
Decision Trees

Random Forests

Definition
• A tree-like model that illustrates series of events leading to certain decisions

• Each node represents a test on an attribute and each branch is an outcome of

that test

• Not a student

• 45 years old

• Medium income

• Fair credit record

Who to loan?

• Student

• 27 years old

• Low income

• Excellent credit record

Definition
• A tree-like model that illustrates series of events leading to certain decisions

• Each node represents a test on an attribute and each branch is an outcome of

that test

• Not a student

• 45 years old

• Medium income

• Fair credit record

➢ Yes

Who to loan?

• Student

• 27 years old

• Low income

• Excellent credit record

Definition
• A tree-like model that illustrates series of events leading to certain decisions

• Each node represents a test on an attribute and each branch is an outcome of

that test

• Not a student

• 45 years old

• Medium income

• Fair credit record

➢ Yes

Who to loan?

• Student

• 27 years old

• Low income

• Excellent credit record

➢ No

Decision Tree Learning
• We use labeled data to obtain a suitable decision tree for future predictions

➢ We want a decision tree that works well on unseen data, while asking as few

questions as possible

Decision Tree Learning
• Basic step: choose an attribute and, based on its values, split the data into

smaller sets

➢ Recursively repeat this step until we can surely decide the label

Decision Tree Learning
• Basic step: choose an attribute and, based on its values, split the data into

smaller sets

➢ Recursively repeat this step until we can surely decide the label

Decision Tree Learning
• Basic step: choose an attribute and, based on its values, split the data into

smaller sets

➢ Recursively repeat this step until we can surely decide the label

Decision Tree Learning
• Basic step: choose an attribute and, based on its values, split the data into

smaller sets

➢ Recursively repeat this step until we can surely decide the label

Decision Tree Learning
• Basic step: choose an attribute and, based on its values, split the data into

smaller sets

➢ Recursively repeat this step until we can surely decide the label

What is a good attribute?

• Which attribute provides better splitting?

• Why?

➢ Because the resulting subsets are more pure

➢ Knowing the value of this attribute gives us more information about the label

(the entropy of the subsets is lower)

Information Gain

Entropy

• Entropy measures the degree of randomness in data

• For a set of samples 𝑋 with 𝑘 classes:

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 = −෍

𝑖=1

𝑘

𝑝𝑖 log2(𝑝𝑖)

where 𝑝𝑖 is the proportion of elements of class 𝑖

• Lower entropy implies greater predictability!

Information Gain

• The information gain of an attribute a is the expected

reduction in entropy due to splitting on values of a:

𝑔𝑎𝑖𝑛 𝑋, 𝑎 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 − ෍

𝑣 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠(𝑎)

𝑋𝑣
𝑋

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑋𝑣)

where 𝑋𝑣 is the subset of 𝑋 for which 𝑎 = 𝑣

Best attribute = highest information gain

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 = − 𝑝mammal log2𝑝mammal − 𝑝bird log2 𝑝bird = −
3

7
log2

3

7
−
4

7
log2

4

7
≈ 0.985

Best attribute = highest information gain

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 = − 𝑝mammal log2𝑝mammal − 𝑝bird log2 𝑝bird = −
3

7
log2

3

7
−
4

7
log2

4

7
≈ 0.985

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑐𝑜𝑙𝑜𝑟=𝑏𝑟𝑜𝑤𝑛) = −
1

3
log2

1

3
−
2

3
log2

2

3
≈ 0.918

Best attribute = highest information gain

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 = − 𝑝mammal log2𝑝mammal − 𝑝bird log2 𝑝bird = −
3

7
log2

3

7
−
4

7
log2

4

7
≈ 0.985

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑐𝑜𝑙𝑜𝑟=𝑏𝑟𝑜𝑤𝑛) = −
1

3
log2

1

3
−
2

3
log2

2

3
≈ 0.918 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑐𝑜𝑙𝑜𝑟=𝑤ℎ𝑖𝑡𝑒) = 1

Best attribute = highest information gain

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 = − 𝑝mammal log2𝑝mammal − 𝑝bird log2 𝑝bird = −
3

7
log2

3

7
−
4

7
log2

4

7
≈ 0.985

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑐𝑜𝑙𝑜𝑟=𝑏𝑟𝑜𝑤𝑛) = −
1

3
log2

1

3
−
2

3
log2

2

3
≈ 0.918 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑐𝑜𝑙𝑜𝑟=𝑤ℎ𝑖𝑡𝑒) = 1

𝒈𝒂𝒊𝒏 𝑿, 𝒄𝒐𝒍𝒐𝒓 = 𝟎. 𝟗𝟖𝟓 −
𝟑

𝟕
∙ 𝟎. 𝟗𝟏𝟖 −

𝟒

𝟕
∙ 𝟏 ≈ 𝟎. 𝟎𝟐𝟎

Best attribute = highest information gain

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 = − 𝑝mammal log2𝑝mammal − 𝑝bird log2 𝑝bird = −
3

7
log2

3

7
−
4

7
log2

4

7
≈ 0.985

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑐𝑜𝑙𝑜𝑟=𝑏𝑟𝑜𝑤𝑛) = −
1

3
log2

1

3
−
2

3
log2

2

3
≈ 0.918 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑐𝑜𝑙𝑜𝑟=𝑤ℎ𝑖𝑡𝑒) = 1

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑓𝑙𝑦=𝑦𝑒𝑠) = 0

𝒈𝒂𝒊𝒏 𝑿, 𝒄𝒐𝒍𝒐𝒓 = 𝟎. 𝟗𝟖𝟓 −
𝟑

𝟕
∙ 𝟎. 𝟗𝟏𝟖 −

𝟒

𝟕
∙ 𝟏 ≈ 𝟎. 𝟎𝟐𝟎

Best attribute = highest information gain

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 = − 𝑝mammal log2𝑝mammal − 𝑝bird log2 𝑝bird = −
3

7
log2

3

7
−
4

7
log2

4

7
≈ 0.985

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑐𝑜𝑙𝑜𝑟=𝑏𝑟𝑜𝑤𝑛) = −
1

3
log2

1

3
−
2

3
log2

2

3
≈ 0.918 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑐𝑜𝑙𝑜𝑟=𝑤ℎ𝑖𝑡𝑒) = 1

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑓𝑙𝑦=𝑦𝑒𝑠) = 0 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑓𝑙𝑦=𝑛𝑜) = −
3

4
log2

3

4
−
1

4
log2

1

4
≈ 0. 811

𝒈𝒂𝒊𝒏 𝑿, 𝒄𝒐𝒍𝒐𝒓 = 𝟎. 𝟗𝟖𝟓 −
𝟑

𝟕
∙ 𝟎. 𝟗𝟏𝟖 −

𝟒

𝟕
∙ 𝟏 ≈ 𝟎. 𝟎𝟐𝟎

Best attribute = highest information gain

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 = − 𝑝mammal log2𝑝mammal − 𝑝bird log2 𝑝bird = −
3

7
log2

3

7
−
4

7
log2

4

7
≈ 0.985

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑐𝑜𝑙𝑜𝑟=𝑏𝑟𝑜𝑤𝑛) = −
1

3
log2

1

3
−
2

3
log2

2

3
≈ 0.918 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑐𝑜𝑙𝑜𝑟=𝑤ℎ𝑖𝑡𝑒) = 1

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑓𝑙𝑦=𝑦𝑒𝑠) = 0 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋𝑓𝑙𝑦=𝑛𝑜) = −
3

4
log2

3

4
−
1

4
log2

1

4
≈ 0. 811

𝒈𝒂𝒊𝒏 𝑿, 𝒄𝒐𝒍𝒐𝒓 = 𝟎. 𝟗𝟖𝟓 −
𝟑

𝟕
∙ 𝟎. 𝟗𝟏𝟖 −

𝟒

𝟕
∙ 𝟏 ≈ 𝟎. 𝟎𝟐𝟎

𝒈𝒂𝒊𝒏 𝑿, 𝒇𝒍𝒚 = 𝟎. 𝟗𝟖𝟓 −
𝟑

𝟕
∙ 𝟎 −

𝟒

𝟕
∙ 𝟎. 𝟖𝟏𝟏 ≈ 𝟎. 𝟓𝟐𝟏

In practice, we compute 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑋) only once!

Gini Impurity

Gini Impurity

• Gini impurity measures how often a randomly chosen example would be

incorrectly labeled if it was randomly labeled according to the label distribution

• For a set of samples 𝑋 with 𝑘 classes:

𝑔𝑖𝑛𝑖 𝑋 = 1 −෍

𝑖=1

𝑘

𝑝𝑖
2

where 𝑝𝑖 is the proportion of elements of class 𝑖

• Can be used as an alternative to entropy for selecting attributes!

Best attribute = highest impurity decrease

𝑔𝑖𝑛𝑖 𝑋 = 1 −
3

7

2

−
4

7

2

≈ 0.489

𝑔𝑖𝑛𝑖 (𝑋𝑐𝑜𝑙𝑜𝑟=𝑏𝑟𝑜𝑤𝑛) = 1 −
1

3

2

−
2

3

2

≈ 0.444

𝑔𝑖𝑛𝑖 (𝑋𝑓𝑙𝑦=𝑦𝑒𝑠) = 0 𝑔𝑖𝑛𝑖 (𝑋𝑓𝑙𝑦=𝑛𝑜) = 1 −
3

4

2

−
1

4

2

≈ 0. 375

△ 𝒈𝒊𝒏𝒊 𝑿, 𝒄𝒐𝒍𝒐𝒓 = 𝟎. 𝟒𝟖𝟗 −
𝟑

𝟕
∙ 𝟎. 𝟒𝟒𝟒 −

𝟒

𝟕
∙ 𝟎. 𝟓 ≈ 𝟎. 𝟎𝟏𝟑

△ 𝒈𝒊𝒏𝒊 𝑿, 𝒇𝒍𝒚 = 𝟎. 𝟒𝟖𝟗 −
𝟑

𝟕
∙ 𝟎 −

𝟒

𝟕
∙ 𝟎. 𝟑𝟕𝟓 ≈ 𝟎. 𝟐𝟕𝟒

In practice, we compute 𝑔𝑖𝑛𝑖(𝑋) only once!

𝑔𝑖𝑛𝑖 (𝑋𝑐𝑜𝑙𝑜𝑟=𝑤ℎ𝑖𝑡𝑒) = 0.5

Entropy versus Gini Impurity
• Entropy and Gini Impurity give similar results in practice

➢ They only disagree in about 2% of cases

“Theoretical Comparison between the Gini Index and Information Gain

Criteria” [Răileanu & Stoffel, AMAI 2004]

➢ Entropy might be slower to compute, because of the log

Pruning

Pruning

• Pruning is a technique that reduces the size of a decision tree by

removing branches of the tree which provide little predictive power

• It is a regularization method that reduces the complexity of the

final model, thus reducing overfitting

➢ Decision trees are prone to overfitting!

• Pruning methods:

➢ Pre-pruning: Stop the tree building algorithm before it fully

classifies the data

➢ Post-pruning: Build the complete tree, then replace some non-

leaf nodes with leaf nodes if this improves validation error

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(54|5) = 0.29 < 𝜃𝑒𝑛𝑡

𝜽𝒆𝒏𝒕 = 𝟎.𝟒

Pre-pruning
• Pre-pruning implies early stopping:

➢ If some condition is met, the current node will

not be split, even if it is not 100% pure

➢ It will become a leaf node with the label of the

majority class in the current set

(the class distribution could be used as prediction

confidence)

• Common stopping criteria include setting a

threshold on:

➢ Entropy (or Gini Impurity) of the current set

➢ Number of samples in the current set

➢ Gain of the best-splitting attribute

➢ Depth of the tree

Minimum

threshold

on entropy

91.52% confidence

Stop, even if node

can be split

Post-pruning

• Prune nodes in a bottom-up manner, if it

decreases validation error

Post-pruning

• Prune nodes in a bottom-up manner, if it

decreases validation error

Post-pruning

• Prune nodes in a bottom-up manner, if it

decreases validation error

Handling Numerical Attributes

Handling numerical attributes
• How does the ID3 algorithm handle numerical attributes?

➢ Any numerical attribute would almost always bring entropy down to zero

➢ This means it will completely overfit the training data

Consider a numerical value for humidity

𝑔𝑎𝑖𝑛 𝑋, 𝑎, 𝑡 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 −
𝑋𝑎≤𝑡
𝑋

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋𝑎≤𝑡 −
𝑋𝑎>𝑡
𝑋

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋𝑎>𝑡

Handling numerical attributes
• Numerical attributes have to be treated differently

➢ Find the best splitting value
Gain of numerical attribute 𝑎 if we split at value 𝑡

Sort

Mean of

each

consecutive

pair

𝑔𝑎𝑖𝑛 𝑋, 𝑎, 𝑡 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 −
𝑋𝑎≤𝑡
𝑋

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋𝑎≤𝑡 −
𝑋𝑎>𝑡
𝑋

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋𝑎>𝑡

Handling numerical attributes
• Numerical attributes have to be treated differently

➢ Find the best splitting value

Sort

Mean of

each

consecutive

pair

𝑔𝑎𝑖𝑛 𝑋, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦, 83.5 =

𝑔𝑎𝑖𝑛 𝑋, 𝑎, 𝑡 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 −
𝑋𝑎≤𝑡
𝑋

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋𝑎≤𝑡 −
𝑋𝑎>𝑡
𝑋

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋𝑎>𝑡

Handling numerical attributes
• Numerical attributes have to be treated differently

➢ Find the best splitting value

Sort

Mean of

each

consecutive

pair

𝑔𝑎𝑖𝑛 𝑋, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦, 83.5 = 0.94

𝑔𝑎𝑖𝑛 𝑋, 𝑎, 𝑡 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 −
𝑋𝑎≤𝑡
𝑋

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋𝑎≤𝑡 −
𝑋𝑎>𝑡
𝑋

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋𝑎>𝑡

Handling numerical attributes
• Numerical attributes have to be treated differently

➢ Find the best splitting value

Sort

Mean of

each

consecutive

pair

𝑔𝑎𝑖𝑛 𝑋, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦, 83.5 = 0.94 −
7

14
∙ 0.59

𝑔𝑎𝑖𝑛 𝑋, 𝑎, 𝑡 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 −
𝑋𝑎≤𝑡
𝑋

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋𝑎≤𝑡 −
𝑋𝑎>𝑡
𝑋

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋𝑎>𝑡

Handling numerical attributes
• Numerical attributes have to be treated differently

➢ Find the best splitting value

Sort

Mean of

each

consecutive

pair

𝑔𝑎𝑖𝑛 𝑋, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦, 83.5 = 0.94 −
7

14
∙ 0.59 −

7

14
∙ 0.98

𝑔𝑎𝑖𝑛 𝑋, 𝑎, 𝑡 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 −
𝑋𝑎≤𝑡
𝑋

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋𝑎≤𝑡 −
𝑋𝑎>𝑡
𝑋

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋𝑎>𝑡

Handling numerical attributes
• Numerical attributes have to be treated differently

➢ Find the best splitting value

Sort

Mean of

each

consecutive

pair

𝑔𝑎𝑖𝑛 𝑋, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦, 83.5 = 0.94 −
7

14
∙ 0.59 −

7

14
∙ 0.98

≈ 𝟎. 𝟏𝟓𝟐

Handling numerical attributes
• Numerical attributes have to be treated differently

➢ Find the best splitting value

Sort

Mean of

each

consecutive

pair

Gain for

every

candidate 83.5 is the

best splitting

value with an

information

gain of 0.152

>

>

>

>

≤

≤

≤

>

≤

≤

≤

>

≤

>

Handling numerical attributes
• Numerical attributes have to be treated differently

➢ Find the best splitting value

• 83.5 is the best splitting value for

Humidity with an information gain of

0.152

• Humidity is now treated as a

categorical attribute with two possible

values

• A new optimal split is computed at every

level of the tree

• A numerical attribute can be used

several times in the tree, with different

split values

Handling Missing Values

Handling missing values at training time

• Data sets might have samples with missing values for some

attributes

• Simply ignoring them would mean throwing away a lot of

information

• There are better ways of handling missing values:

Handling missing values at training time

• Data sets might have samples with missing values for some

attributes

• Simply ignoring them would mean throwing away a lot of

information

• There are better ways of handling missing values:

➢ Set them to the most common value

Handling missing values at training time

• Data sets might have samples with missing values for some

attributes

• Simply ignoring them would mean throwing away a lot of

information

• There are better ways of handling missing values:

➢ Set them to the most common value

➢ Set them to the most probable value given the label

𝑃 𝑁𝑜 𝐵𝑖𝑟𝑑 =
1

3
= 0.33

𝑃 𝑌𝑒𝑠 𝐵𝑖𝑟𝑑 =
2

3
= 0.66

𝑃 𝑊ℎ𝑖𝑡𝑒 𝑀𝑎𝑚𝑚𝑎𝑙 = 1

𝑃 𝐵𝑟𝑜𝑤𝑛 𝑀𝑎𝑚𝑚𝑎𝑙 = 0

Handling missing values at training time

• Data sets might have samples with missing values for some

attributes

• Simply ignoring them would mean throwing away a lot of

information

• There are better ways of handling missing values:

➢ Set them to the most common value

➢ Set them to the most probable value given the label

➢ Add a new instance for each possible value

Handling missing values at training time

• Data sets might have samples with missing values for some

attributes

• Simply ignoring them would mean throwing away a lot of

information

• There are better ways of handling missing values:

➢ Set them to the most common value

➢ Set them to the most probable value given the label

➢ Add a new instance for each possible value

➢ Leave them unknown, but discard the sample when

evaluating the gain of that attribute

(if the attribute is chosen for splitting, send the instances

with unknown values to all children)

gain 𝑋 𝑐𝑜𝑙𝑜𝑟 = 0.985 −
2

6
∙ 0 −

4

6
∙ 1

= 0.318

entropy(𝑋𝑐𝑜𝑙𝑜𝑟=𝑏𝑟𝑜𝑤𝑛) = 0

entropy(𝑋𝑐𝑜𝑙𝑜𝑟=𝑤ℎ𝑖𝑡𝑒) = 1

Handling missing values at training time

• Data sets might have samples with missing values for some

attributes

• Simply ignoring them would mean throwing away a lot of

information

• There are better ways of handling missing values:

➢ Set them to the most common value

➢ Set them to the most probable value given the label

➢ Add a new instance for each possible value

➢ Leave them unknown, but discard the sample when

evaluating the gain of that attribute

(if the attribute is chosen for splitting, send the instances

with unknown values to all children)

➢ Build a decision tree on all other attributes (including label)

to predict missing values

(use instances where the attribute is defined as training data)

Handling missing values at inference time

Loan?

• Not a student

• 49 years old

• Unknown income

• Fair credit record

• When we encounter a node that checks an attribute with a missing value, we

explore all possibilities

Handling missing values at inference time

Loan?

• Not a student

• 49 years old

• Unknown income

• Fair credit record

➢ Yes

• When we encounter a node that checks an attribute with a missing value, we

explore all possibilities

• We explore all branches and take the final prediction based on a (weighted)

vote of the corresponding leaf nodes

Decision Boundaries

• Decision trees produce non-linear decision boundaries

Support Vector Machines Decision Tree

Decision Trees: Training and Inference

Training

Inference

History of Decision Trees

• The first regression tree algorithm

➢ “Automatic Interaction Detection (AID)” [Morgan & Sonquist, 1963]

• The first classification tree algorithm

➢ “Theta Automatic Interaction Detection (THAID)” [Messenger & Mandel,

1972]

• Decision trees become popular

➢ “Classification and regression trees (CART)” [Breiman et al., 1984]

• Introduction of the ID3 algorithm

➢ “Induction of Decision Trees” [Quinlan, 1986]

• Introduction of the C4.5 algorithm

➢ “C4.5: Programs for Machine Learning” [Quinlan, 1993]

Summary

• Decision trees represent a tool based on a tree-like graph of decisions

and their possible outcomes

• Decision tree learning is a machine learning method that employs a

decision tree as a predictive model

• ID3 builds a decision tree by iteratively splitting the data based on the

values of an attribute with the largest information gain (decrease in

entropy)

➢ Using the decrease of Gini Impurity is also a commonly-used option in

practice

• C4.5 is an extension of ID3 that handles attributes with continuous

values, missing values and adds regularization by pruning branches likely

to overfit

Random Forests
(Ensemble learning with decision trees)

Random Forests

• Random Forests:

➢ Instead of building a single decision tree and use it to make

predictions, build many slightly different trees and combine their

predictions

• We have a single data set, so how do we obtain slightly different trees?

1. Bagging (Bootstrap Aggregating):

➢ Take random subsets of data points from the training set to create N

smaller data sets

➢ Fit a decision tree on each subset

2. Random Subspace Method (also known as Feature Bagging):

➢ Fit N different decision trees by constraining each one to operate on a

random subset of features

Bagging at training time

Training set

N subsets (with

replacement)

Bagging at inference time

A test sample

75% confidence

Random Subspace Method at training time

Training data

Random Subspace Method at inference time

A test sample

66% confidence

Tree 1 Tree 2 Tree N

Random Forests

Random Forest

History of Random Forests

• Introduction of the Random Subspace Method

➢ “Random Decision Forests” [Ho, 1995] and “The Random Subspace

Method for Constructing Decision Forests” [Ho, 1998]

• Combined the Random Subspace Method with Bagging. Introduce the

term Random Forest (a trademark of Leo Breiman and Adele Cutler)

➢ “Random Forests” [Breiman, 2001]

Ensemble Learning

• Ensemble Learning:

➢ Method that combines multiple learning algorithms to obtain

performance improvements over its components

• Random Forests are one of the most common examples of ensemble

learning

• Other commonly-used ensemble methods:

➢ Bagging: multiple models on random subsets of data samples

➢ Random Subspace Method: multiple models on random subsets of

features

➢ Boosting: train models iteratively, while making the current model

focus on the mistakes of the previous ones by increasing the weight

of misclassified samples

Boosting
All samples have

the same weight

Boosting

Reweight based on

model’s mistakes

All samples have

the same weight

Boosting

Next model sees

weighted samples

Boosting

Reweight based

on current

model’s mistakes

Boosting

Boosting

Summary
• Ensemble Learning methods combine multiple learning algorithms to

obtain performance improvements over its components

• Commonly-used ensemble methods:

➢ Bagging (multiple models on random subsets of data samples)

➢ Random Subspace Method (multiple models on random subsets of

features)

➢ Boosting (train models iteratively, while making the current model

focus on the mistakes of the previous ones by increasing the weight

of misclassified samples)

• Random Forests are an ensemble learning method that employ decision

tree learning to build multiple trees through bagging and random

subspace method.

➢ They rectify the overfitting problem of decision trees!

Thank You!
Slide Courtesy: Prof. Radu Ionescu, PhD.

Faculty of Mathematics and Computer Science

University of Bucharest

