
Decision Trees

Random Forests



Definition
• A tree-like model that illustrates series of events leading to certain decisions

• Each node represents a test on an attribute and each branch is an outcome of 

that test

• Not a student

• 45 years old

• Medium income

• Fair credit record

Who to loan?

• Student

• 27 years old

• Low income

• Excellent credit record
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• Medium income
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• Student

• 27 years old
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➢ No



Decision Tree Learning
• We use labeled data to obtain a suitable decision tree for future predictions

➢ We want a decision tree that works well on unseen data, while asking as few 

questions as possible



Decision Tree Learning
• Basic step: choose an attribute and, based on its values, split the data into 

smaller sets

➢ Recursively repeat this step until we can surely decide the label



Decision Tree Learning
• Basic step: choose an attribute and, based on its values, split the data into 

smaller sets

➢ Recursively repeat this step until we can surely decide the label



Decision Tree Learning
• Basic step: choose an attribute and, based on its values, split the data into 

smaller sets

➢ Recursively repeat this step until we can surely decide the label



Decision Tree Learning
• Basic step: choose an attribute and, based on its values, split the data into 

smaller sets

➢ Recursively repeat this step until we can surely decide the label



Decision Tree Learning
• Basic step: choose an attribute and, based on its values, split the data into 

smaller sets

➢ Recursively repeat this step until we can surely decide the label



What is a good attribute?

• Which attribute provides better splitting?

• Why?

➢ Because the resulting subsets are more pure

➢ Knowing the value of this attribute gives us more information about the label

(the entropy of the subsets is lower)



Information Gain



Entropy

• Entropy measures the degree of randomness in data

• For a set of samples 𝑋 with 𝑘 classes:

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 = −෍

𝑖=1

𝑘

𝑝𝑖 log2(𝑝𝑖)

where 𝑝𝑖 is the proportion of elements of class 𝑖

• Lower entropy implies greater predictability!



Information Gain

• The information gain of an attribute a is the expected 

reduction in entropy due to splitting on values of a:

𝑔𝑎𝑖𝑛 𝑋, 𝑎 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 − ෍

𝑣 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠(𝑎)

𝑋𝑣
𝑋

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑋𝑣)

where 𝑋𝑣 is the subset of 𝑋 for which 𝑎 = 𝑣



Best attribute = highest information gain

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑋 = − 𝑝mammal log2𝑝mammal − 𝑝bird log2 𝑝bird = −
3
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Gini Impurity

• Gini impurity measures how often a randomly chosen example would be 

incorrectly labeled if it was randomly labeled according to the label distribution

• For a set of samples 𝑋 with 𝑘 classes:

𝑔𝑖𝑛𝑖 𝑋 = 1 −෍

𝑖=1

𝑘

𝑝𝑖
2

where 𝑝𝑖 is the proportion of elements of class 𝑖

• Can be used as an alternative to entropy for selecting attributes!



Best attribute = highest impurity decrease

𝑔𝑖𝑛𝑖 𝑋 = 1 −
3

7

2

−
4

7

2

≈ 0.489

𝑔𝑖𝑛𝑖 (𝑋𝑐𝑜𝑙𝑜𝑟=𝑏𝑟𝑜𝑤𝑛) = 1 −
1

3

2

−
2

3

2

≈ 0.444

𝑔𝑖𝑛𝑖 (𝑋𝑓𝑙𝑦=𝑦𝑒𝑠) = 0 𝑔𝑖𝑛𝑖 (𝑋𝑓𝑙𝑦=𝑛𝑜) = 1 −
3

4

2

−
1

4

2

≈ 0. 375
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In practice, we compute 𝑔𝑖𝑛𝑖(𝑋) only once!

𝑔𝑖𝑛𝑖 (𝑋𝑐𝑜𝑙𝑜𝑟=𝑤ℎ𝑖𝑡𝑒) = 0.5



Entropy versus Gini Impurity
• Entropy and Gini Impurity give similar results in practice

➢ They only disagree in about 2% of cases

“Theoretical Comparison between the Gini Index and Information Gain 

Criteria” [Răileanu & Stoffel, AMAI 2004]

➢ Entropy might be slower to compute, because of the log



Pruning



Pruning

• Pruning is a technique that reduces the size of a decision tree by 

removing branches of the tree which provide little predictive power

• It is a regularization method that reduces the complexity of the 

final model, thus reducing overfitting

➢ Decision trees are prone to overfitting!

• Pruning methods:

➢ Pre-pruning: Stop the tree building algorithm before it fully 

classifies the data

➢ Post-pruning: Build the complete tree, then replace some non-

leaf nodes with leaf nodes if this improves validation error



𝑒𝑛𝑡𝑟𝑜𝑝𝑦(54|5) = 0.29 < 𝜃𝑒𝑛𝑡

𝜽𝒆𝒏𝒕 = 𝟎.𝟒

Pre-pruning
• Pre-pruning implies early stopping:

➢ If some condition is met, the current node will 

not be split, even if it is not 100% pure

➢ It will become a leaf node with the label of the 

majority class in the current set

(the class distribution could be used as prediction 

confidence)

• Common stopping criteria include setting a 

threshold on:

➢ Entropy (or Gini Impurity) of the current set

➢ Number of samples in the current set

➢ Gain of the best-splitting attribute

➢ Depth of the tree

Minimum 

threshold 

on entropy

91.52% confidence

Stop, even if node 

can be split



Post-pruning

• Prune nodes in a bottom-up manner, if it 

decreases validation error
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Handling Numerical Attributes



Handling numerical attributes
• How does the ID3 algorithm handle numerical attributes?

➢ Any numerical attribute would almost always bring entropy down to zero

➢ This means it will completely overfit the training data

Consider a numerical value for humidity
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Handling numerical attributes
• Numerical attributes have to be treated differently

➢ Find the best splitting value
Gain of numerical attribute 𝑎 if we split at value 𝑡

Sort

Mean of 

each 

consecutive 

pair
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Handling numerical attributes
• Numerical attributes have to be treated differently

➢ Find the best splitting value

Sort

Mean of 

each 

consecutive 

pair

Gain for 

every 

candidate 83.5 is the 

best splitting 

value with an 

information 

gain of 0.152
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Handling numerical attributes
• Numerical attributes have to be treated differently

➢ Find the best splitting value

• 83.5 is the best splitting value for 

Humidity with an information gain of 

0.152

• Humidity is now treated as a 

categorical attribute with two possible 

values

• A new optimal split is computed at every 

level of the tree

• A numerical attribute can be used 

several times in the tree, with different 

split values



Handling Missing Values



Handling missing values at training time

• Data sets might have samples with missing values for some 

attributes

• Simply ignoring them would mean throwing away a lot of 

information

• There are better ways of handling missing values:
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Handling missing values at training time

• Data sets might have samples with missing values for some 

attributes

• Simply ignoring them would mean throwing away a lot of 

information

• There are better ways of handling missing values:

➢ Set them to the most common value

➢ Set them to the most probable value given the label

𝑃 𝑁𝑜 𝐵𝑖𝑟𝑑 =
1

3
= 0.33

𝑃 𝑌𝑒𝑠 𝐵𝑖𝑟𝑑 =
2

3
= 0.66

𝑃 𝑊ℎ𝑖𝑡𝑒 𝑀𝑎𝑚𝑚𝑎𝑙 = 1

𝑃 𝐵𝑟𝑜𝑤𝑛 𝑀𝑎𝑚𝑚𝑎𝑙 = 0
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attributes

• Simply ignoring them would mean throwing away a lot of 

information

• There are better ways of handling missing values:

➢ Set them to the most common value

➢ Set them to the most probable value given the label

➢ Add a new instance for each possible value



Handling missing values at training time

• Data sets might have samples with missing values for some 

attributes

• Simply ignoring them would mean throwing away a lot of 

information

• There are better ways of handling missing values:

➢ Set them to the most common value

➢ Set them to the most probable value given the label

➢ Add a new instance for each possible value

➢ Leave them unknown, but discard the sample when 

evaluating the gain of that attribute

(if the attribute is chosen for splitting, send the instances    

with unknown values to all children)

gain 𝑋 𝑐𝑜𝑙𝑜𝑟 = 0.985 −
2

6
∙ 0 −

4

6
∙ 1

= 0.318

entropy(𝑋𝑐𝑜𝑙𝑜𝑟=𝑏𝑟𝑜𝑤𝑛) = 0

entropy(𝑋𝑐𝑜𝑙𝑜𝑟=𝑤ℎ𝑖𝑡𝑒) = 1



Handling missing values at training time

• Data sets might have samples with missing values for some 

attributes

• Simply ignoring them would mean throwing away a lot of 

information

• There are better ways of handling missing values:

➢ Set them to the most common value

➢ Set them to the most probable value given the label

➢ Add a new instance for each possible value

➢ Leave them unknown, but discard the sample when 

evaluating the gain of that attribute

(if the attribute is chosen for splitting, send the instances    

with unknown values to all children)

➢ Build a decision tree on all other attributes (including label) 

to predict missing values

(use instances where the attribute is defined as training data)



Handling missing values at inference time

Loan?

• Not a student

• 49 years old

• Unknown income

• Fair credit record

• When we encounter a node that checks an attribute with a missing value, we 

explore all possibilities



Handling missing values at inference time

Loan?

• Not a student

• 49 years old

• Unknown income

• Fair credit record

➢ Yes

• When we encounter a node that checks an attribute with a missing value, we 

explore all possibilities

• We explore all branches and take the final prediction based on a (weighted) 

vote of the corresponding leaf nodes



Decision Boundaries

• Decision trees produce non-linear decision boundaries

Support Vector Machines Decision Tree



Decision Trees: Training and Inference

Training

Inference



History of Decision Trees

• The first regression tree algorithm

➢ “Automatic Interaction Detection (AID)” [Morgan & Sonquist, 1963]

• The first classification tree algorithm

➢ “Theta Automatic Interaction Detection (THAID)” [Messenger & Mandel, 

1972]

• Decision trees become popular

➢ “Classification and regression trees (CART)” [Breiman et al., 1984]

• Introduction of the ID3 algorithm

➢ “Induction of Decision Trees” [Quinlan, 1986]

• Introduction of the C4.5 algorithm

➢ “C4.5: Programs for Machine Learning” [Quinlan, 1993]



Summary

• Decision trees represent a tool based on a tree-like graph of decisions 

and their possible outcomes

• Decision tree learning is a machine learning method that employs a 

decision tree as a predictive model

• ID3 builds a decision tree by iteratively splitting the data based on the 

values of an attribute with the largest information gain (decrease in 

entropy)

➢ Using the decrease of Gini Impurity is also a commonly-used option in 

practice

• C4.5 is an extension of ID3 that handles attributes with continuous 

values, missing values and adds regularization by pruning branches likely 

to overfit 



Random Forests
(Ensemble learning with decision trees)



Random Forests

• Random Forests:

➢ Instead of building a single decision tree and use it to make 

predictions, build many slightly different trees and combine their 

predictions

• We have a single data set, so how do we obtain slightly different trees?

1. Bagging (Bootstrap Aggregating):

➢ Take random subsets of data points from the training set to create N 

smaller data sets

➢ Fit a decision tree on each subset

2. Random Subspace Method (also known as Feature Bagging):

➢ Fit N different decision trees by constraining each one to operate on a 

random subset of features



Bagging at training time

Training set

N subsets (with 

replacement)



Bagging at inference time

A test sample

75% confidence



Random Subspace Method at training time

Training data



Random Subspace Method at inference time

A test sample

66% confidence



Tree 1 Tree 2 Tree N

Random Forests

Random Forest



History of Random Forests

• Introduction of the Random Subspace Method

➢ “Random Decision Forests” [Ho, 1995] and “The Random Subspace 

Method for Constructing Decision Forests” [Ho, 1998]

• Combined the Random Subspace Method with Bagging. Introduce the 

term Random Forest (a trademark of Leo Breiman and Adele Cutler)

➢ “Random Forests” [Breiman, 2001]



Ensemble Learning

• Ensemble Learning:

➢ Method that combines multiple learning algorithms to obtain 

performance improvements over its components

• Random Forests are one of the most common examples of ensemble 

learning

• Other commonly-used ensemble methods:

➢ Bagging: multiple models on random subsets of data samples

➢ Random Subspace Method: multiple models on random subsets of 

features

➢ Boosting: train models iteratively, while making the current model 

focus on the mistakes of the previous ones by increasing the weight 

of misclassified samples



Boosting
All samples have 

the same weight



Boosting

Reweight based on 

model’s mistakes

All samples have 

the same weight



Boosting

Next model sees 

weighted samples



Boosting

Reweight based 

on current 

model’s mistakes



Boosting



Boosting



Summary
• Ensemble Learning methods combine multiple learning algorithms to 

obtain performance improvements over its components

• Commonly-used ensemble methods:

➢ Bagging (multiple models on random subsets of data samples)

➢ Random Subspace Method (multiple models on random subsets of 

features)

➢ Boosting (train models iteratively, while making the current model 

focus on the mistakes of the previous ones by increasing the weight 

of misclassified samples)

• Random Forests are an ensemble learning method that employ decision 

tree learning to build multiple trees through bagging and random 

subspace method.

➢ They rectify the overfitting problem of decision trees!
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