k-Nearest Neighbors




Nearest Neighbor Example
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What is Needed for Nearest Neighbor

Three things are needed
> Set of stored training records
> Distance metric
° # of nearest neighbors k

To classify unknown record

> Compute distance to every training
— — record

° ldentify k nearest neighbors

— — > Determine classification using the k
+ — — nearest neighbors

© Using majority vote or weighted vote




Nearest Neighbor is Lazy Learner

Most Learners are Eager

> Work is done up-front
> Generate an explicit description of target function
> That is build a model from the training data

Lazy Learner
> Does not build a model: work is deferred
° Learning phase

o Just store the training data

> Testing Phase
> Essentially all work is done when classifying the example.
> No explicit model but rather implicit in the data and metrics



Assessing Similarity Not Easy




Issues with Different Scales

Examples below described by 3 numeric features

1';5.2 John:
f Age =35
Income = 35,000

No. of credit cards =3

Rachel:

Age =22

Income = 50,000

No. of credit cards = 2

“Closeness” defined in terms of the distance

> Euclidean distance: square root of sum of the squared differences
> Distance(John, Rachel) = sqrt[(35-22)%+(35K-50K)?+(3-2)?]

Problem: income dominates due to scale
> Solution: rescale features to uniform range




Issues with Di
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X axis measured in centimeters
Y axis measure in dollars

The nearest neighbor to the pink
unknown instance is N

X axis measured in millimeters
Y axis measure in dollars

The nearest neighbor to the pink
unknown instance is blue.

Use z-normalization so feature values have a mean of zero and a
standard deviation of 1. Can use this formula: X = (X - mean(X))/std(X)




Irrelevant Features

If each example described by 20 attributes but only 2 are relevant

° Examples with identical values for the 2 attributes may still be distant in 20-
dimensional instance space

How to mitigate irrelevant features?

Use more training instances

° Harder to obscure patterns

Ask an expert which features are irrelevant and drop
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Use statistical tests (prune irrelevant features)
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Search feature subsets



What happens for k =17

« We obtain a Voronoi diagram:
» The space is partitioned into regions

» The separating borders pass through areas where the distances between
training sample pairs are equal

 The separating borders are nonlinear



1-NN versus k-NN




1-NN versus k-NN
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The underlying hypothesis of k-NN
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Training data

Testing data

« The training data and the test data are sampled from the same

distribution

« Becomes unlikely for a representative pattern in the training set to be

absent in the test set



What happens for different values of k?

Training data Testing data
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What happens for different values of k?

Training data Testing data
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k=3 error=0.0760 error = 0.1340




What happens for different values of k?

Testing data

ining data
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What happens for different values of k?

Training data Testing data
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What do we need
for a memory-
based classifier?




* A DISTANCE FUNCTION:
» The Euclidean distance

» The Edit (Levenstein) distance
» The Hamming distance

* HOW MANY NEIGHBORS SHOULD WE CONSIDER?

* HOW DO WE “TRAIN” THE MODEL ON THE
EXAMPLES FROM THE VICINITY?




Let’s consider a particular 1-NN




The Euclidean distance (L)

e Forthe vectors x = (5,1,3,0) and y = (2,1,4,1), we
have:

dLZ(x:y) — \/(xl - yl)z + o+ (g — yn)z
=J(5-2)2+ (1 —-1)2+3 —4)2+(0 — 1)2

=v9+1+1=+11
= 3.32




The Manhattan distance (L,)

For the vectors x = (5,1,3,0) and y = (2,1,4,1), we have:
dp, (x,y) = |x1 —y1| + -+ |x5 — Yl
=[5-2|+|1—-1|+|3—4|+|0—1]
=3+1+1=5




The Minkowski distance (L)

* Forthevectors x = (xq,...,x,,) and y = (y4, ..., Vi), We
have:

de(x,y) — zi/lxl —y1|P 4+t Xy — P

 The Minkowski distance is a generalization for the
Euclidean distance (p = 2) and the Manhattan distance
(p=1)

* Ifp <1,then de<1 is no longer a distance. The triangle

inequality is violated for x = (0,0),y = (1,1) and z =
(0,1):

de<1 (x,y) > de<1 (x, Z)+de<1 (z,y)



The Hamming distance

* Useful, for instance, when the samples are represented by
categorical features or when the samples are DNA
sequences

* Forthevectorsx = (4,G,T,C)andy = (G,G,T,A), we
have:

dHamming(x;:V) =1+0+0+1=2

 We are counting how many features (components) are
different among the two vectors



The Edit (Levenstein) distance

* Useful, for instance, when the samples are strings (text
documents, DNA sequences) or temporal sequences
(videos)

 The distance is given by the number of changes (insert,
delete, replace) necessary to transform one object into the
other

* For video sequences, we use Dynamic Time Warping
(DTW)



1-NN for regression tasks
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k-NN for regression tasks

—— prediction
oo, data

0 1 2 3 g 5
* k-NN regression algorithm:

1) For each test sample x, we find the nearest k neighbors and
their labels

2) The output is the mean of the labels of the k neighbors:

1 K
f(x) = Ez;yz



Advantages and properties of k-NN

 k-NNis a very simple model
« Can be directly applied to multi-class problems

* The decision boundary is non-linear

« The quality of the results grows with the number of
training samples

 We have a single parameter that requires tuning (k)

* The training error grows with k, but the decision
boundary becomes smoother:



Disadvantages of k-NN

« What does nearest mean? We have to define a
distance

* |s the Euclidean distance always the best choice?

 The computational cost is quite high: we need to store and
pass through the whole training set during inference (at
test time)



Height (in cms) Weight (in kgs) T Shirt Size

158 58 M
158 59 M
158 63 M
160 59 M
160 60 M
163 60 M
163 61 M
160 64 L
163 64 L
165 61 L
165 62 L
165 65 L
168 62 L
168 63 L
168 66 L
170 63 L
170 64 L
170 68 L

Example

Suppose we have height, weight and T-shirt
size of some customers and we need to
predict the T-shirt size of a new customer
given only height and weight information.
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Example

Step 1: Calculate Similarity based on distance function

New customer named 'Monica' has height
161cm and weight 61kg. Euclidean distance
between first observation and new observation
(monica) is as follows -

=SQRT((161-158)"2+(61-58)"2)

Similarly, we will calculate distance of all the
training cases with new case and calculates the
rank in terms of distance. The smallest distance
value will be ranked 1 and considered as
nearest neighbor.



Height (in cms) Weight (in kgs) T Shirt Size

158 58 M Step 2 : Find K-Nearest Neighbors, Let K be 5
158 59 M ) .
H’.,. . _ AT - M
s - N € fe | =SQRT([$A521-A6)"2+{5$B521-B6)"2)
a | B | c fpE]
160 59 M Height Weight TShirt _
. ) . Distance
160 60 M 1 ({incms) {in kgs) Size
2 158 58 M 4.2
163 60 M 3 158 59 M 3.6
172
163 - . a4 138 63 M 3.0
5 160 59 M 2.2 3 170 [ | [
160 64 L g 150 60 M 1.4 ! 1 168 E N ]
163 ‘4 . 7 163 60 M 22 3 g 1
3 | 163 61 M 2.0 2 = w . -
165 61 L 160 64 3.2 = . n o
3 L 3 S 182 "\5 =L
165 6 . 10| 163 64 L 3.6 - . .‘/O\‘.
11 165 61 L 4.0 \
163 65 - 12| 165 62 L 4.1 i .o .
13 165 65 L 5.7 =8
168 62 L — 56 58 50 52 g4 66 g8 70
14| 168 62 L 71 WEIGHT [IN KGS]
168 03 L 15 168 63 L 7.3
168 66 L 16 168 66 L 8.6
17 170 63 L 9.2
170 63 L 18| 170 64 L 9.5
170 64 L 19 170 6E L 114
20
170 68 L 21 161 61




Height (in cms) Weight (in kgs) T Shirt Size

158 58 M If Standardized:
158 59 M
158 63 M
In order to make them comparable we need to
160 59 M standardize them which can be done by any of
160 |60 M the following methods :
163 60 M
163 61 M
160 64 L
163 64 L XS — X — mean
165 61 L 5.d.
165 62 L
A —mean
165 65 L A5 =
— 15 ] max — min
168 63 L
X —min
168 66 L As = :
max — min
170 63 L
170 64 L
170 68 L




Example

Height (in cms) Weight (in kgs) T Shirt Size A B O D E
158 53 M I .
If Standardized: Height [weight  Tshirt
158 59 M 1 {(in cms) |{in kgs) Size
|

1 63 M 2 -1.39 -1.64 M 1.3
160 59 M 3 -1.39 -1.27 M 1.0
160 0 N 4 -13%9 0325 M 1.0

5 | -0.92 -1.27 M 0.8 4
163 60 M —

g | -0.92 -0.39 M 0.4 1
163 61 M 7 | -0.23 -0.89 M 0.6 3
160 64 L B -0.23 -0.51 M 0.5 2
163 64 . q -0.92 0.63 L 1.2

10| -0.23 0.63 L 1.2
165 o - 11 0.23 -0.51 L 0.9 5
165 62 L 12 0.23 -0.13 L 1.0
165 - . 13| 0.23 1.01 L 1.8

14| 0.92 -0.13 L 1.7
168 62 L —

15| 0.92 0.25 L 1.8
168 63 L 16 0.92 1.39 L 2.5
168 66 L 17 1.39 0.25 L 2.2
170 63 . 18 1.39 0.63 L 2.4

19| 1.39 2.15 L 3.4
170 64 L _2 0
170 68 L 21 -0.7 -0.5




Thank You.
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