Hierarchical and Density Based Clustering

Hierarchical Clustering

- Clusters are created iteratively, using clusters created in previous step
- Construction of a hierarchy of clusters (*dendrogram*) merging clusters with minimum distance
- Use distance matrix as clustering criteria.
- The Hierarchical method works by grouping data objects(records) into a tree of clusters.
- Classified Further as
 - Agglomerative Hierarchical Clustering
 - Divisive Hierarchical Clustering

Dendrogram

- Dendrogram: a tree data structure which illustrates hierarchical clustering techniques.
- Each level shows clusters for that level.
 - Leaf individual clusters
 - Root one cluster
- A cluster at level i is the union of its children clusters at level i+1.

Hierarchical Clustering

- Clusters are created in levels actually creating sets of clusters at each level.
- Agglomerative
 - Initially each item in its own cluster
 - Iteratively clusters are merged together
 - Bottom Up

Divisive

- Initially all items in one cluster
- Large clusters are successively divided
- Top Down

Hierarchical Clustering

Distance Between Clusters

□ *Single Link*: smallest distance between points $d(i, j) = \min_{x \in C_i, y \in C_j} \{ d(x, y) \}$

Complete Link: largest distance between points

$$d(i, j) = \max_{x \in C_i, y \in C_j} \left\{ d(x, y) \right\}$$

Distance Between Clusters

■ *Average Link:* average distance between points $d(i, j) = avg_{x \in C_i, y \in C_j} \{ d(x, y) \}$

Centroid: distance between centroids

- The agglomerative method is basically a bottom-up approach which involves the following steps. An implementation however may include some variation of these steps
 - 1. Allocate each point to a cluster of its own. Thus we start with n clusters for n objects.
 - 2. Create a distance matrix by computing distances between all pairs of clusters either using, for example, the singlelink metric or the complete-link metric. Some other metric may also be used. Sort these distances in ascending order.
 - 3. Find the two clusters that have the smallest distance between them
 - 4. Remove the pair of objects and merge them.
 - 5. If there is only one cluster left then stop.
 - 6. Compute all distances from the new cluster and update the distance matrix after the merger and go to Step 3.

- Allocate each point to a cluster and compute the distance matrix
- Show the half portion of the matrix

Consider the following data.

Student	Age	Marks1	Marks2	Marks 3
S ₁	18	73	75	57
S ₂	18	79	85	75
S ₃	23	70	70	52
S ₄	20	55	55	55
S ₅	22	85	86	87
S ₆	19	91	90	89
S ₇	20	70	65	60
S ₈	21	53	56	59
S ₉	19	82	82	60
S ₁₀	47	75	76	77

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉	S ₁₀
S ₁	0									
S ₂	34	0								
S ₃	18	52	0							
S ₄	42	76	36	0						
S ₅	57	23	67	95	0					
S ₆	66	32	82	106	15	0				
S ₇	18	46	16	30	65	76	0			
S ₈	44	74	40	8	91	104	28	0		
S ₉	20	22	36	60	37	46	30	58	0	
S ₁₀	52	44	60	90	55	70	60	86	58	0

- **\square** The smallest distance is 8 between S_4 and S_8 .
- Combine them as cluster C1 and update the table by putting the C1 into the place where S₄ was.
- All distance except those with cluster C1 remain unchanged.

Student	Age	Marks1	Marks2	Mark s3
S ₁	18	73	75	57
S ₂	18	79	85	75
S ₃	23	70	70	52
C ₁	20.5	54	55.5	57
S ₅	22	85	86	87
S ₆	19	91	90	89
S ₇	20	70	65	60
S ₉	19	82	82	60
S ₁₀	47	75	76	77

	S_1	S ₂	S ₃	C ₁	S ₅	S_6	S ₇	S ₉	S ₁₀
S ₁	0								
S ₂	34	0							
S ₃	18	52	0						
C ₁	41	75	38	0					
S ₅	57	23	67	93	0				
S ₆	66	32	82	105	15	0			
S ₇	18	46	16	29	65	76	0		
S ₉	20	22	36	59	37	46	30	0	
S ₁₀	52	44	60	88	55	70	60	58	0

- The smallest distance is now 15 between S₅ and S₆.
- Combine and update the table.

Student	Age	Marks1	Marks2	Mark s3
S ₁	18	73	75	57
S ₂	18	79	85	75
S ₃	23	70	70	52
C ₁	20.5	54	55.5	57
C ₂	20.5	88	88	88
S ₇	20	70	65	60
S ₉	19	82	82	60
S ₁₀	47	75	76	77

	S_1	S ₂	S_3	C_1	C ₂	S ₇	S ₉	S_{10}
S ₁	0							
S ₂	34	0						
S ₃	18	52	0					
C ₁	41	75	38	0				
C ₂	61.5	27.5	74.5	97.5	0			
S ₇	18	46	16	29	69.5	0		
S ₉	20	22	36	59	41.5	30	0	
S ₁₀	52	44	60	88	62.5	60	58	0

• Merge S_3 and S_7 and put them as C_3 .

Continue the process.

- Let's now see a simple example: a hierarchical clustering of distances in kilometers between some Italian cities. The method used is single-linkage.
- □ *Single Link*: smallest distance between points
- Input distance matrix (L = 0 for all the clusters):

	BA	FI	МІ	NA	RM	TO
BA	0	662	877	255	412	996
FI	662	0	295	468	268	400
МІ	877	295	0	754	564	138
NA	255	468	754	0	219	869
RM	412	268	564	219	0	669
то	996	400	138	869	669	0

The nearest pair of cities is MI and TO, at distance 138.

	BA	FI	MI	NA	RM	ТО
BA	0					
FI	662	0				
MI	877	295	0			
NA	255	468	754	0		
RM	412	268	564	219	0	
ТО	996	400	138	869	669	0

- The level of the new cluster is L(MI/TO) = 138 and the new sequence number is m = 1.
- The distance from the compound object to another object is equal to the shortest distance from any member of the cluster to the outside object.

Dist(MI/TO, BA)=min{Dist(MI,BA), Dist(TO,BA)}
 Min{877, 996}

a 877

	877						
	BA	FI	MI	NA	RM	ТО	
BA	0						
FI	662	0					
MI	877	295	0				
NA	255	468	754	0			
RM	412	268	564	219	0		
ТО	996	400	138	869	669	0	

077

- Dist(MI/TO, FI)=min{Dist(MI,FI), Dist(TO,FI)}
- Min{295, 400}

295

		295							
	BA	FI	MZ	NA	RM	ТО			
BA	0								
FI	662	0							
MI	877	295	0						
NA	255	468	754	0					
RM	412	268	564	219	0				
ТО	996	400	138	869	669	0			

205

- Dist(MI/TO, NA)=min{Dist(MI,NA), Dist(TO,NA)}
- Min{754, 869}

o 754

Dist(MI/TO, RM)=min{Dist(MI,RM), Dist(TO,RM)}
 Min{564, 669}

564

After merging MI with TO we obtain the following matrix:

	BA	FI	MI/TO	NA	RM
BA	0				
FI	662	0			
MI/TO	877	295	0		
NA	255	468	754	0	
RM	412	268	564	219	0

- $\square \min d(i,j) = d(NA,RM) = 219$
- merge NA and RM into a new cluster called NA/RM, L(NA/RM) = 219

□ m = 2

	BA	FI	MI/TO	NA	RM
BA	0				
FI	662	0			
MI/TO	877	295	0		
NA	255	468	754	0	
RM	412	268	564	219	0

After merging NA with RM we obtain the following matrix:

	BA	FI	MI/TO	NA/RM
BA	0			
FI	662	0		
MI/TO	877	295	0	
NA/RM	255	268	564	0

- **n** min d(i,j) = d(BA,NA/RM) = 255
- merge BA and NA/RM into a new cluster called BA/NA/RM

$$\Box L(BA/NA/RM) = 255$$

□ m = 3

	BA	FI	ΜΙ/ΤΟ	NA/RM
BA	0			
FI	662	0		
MI/TO	877	295	0	
NA/RM	255	268	564	0

After merging BA with NA/RM we obtain the following matrix:

	BA/NA/RM	FI	MI/TO
BA/NA/RM	0		
FI	268	0	
MI/TO	564	295	0

- **n** min d(i,j) = d(BA/NA/RM,FI) = 268
- merge BA/NA/RM and FI into a new cluster called BA/FI/NA/RM

$$\Box L(BA/FI/NA/RM) = 268$$

	BA/NA/RM	FI	MI/TO
BA/NA/RM	0		
FI	268	0	
MI/TO	564	295	0

After merging FI with BA/NA/RM we obtain the following matrix:

	BA/FI/NA/RM	MI/TO
BA/FI/NA/RM	0	295
MI/TO	295	0

- Finally, we merge the last two clusters at level 295.
- The process is summarized by the following hierarchical tree:

Advantages:

- Is simple and outputs a hierarchy, a structure that is more informative
- It does not require us to pre-specify the number of clusters

Disadvantages:

- Selection of merge or split points is critical as once a group of objects is merged or split, it will operate on the newly generated clusters and will not undo what was done previously.
- Thus merge or split decisions if not well chosen may lead to low-quality clusters

- A typical polythetic divisive method works like the following
 - 1. Decide on a method of measuring the distance between two objects. Also decide a threshold distance.
 - 2. Create a distance matrix by computing distances between all pairs of object within the cluster. Sort these distances in ascending order.
 - 3. Find the two objects that have the largest distance between them. They are the most dissimilar objects.
 - 4. If the distance between the two objects is smaller than the pre-specified threshold and there is no other cluster that needs to be divided then stop, otherwise continue.
 - 5. Use the pair of objects as seeds of a K-means method to create two new clusters.
 - 6. If there is only one object in each cluster then stop otherwise continue with step 2.

Consider the following data

Student	Age	Marks1	Marks2	Marks 3
S ₁	18	73	75	57
S ₂	18	79	85	75
S ₃	23	70	70	52
S ₄	20	55	55	55
S ₅	22	85	86	87
S ₆	19	91	90	89
S ₇	20	70	65	60
S ₈	21	53	56	59
S ₉	19	82	82	60
S ₁₀	47	75	76	77

	S ₁	S ₂	S ₃	S ₄	S_5	S ₆	S ₇	S ₈	S ₉	S ₁₀
S ₁	0									
S ₂	34	0								
S ₃	18	52	0							
S ₄	42	76	36	0						
S ₅	57	23	67	95	0					
S ₆	66	32	82	106	15	0				
S ₇	18	46	16	30	65	76	0			
S ₈	44	74	40	8	91	104	28	0		
S ₉	20	22	36	60	37	46	30	58	0	
S ₁₀	52	44	60	90	55	70	60	86	58	0

- **\square** The largest distance is between S₄ and S₆
- Use the as new two seed
- Use k-mean method two find new clusters

	S_1	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉	S ₁₀
S_4	42	76	36	0	95	106	30	8	60	90
S_6	66	32	82	106	15	0	76	104	46	70

Cluster membership

Cluster-1 (S_4) :

Cluster-2 (S_6) :

- Use k-mean method two find new clusters
- Dist(S_4 , S_1)=42 and Dist(S_6 , S_1)=66
- Minimum=4 2°
- **\square** S₁ belongs to Cluster 2.

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉	S ₁₀
S ₄	42	76	36	0	95	106	30	8	60	90
S ₆	66	32	82	106	15	0	76	104	46	70

Cluster membership

Cluster-1 (
$$S_4$$
): S_1

Cluster-2 (S_6) :

- Use k-mean method two find new clusters
- Dist(S_4 , S_2)=76 and Dist(S_6 , S_2)=32
- Minimum=32
- **\Box** S₂ belongs to Cluster 2.

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉	S ₁₀
S ₄	42	76	36	0	95	106	30	8	60	90
S ₆	66	32	82	106	15	0	76	104	46	70

Cluster membership

Cluster-1 (
$$S_4$$
): S_1

Cluster-2 (S_6): S_2

- Use k-mean method two find new clusters
- Dist $(S_4, S_3) = 36$ and Dist $(S_6, S_3) = 82$
- Minimum=36
- **\square** S₃ belongs to Cluster 1.

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉	S ₁₀
S ₄	42	76	36	0	95	106	30	8	60	90
S ₆	66	32	82	106	15	0	76	104	46	70

Cluster membership Cluster-1 (S_4): $S_{1,} S_3$ Cluster-2 (S_6): S_2

□ Finally we get the following:

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉	S ₁₀
S ₄	42	76	36	0	95	106	30	8	60	90
S ₆	66	32	82	106	15	0	76	104	46	70

Cluster membership Cluster-1 (S_4): S_1 , S_3 , S_4 , S_7 , S_8 Cluster-2 (S_6): S_2 , S_5 , S_6 , S_9 , S_{10}

- None of the stopping criteria have been met
- **\square** Split table by two seed naming $S_{1,}$ and S_{8}
- Take the larger cluster and continue the process.

	S ₁	S ₃	S ₄	S ₇	S ₈
S ₁	0				
S ₃	18	0			
S ₄	42	36	0		
S ₇	18	16	30	0	
S ₈	44	40	8	28	0

Table below shows the member of cluster 2.
 Take the larger cluster and continue the process.

	S ₂	S_5	S ₆	S ₉	S ₁₀
S ₂	0				
S ₅	23	0			
S ₆	32	15	0		
S ₉	22	37	46	0	
S ₁₀	44	55	70	58	0

Density Based (DBSCAN)

DBSCAN Algorithm

Density: number points within specified radius.

- The parameter epsilon (Eps) defines the radius of neighborhood around a point x
- The parameter MinPts is the minimum number of neighbors within "Eps" radius.
- **Three types of points:**
 - Core point: has more than *MinPts* points within *Eps* These points are in interior of cluster
 - Border point: has fewer than *MinPts* within Eps but is within *Eps* of a core point
 These are on the boundary of the cluster
 - Noise point: neither a core or border point
 Not within any cluster

Core, Border, and Noise Points

Core, Border, and Noise Points

Original Points

Core (green), border (blue) and noise (red)

Eps = 10, **MinPts = 4**

When DBSCAN Works Well

Original Points

Clusters

- Resistant to Noise
- Can handle clusters of different shapes and sizes

References

- Gupta, G. K. Introduction to data mining with case studies. PHI Learning Pvt. Ltd., 2006.
- Dunham, Margaret H. *Data mining: Introductory and advanced topics*. Pearson Education India, 2006.
- Han, Jiawei, Micheline Kamber, and Jian Pei. *Data mining: concepts and techniques*. Morgan kaufmann, 2006.

Thank you