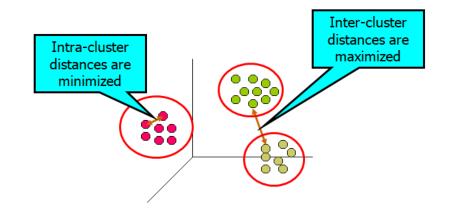
CLUSTERING

What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- □ Cluster analysis (or *clustering*, *data segmentation*, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters



Cluster Analysis

- Unsupervised learning: no predefined classes (i.e., *learning* by observations vs. learning by examples: supervised)
- Clustering is often called an unsupervised learning task as no class values denoting an a priori grouping of the data instances are given, which is the case in supervised learning.
- Due to historical reasons, clustering is often considered synonymous with unsupervised learning.

Applications

- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering, Google search, topic-based news
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs

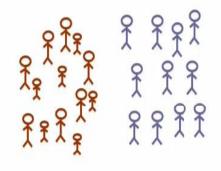
Applications

- City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- Climate: understanding earth climate, find patterns of atmospheric and ocean

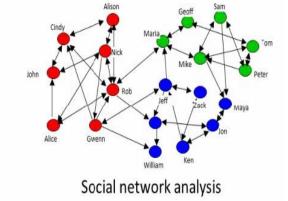
Applications

Real Applications: Emerging Applications

Organize computing clusters



Market segmentation.

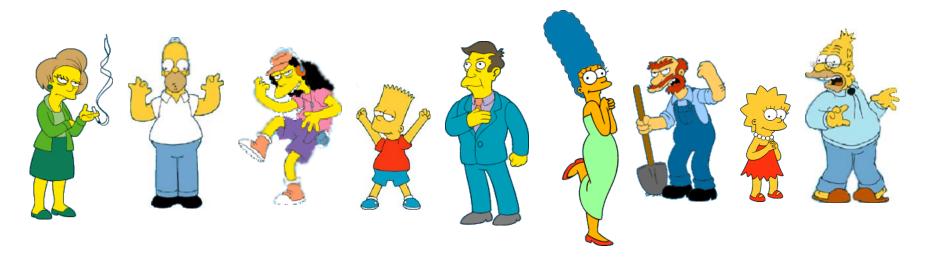


Astronomical data analysis

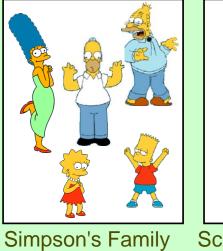
Considerations for Cluster Analysis

- Partitioning criteria
 - Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is desirable)
- Separation of clusters
 - Exclusive (e.g., one customer belongs to only one region) vs. non-exclusive (e.g., one document may belong to more than one class)
- Similarity measure
 - Distance-based (e.g., Euclidian, road network, vector) vs. connectivity-based (e.g., density or contiguity)
- What are the issues?
 - Irrelevant and redundant features
 - Different scales (need normalization)

What is a natural grouping among these objects?



Clustering is subjective



School Employees

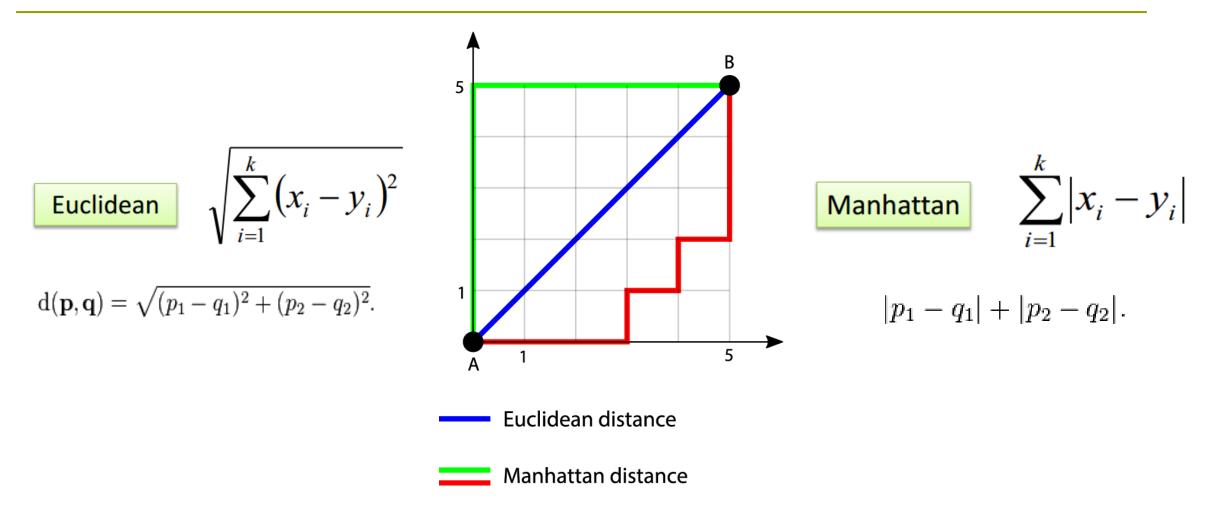
Females

Males

Requirements and Challenges

- Scalability
 - Clustering all the data instead of only on samples
- Ability to deal with different types of attributes
 - Numerical, binary, categorical, ordinal, linked, and mixture of these
- Constraint-based clustering
 - User may give inputs on constraints
 - Use domain knowledge to determine input parameters
- Others
 - Ability to deal with noisy data
 - Incremental clustering and insensitivity to input order
 - High dimensionality

Distances



Major Clustering Approach

Partitioning approach

- Construct various partitions and then evaluate them by some criterion
- Typical methods:
 - k-means,
 - k-medoids,
 - Squared Error Clustering Algorithm
 - Nearest neighbor algorithm

Major Clustering Approach(Conti...)

Hierarchical approach

- Hierarchical methods obtain a nested partition of the objects resulting in a tree of clusters.
- Typical methods:
 - BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies),
 - ROCK(A Hierarchical Clustering Algorithm for Categorical Attributes).
 - Chameleon(A Hierarchical Clustering Algorithm Using Dynamic Modeling).

Major Clustering Approach(Conti...)

Density-based approach

- Based on connectivity and density functions
- Typical methods:
 - Density based methods include DBSCAN(A Density-Based Clustering Method on Connected Regions with Sufficiently High Density),
 - OPTICS(Ordering Points to Identify the Clustering Structure), DENCLUE(Clustering Based on Density Distribution Functions)

Other Characteristics

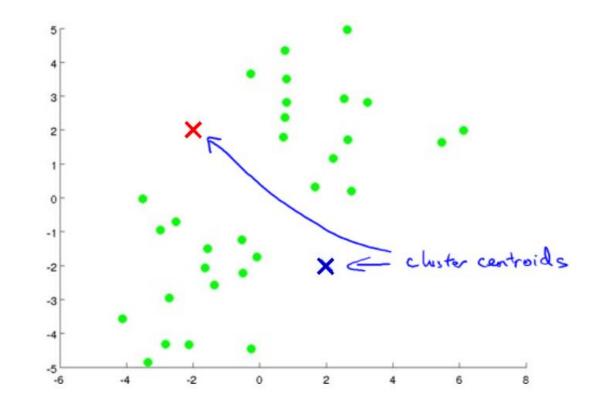
Exclusive versus non-exclusive

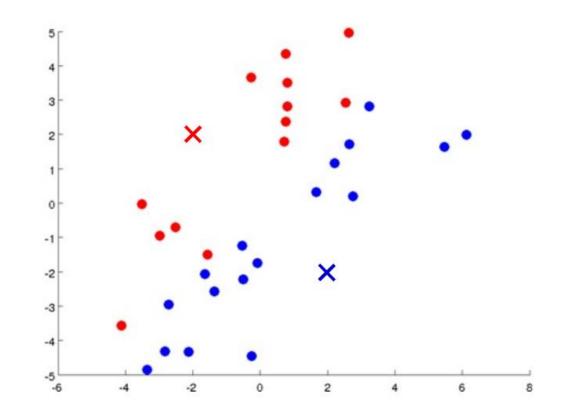
- In non-exclusive clustering points may belong to multiple clusters
- Can represent multiple classes or `border' points

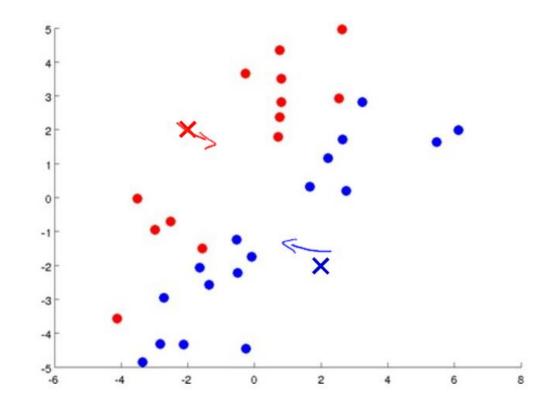
Fuzzy versus non-fuzzy

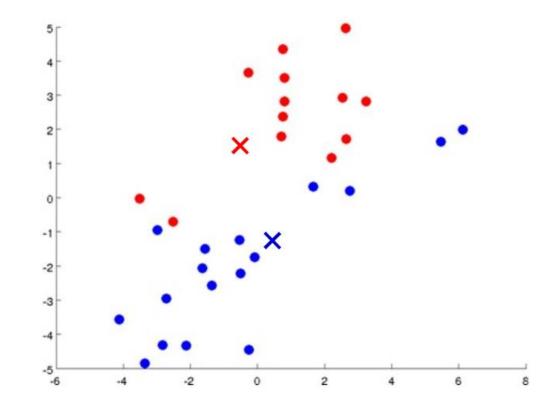
- In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1 (weights must sum to 1)
- Others...

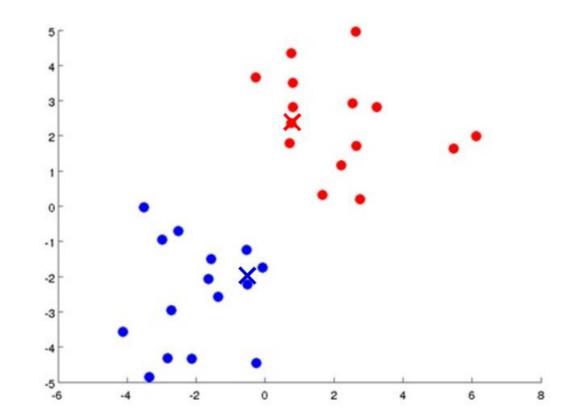
- K-means Algorithm: The K-means algorithm may be described as follows
 - 1. Select the number of clusters. Let this number be K.
 - 2. Pick K seeds as centroids of the k clusters. The seeds may be picked randomly unless the user has some insight into the data.
 - 3. Compute the Euclidean distance of each object in the dataset from each of the centroids.
 - 4. Allocate each object to the cluster it is nearest to base on the distances computer in the previous step.
 - 5. Compute the centroids of the clusters by computing the means of the attribute values of the objects in each cluster.
 - 6. Cheek if the stopping criterion has been met(e.g. the cluster membership is unchanged) if yes go to step 7. If not, go to step 3.
 - 7. [optional] One may decide to stop at this stage or to split a cluster or combine two clusters heuristically until a stopping criterion is met.

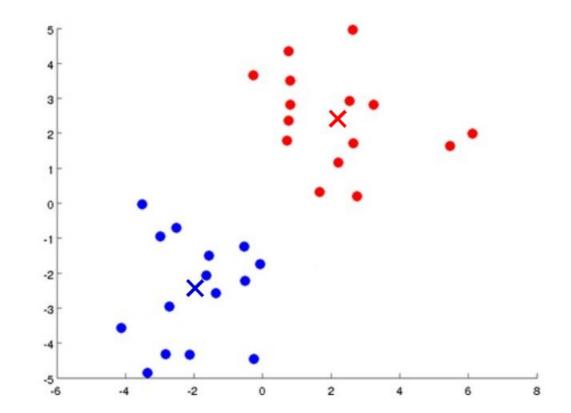












K-means Clustering – Details

- Initial centroids often chosen randomly
 - Clusters produced vary from one run to another
- Centroid distance measured by Euclidean distance, correlation, etc.
- K-means will converge for common similarity measures
 - Most convergence happens in first few iterations
- Centroid is typically mean of points in cluster
- Often the stopping condition is changed to 'Until relatively few points change clusters'

Cluster the following eight points (with (x, y) representing locations) into three clusters:

A1(2, 10), A2(2, 5), A3(8, 4), A4(5, 8), A5(7, 5), A6(6, 4), A7(1, 2), A8(4, 9)

Notes:

- Initial cluster centers are: A1(2, 10), A4(5, 8) and A7(1, 2).
- The distance function between two points a = (x1, y1) and b = (x2, y2) is defined as-

• $P(a, b) = |x^2 - x^1| + |y^2 - y^1|$

• Use K-Means Algorithm to find the three cluster centers after the second iteration.

Calculating Distance Between A1(2, 10) and C1(2, 10)-

P(A1, C1) = |x2 - x1| + |y2 - y1| = |2 - 2| + |10 - 10| = 0

Calculating Distance Between A1(2, 10) and C2(5, 8)-

P(A1, C2) = |x2-x1| + |y2-y1| = |5-2| + |8-10| = 3 + 2 = 5

Calculating Distance Between A1(2, 10) and C3(1, 2)-

P(A1, C3) = |x2-x1| + |y2-y1| = |1-2| + |2-10| = 1 + 8 = 9 In the similar manner, we calculate the distance of other points from each of the center of the three clusters

Given Points	Distance from center (2, 10) of Cluster-01	Distance from center (5, 8) of Cluster-02	Distance from center (1, 2) of Cluster-03	Point belongs to Cluster
A1(2, 10)	0	5	9	C1
A2(2, 5)	5	6	4	C3
A3(8, 4)	12	7	9	C2
A4(5, 8)	5	0	10	C2
A5(7, 5)	10	5	9	C2
A6(6, 4)	10	5	7	C2
A7(1, 2)	9	10	0	C3
A8(4, 9)	3	2	10	C2

- We draw a table showing all the results.
- Using the table, we decide which point belongs to which cluster.
- The given point belongs to that cluster whose center is nearest to it.

Given Points	Distance from center (2, 10) of Cluster-01	Distance from center (5, 8) of Cluster-02	Distance from center (1, 2) of Cluster-03	Point belongs to Cluster
A1(2, 10)	0	5	9	C1
A2(2, 5)	5	6	4	C3
A3(8, 4)	12	7	9	C2
A4(5, 8)	5	0	10	C2
A5(7, 5)	10	5	9	C2
A6(6, 4)	10	5	7	C2
A7(1, 2)	9	10	0	C3
A8(4, 9)	3	2	10	C2

From here, New clusters are-

Cluster-01:

First cluster contains points-•A1(2, 10)

Cluster-02:

Second cluster contains points-•A3(8, 4) •A4(5, 8) •A5(7, 5) •A6(6, 4) •A8(4, 9)

Cluster-03:

Third cluster contains points-•A2(2, 5) •A7(1, 2) Now, we recompute the new cluster by taking mean of all the points contained in that cluster.

For Cluster-01:

We have only one point So, cluster center remains the same.

For Cluster-02:

Center of Cluster-02 = ((8 + 5 + 7 + 6 + 4)/5, (4 + 8 + 5 + 4 + 9)/5) = (6, 6)

For Cluster-03:

Center of Cluster-03 = ((2 + 1)/2, (5 + 2)/2) = (1.5, 3.5)

This is completion of Iteration-01.

Given Points	Distance from center (2, 10) of Cluster-01	Distance from center (6, 6) of Cluster-02	Distance from center (1.5, 3.5) of Cluster-03	Point belongs to Cluster
A1(2, 10)	0	8	7	C1
A2(2, 5)	5	5	2	С3
A3(8, 4)	12	4	7	C2
A4(5, 8)	5	3	8	C2
A5(7, 5)	10	2	7	C2
A6(6, 4)	10	2	5	C2
A7(1, 2)	9	9	2	C3
A8(4, 9)	3	5	8	C1

From here, New clusters are-**Re Computation:** Cluster-01: First cluster contains points-•A1(2, 10) •A8(4, 9) Cluster-02: Second cluster contains points-•A3(8, 4) •A4(5, 8) •A5(7, 5) •A6(6, 4) Cluster-03: Third cluster contains points- $\cdot C1(3, 9.5)$ •A2(2, 5) •A7(1, 2)

For Cluster-01:

Center of Cluster-01 =((2 + 4)/2, (10 + 9)/2) = (3, 9.5)

For Cluster-02:

Center of Cluster-02 =((8+5+7+6)/4, (4+8+5+4)/4) = (6.5, 5.25)

For Cluster-03:

Center of Cluster-03 = ((2 + 1)/2, (5 + 2)/2) = (1.5, 3.5)

After second iteration, the center of the three clusters are-•C2(6.5, 5.25) $\cdot C3(1.5, 3.5)$

K-means Clustering – Exercise

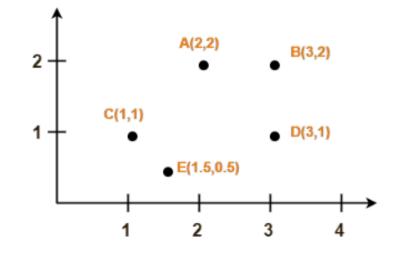
Use K-Means Algorithm to create two clusters for the points given in the figure.

Notes:

- Initial cluster centers are: A(2, 2) and C(1, 1)
- The distance function between two points a = (x1, y1) and b = (x2, y2) is defined as-

• $P(a, b) = SQRT[(x2 - x1)^2 + (y2 - y1)^2]$

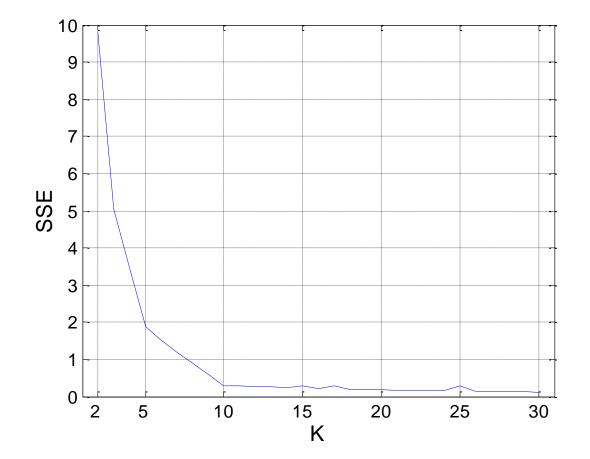
• Use K-Means Algorithm to find the two cluster centers after the second iteration.



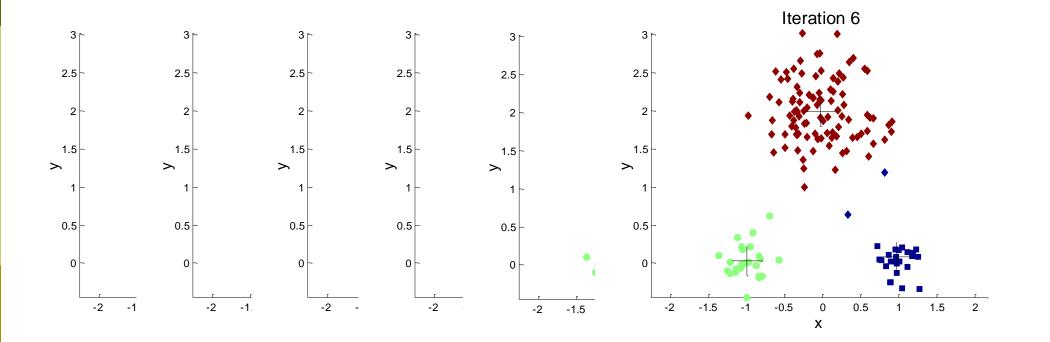
Evaluating K-means Clusters

- How do you objectively evaluate the quality of a clustering (so can choose best)?
 - Most common measure: Sum of Squared Error (SSE)
 - Error for each point is distance to nearest cluster center
- What happens to SSE if you increase K, the number of clusters?
 - SSE would go down (Can use relationship between K and SSE to find proper K)
- A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

Relationship between K and SSE

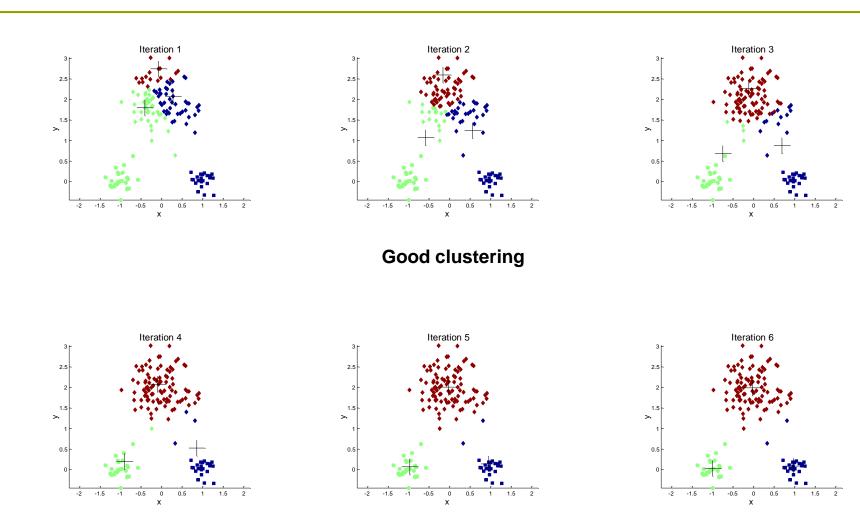


Importance of Choosing Initial Centroids

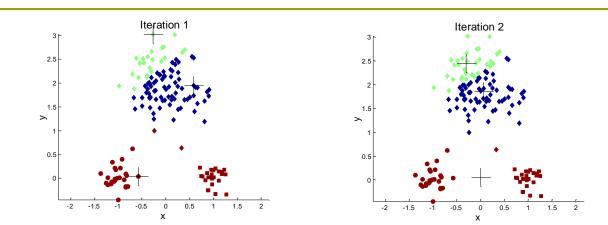


If you happen to choose good initial centroids, then you will get this after 6 iterations

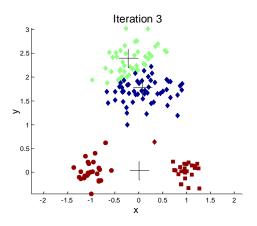
Importance of Choosing Initial Centroids

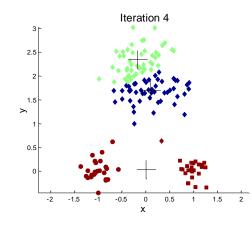


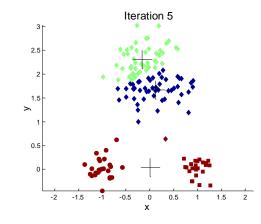
Importance of Choosing Initial Centroids ...



Bad Clustering







Pre-processing and Post-processing

Pre-processing

- Normalize the data
- Eliminate outliers

Post-processing

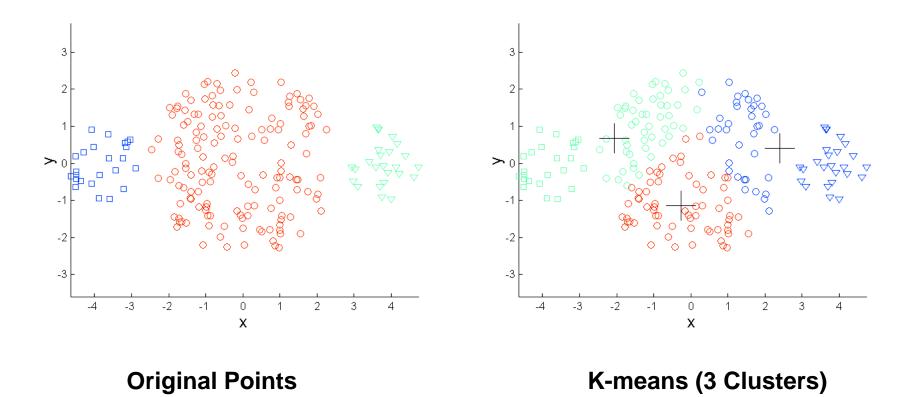
- Eliminate small clusters that may represent outliers
- Split 'loose' clusters (with relatively high SSE)
- Merge clusters that are 'close' and that have relatively low SSE

Limitations of K-means

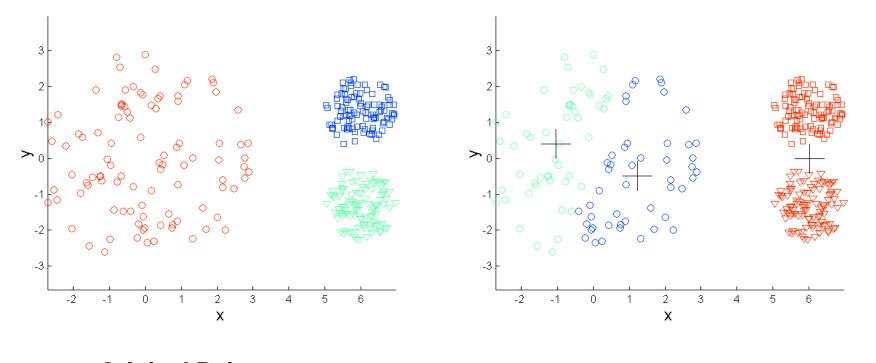
K-means has problems when clusters are of differing:

- Sizes (biased toward the larger clusters)
- Densities
- Non-spherical shapes
- K-means has problems with outliers

Limitations of K-means: Differing Sizes



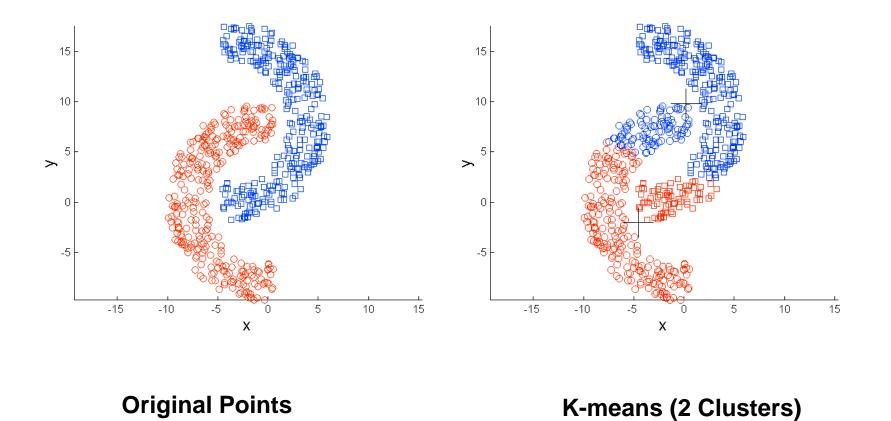
Limitations of K-means: Differing Density



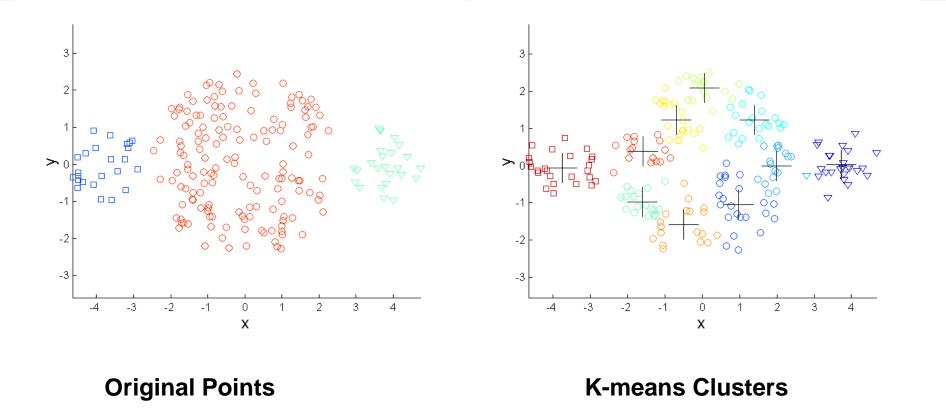
Original Points

K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

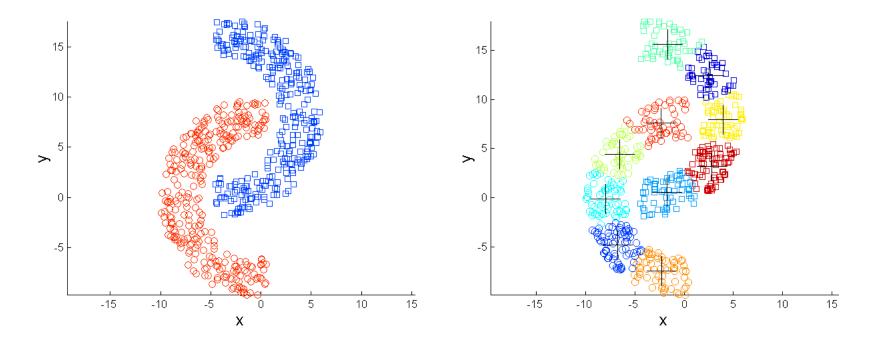


Overcoming K-means Limitations



One solution is to use many clusters. Find parts of clusters, but need to put together.

Overcoming K-means Limitations



Original Points

K-means Clusters

Thank You!

Slide Courtesy: Gary M. Weiss, CIS Dept, Fordham University and miscellaneous