RM 0

FI 268 0

MI/TO 564 295 0

 After merging BA with NA/RM we obtain 

the following matrix: 

Agglomerative Example



BA/NA/RM FI MI/TO

BA/NA/RM 0

FI 268 0

MI/TO 564 295 0

 min d(i,j) = d(BA/NA/RM,FI) = 268 

 merge BA/NA/RM and FI into a new 

cluster called BA/FI/NA/RM

 L(BA/FI/NA/RM) = 268

 m = 4

Agglomerative Example



BA/FI/NA/RM MI/TO

BA/FI/NA/RM 0 295

MI/TO 295 0

 After merging FI with BA/NA/RM we obtain 

the following matrix: 

Agglomerative Example



 Finally, we merge the last two clusters at
level 295.

 The process is summarized by the
following hierarchical tree:

Agglomerative Example



 Advantages:

◼ Is simple and outputs a hierarchy, a structure
that is more informative

◼ It does not require us to pre-specify the
number of clusters

 Disadvantages:

◼ Selection of merge or split points is critical as
once a group of objects is merged or split, it
will operate on the newly generated clusters
and will not undo what was done previously.

◼ Thus merge or split decisions if not well chosen
may lead to low-quality clusters

Agglomerative Example



Divisive Hierarchical Clustering 

 A typical polythetic divisive method works like
the following
1. Decide on a method of measuring the distance between

two objects. Also decide a threshold distance.
2. Create a distance matrix by computing distances

between all pairs of object within the cluster. Sort
these distances in ascending order.

3. Find the two objects that have the largest distance
between them. They are the most dissimilar objects.

4. If the distance between the two objects is smaller than
the pre-specified threshold and there is no other cluster
that needs to be divided then stop, otherwise continue.

5. Use the pair of objects as seeds of a K-means method
to create two new clusters.

6. If there is only one object in each cluster then stop
otherwise continue with step 2.



Divisive Hierarchical Clustering 

 Consider the following data

Student Age Marks1 Marks2 Marks
3

S1 18 73 75 57

S2 18 79 85 75

S3 23 70 70 52

S4 20 55 55 55

S5 22 85 86 87

S6 19 91 90 89

S7 20 70 65 60

S8 21 53 56 59

S9 19 82 82 60

S10 47 75 76 77



Divisive Hierarchical Clustering 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 0

S2 34 0

S3 18 52 0

S4 42 76 36 0

S5 57 23 67 95 0

S6 66 32 82 106 15 0

S7 18 46 16 30 65 76 0

S8 44 74 40 8 91 104 28 0

S9 20 22 36 60 37 46 30 58 0

S10 52 44 60 90 55 70 60 86 58 0



Divisive Hierarchical Clustering 

 The largest distance is between S4 and S6

 Use the as new two seed 

 Use k-mean method two find new clusters

Cluster membership

Cluster-1 (S4):

Cluster-2 (S6):

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S4 42 76 36 0 95 106 30 8 60 90

S6 66 32 82 106 15 0 76 104 46 70



Divisive Hierarchical Clustering 

 Use k-mean method two find new clusters

 Dist(S4,S1)=42 and Dist(S6,S1)=66

 Minimum=42

 S1 belongs to Cluster 2.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S4 42 76 36 0 95 106 30 8 60 90

S6 66 32 82 106 15 0 76 104 46 70

Cluster membership

Cluster-1 (S4): S1

Cluster-2 (S6):



Divisive Hierarchical Clustering 

 Use k-mean method two find new clusters

 Dist(S4,S2)=76 and Dist(S6,S2)=32

 Minimum=32

 S2 belongs to Cluster 2.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S4 42 76 36 0 95 106 30 8 60 90

S6 66 32 82 106 15 0 76 104 46 70

Cluster membership

Cluster-1 (S4): S1

Cluster-2 (S6): S2



Divisive Hierarchical Clustering 

 Use k-mean method two find new clusters

 Dist(S4,S3)=36 and Dist(S6,S3)=82

 Minimum=36

 S3 belongs to Cluster 1.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S4 42 76 36 0 95 106 30 8 60 90

S6 66 32 82 106 15 0 76 104 46 70

Cluster membership

Cluster-1 (S4): S1, S3

Cluster-2 (S6): S2



Divisive Hierarchical Clustering 

 Finally we get the following: 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S4 42 76 36 0 95 106 30 8 60 90

S6 66 32 82 106 15 0 76 104 46 70

Cluster membership

Cluster-1 (S4): S1, S3, S4 , S7, S8

Cluster-2 (S6): S2, S5, S6 , S9, S10



Divisive Hierarchical Clustering 

 None of the stopping criteria have been met

 Split table by two seed naming S1, and S8

 Take the larger cluster and continue the process.

S1 S3 S4 S7 S8

S1 0

S3 18 0

S4 42 36 0

S7 18 16 30 0

S8 44 40 8 28 0



Divisive Hierarchical Clustering 

 Table below shows the member of cluster 2.

 Take the larger cluster and continue the process.

S2 S5 S6 S9 S10

S2 0

S5 23 0

S6 32 15 0

S9 22 37 46 0

S10 44 55 70 58 0



Density Based (DBSCAN)

46



DBSCAN Algorithm

 Density: number points within specified radius.
➢ The parameter epsilon (Eps) defines the radius of neighborhood

around a point x
➢ The parameter MinPts is the minimum number of neighbors

within “Eps” radius.

 Three types of points:

◼ Core point: has more than MinPts points within Eps
 These points are in interior of cluster

◼ Border point: has fewer than MinPts within Eps but is
within Eps of a core point
 These are on the boundary of the cluster

◼ Noise point: neither a core or border point
 Not within any cluster

47



Core, Border, and Noise Points

48



Original Points
Core (green), border (blue) and noise (red)

Eps = 10, MinPts = 4

49

Core, Border, and Noise Points



When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes

50
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