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Introduction to Machine Learning.

Basic Concepts and Learning 

Paradigms. 
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What is artificial intelligence (AI)?

• The ultimate goal of artificial intelligence is to build systems able to reach 

human intelligence levels

• Turing test a computer is said to possess human-level intelligence if a remote 

human interrogator, within a fixed time frame, cannot distinguish between 

the computer and a human subject based on their replies to various questions 

posed by the interrogator
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Perhaps we are going in the right direction?
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What is machine learning (ML)?

• Many AI researchers consider the ultimate goal of AI can be 

achieved by imitating the way humans learn

• Machine Learning – is the scientific study of algorithms and 

statistical models that computer systems use to learn from 

observations, without being explicitly programmed

• In this context, learning refers to:

➢ recognizing complex patterns in data

➢ making intelligent decisions based on data observations
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A well-posed machine learning problem

• What problems can be solved* with machine learning?

• Well-posed machine learning problem:

"A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance at 

tasks in T, as measured by P, improves with experience E.” – Tom Mitchell

(*) implies a certain degree of accuracy
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• Arthur Samuel (1959) wrote a program for playing checkers (perhaps the 

first program based on the concept of learning, as defined by Tom Mitchell)

• The program played 10K games against itself

• The program was designed to find the good and bad positions on the board 

from the current state, based on the probability of winning or losing

• In this example:

➢ E = 10000 games

➢ T = play checkers

➢ P = win or lose

A well-posed machine learning problem
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Strong AI versus Weak AI

• Strong / generic / true AI

(see the Turing test and its extensions)

• Weak / narrow AI

(focuses on a specific well-posed problem)
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When do we use machine learning?

• We use ML when it is hard (impossible) to define a set of 

rules by hand / to write a program based on explicit rules

• Examples of tasks that be solved through machine learning:

➢ face detection

➢ speech recognition

➢ stock price prediction

➢ object recognition
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• A pattern exists

• We cannot express it programmatically

• We have data on it

The essence of machine learning
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[Arthur Samuel, 1959] field of study that: 

• gives computers the ability to learn without being 

explicitly programmed

[Kevin Murphy] algorithms that:

• automatically detect patterns in data

• use the uncovered patterns to predict future data or 

other outcomes of interest

[Tom Mitchell] algorithms that:

• improve their performance (P)

• at some task (T)

• with experience (E)

What is machine learning?
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Brief history of AI

(C) Dhruv Batra 
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• “We propose that a 2 month, 10 man study of artificial intelligence 

be carried out during the summer of 1956 at Dartmouth College in 

Hanover, New Hampshire.”

• The study is to proceed on the basis of the conjecture that every 

aspect of learning or any other feature of intelligence can in 

principle be so precisely described that a machine can be made to 

simulate it. 

• An attempt will be made to find how to make machines use 

language, form abstractions and concepts, solve kinds of problems 

now reserved for humans, and improve themselves.

• We think that a significant advance can be made in one or more of 

these problems if a carefully selected group of scientists work on it 

together for a summer.”

Brief history of AI
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• 1960-1980s: ”AI Winter”

• 1990s: Neural networks dominate, essentially because 

of the discovery of the backpropagation for training 

neural networks with two or more layers

• 2000s: Kernel methods dominate, essentially because of 

the instability of training neural networks

• 2010s: The comeback of neural networks, essentially 

because of the discovery of deep learning

Brief history of AI
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• More compute 

power

• More data

• Better algorithms 

/ models

Why are things working today?
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ML in a nutshell

• Tens of thousands of machine learning algorithms

➢ Researchers publish hundreds new every year

• Decades of ML research oversimplified:

➢ Learn a mapping f from the input X to the output Y, i.e.: 𝑓: 𝑋 → 𝑌

➢ Example: X are emails, Y: {spam, not-spam}
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ML in a nutshell

Input: X   (images, texts, emails…)

Output: Y (spam or not-spam…)

(Unknown) Target Function:

𝑓: 𝑋 → 𝑌 (the “true” mapping / reality)

Data 

𝑥1, 𝑦1 , (𝑥2, 𝑦2),… (𝑥𝑁 , 𝑦𝑁)

Model / Hypothesis Class

𝑔: 𝑋 → 𝑌
𝑦 = 𝑔 𝑥 = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥)
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ML in a nutshell

• Every machine learning algorithm has three components:

➢ Representation / Model Class

➢ Evaluation / Objective Function

➢ Optimization
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Applied 

Maths

Where does ML fit in?

Biology

Neuroscience

Computer 

Science
Statistics

Machine 

Learning

• Biology of learning

• Inspiring paradigms

• E.g.: neural networks

• Algorithms

• Data structures

• Complexity analysis

• E.g.: k-d trees

• Estimation techniques

• Theoretical frameworks

• Optimality, efficiency

• E.g.: Bayes rule

• Optimization

• Linear algebra

• Derivatives

• E.g.: local minimum
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Learning paradigms

• Standard learning paradigms:

➢ Supervised learning

➢ Unsupervised learning

➢ Semi-supervised learning

➢ Reinforcement learning

• Non-standard paradigms:

➢ Active learning

➢ Transfer learning

➢ Transductive learning
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Supervised learning

• We have a set of labeled training samples

• Example 1: object recognition in images annotated with 

corresponding class labels

DogPerson
Car

Car Person
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Supervised learning

• Example 2: handwritten digit recognition (on the MNIST data set) 

• Images of 28 x 28 pixels

• We can represent each image as a vector x of 784 components

• We train a classifier 𝑓(𝑥) such that:

𝑓 ∶ 𝑥 → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
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Supervised learning

• Example 2 (continued): handwritten digit recognition (on the MNIST data set) 

• Starting with a training set of about 60K images (about 6000 images per class)

• … the error rate can go down to 0.23% (using convolutional neural networks)

• Among the first (learning-based) systems used in a large-scale commercial setting 

for postal code and bank cheque processing
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• Example 3: face detection

• One approach consists of sliding a window over the image

• The goal is to classify each window into one of the two 

possible classes: face or not-face

• The original problem is transformed into a classification 

problem

Supervised learning
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• Example 3: face detection

• We start with a set of face images with different variations 

such as age, gender, illumination, pose, but no translations

• … and a larger set of images that do not contain full faces

Supervised learning
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• Example 4: spam detection

• The task is to classify an email into spam or not-spam

• The occurrence of the word “Dollars” is a good indicator of spam

• A possible representation is a vector of word frequencies

Supervised learning
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We count the words…

obtaining X
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The spam detection algorithm

Why these words?
Where do the weights come from?

Why linear 

combination?

Confidence / 

performance 

guarantee?
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• Example 5: predicting stock prices on the market

• The goal is to predict the price at a future date, for example 

in a few days

• This is a regression task, since the output is continuous

Supervised learning
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• Example 6: image difficulty prediction [Ionescu et al. CVPR2016]

• The goal is to predict the time necessary for a human to solve a visual 

search task

• This is a regression task, since the output is continuous

Supervised learning
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Canonical forms of supervised learning problems

• Classification?

• Regression?
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Age estimation in images

• Classification?

• Regression?

What age?
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The supervised learning paradigm
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Supervised learning models

• Naive Bayes 

• k-Nearest Neighbors

• Decision trees and random forests

• Support Vector Machines

• Kernel methods

• Kernel Ridge Regression

• Neural networks

• Many others…
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Unsupervised Learning

• We have an unlabeled training set of samples

• Example 1: clustering images based on similarity
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• Example 1: clustering MNIST images based on 

similarity [Georgescu et al. ICIP2019]

Unsupervised Learning
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• Example 2: unsupervised features learning

Unsupervised Learning
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• Example 2: unsupervised features learning for abnormal 

event detection [Ionescu et al. CVPR2019]

Unsupervised Learning
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• Example 3: clustering mammals by family, species, etc.

• The task is to generate the phylogenetic tree based on DNA

Unsupervised Learning
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Canonical forms of unsupervised learning problems

• Clustering

• Dimensionality Reduction
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Unsupervised learning models

• K-means clustering

• DBScan

• Hierarchical clustering

• Principal Component Analysis

• t-Distributed Stochastic Neigbor Embedding

• Hidden Markov Models

• Many others…
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Semi-supervised learning

• We have a training set of samples that are partially 

annotated with class labels

• Example 1: object recognition in images, some of 

which are annotated with corresponding class 

labels

Dog
Person

Car
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Reinforcement learning

• How does it work?

• The system learns intelligent behavior using a 

reinforcement signal (reward)

• The reward is given after several actions are taken 

(it does come after every action)

• Time matters (data is sequential, not i.i.d.)

• The actions of the system can influence the data
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Reinforcement learning

• Example 1: learning to play Go

• +/- reward for winning / losing the game
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Reinforcement learning

• Example 2: teaching a robot to ride a bike

• +/- reward for moving forward / falling
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Reinforcement learning

• Example 3: learning to play Pong from image pixels

• +/- reward for increasing

• personal / adversary score
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Reinforcement learning paradigm
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Formalizing as Markov Decision Process
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Formalizing as Markov Decision Process



51

• Solution based on dynamic programming (small graphs) 

or approximation (large graphs)

• Goal: select the actions that maximize the total final 

reward

• The actions can have long-term consequences

• Sacrificing the immediate reward can lead to higher 

rewards on the long term

Formalizing as Markov Decision Process
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• AlphaGo example:

➢ Narrator 1: “That’s a very strange move”

➢ Narrator 2: “I thought it was a mistake”

➢ But actually, “the move turned the course of the game. 

AlphaGo went on to win Game Two, and at the post-game 

press conference, Lee Sedol was in shock.”

➢ https://www.wired.com/2016/03/two-moves-alphago-lee-

sedol-redefined-future/

Formalizing as Markov Decision Process
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Active learning

• Given a large set of unlabeled samples, we have to choose a small 

subset for annotation in order to obtain a good classification model
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Transfer learning

• Starting with a model trained for a certain task/domain, 

use the model for a different task/domain

More specific object classes,

face recognition, 

texture classification, etc.
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• Adapt the model to specific test samples

• Example 1: facial expression recognition [Georgescu et al. Access2019]

Transfer learning
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• Example 2: zero-shot learning

Transfer learning

At test time, some distinguishing 

properties of objects (auxiliary 

information) is provided.

For example, a model which has been 

trained to recognize horses, but has 

never been given a zebra, can still 

recognize a zebra when it also knows

that zebras look like striped horses.
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