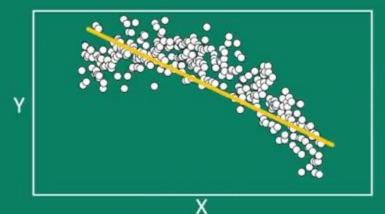
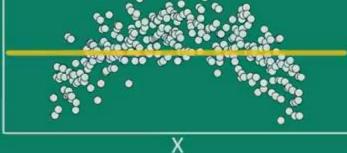


1. Linearity (Correct functional form)

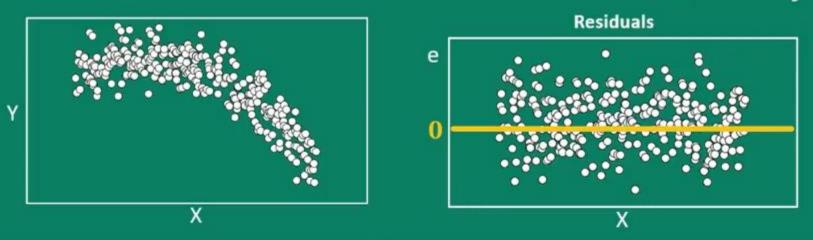
e

Consider the following model: Lung Function_i = $\beta_0 + \beta_1 (age)_i + \varepsilon_i$





Consider the following model: Lung Function_i = $\beta_0 + \beta_1 (age)_i + \beta_2 (age^2)_i + \varepsilon_i$



What's the issue?

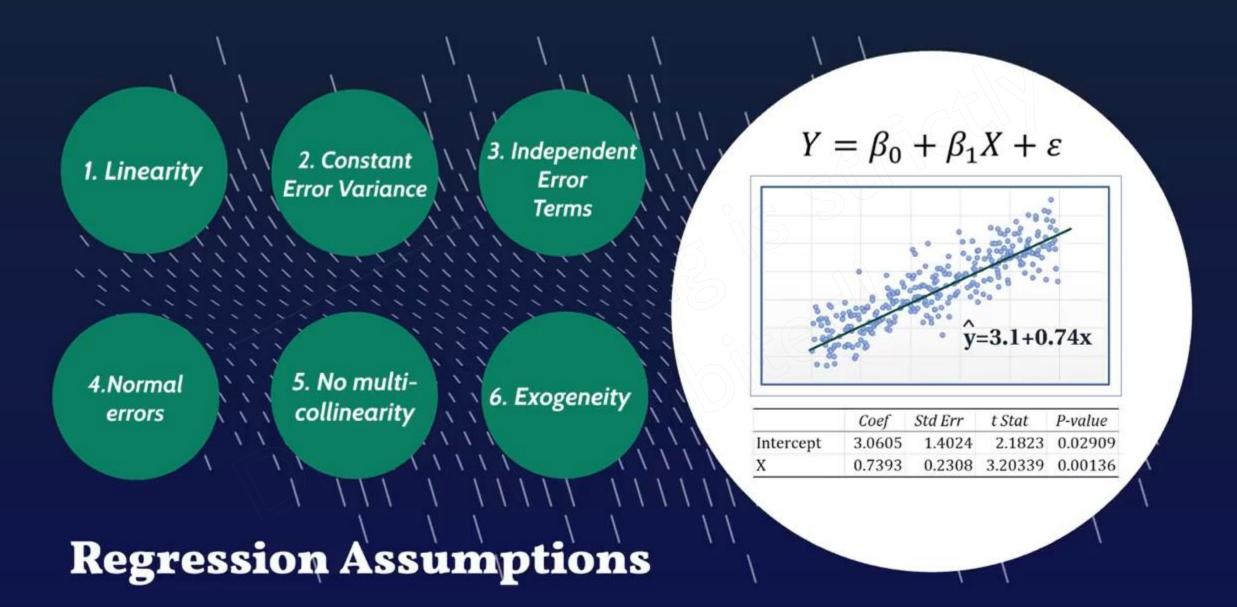
 If functional form is incorrect, both the coefficients and standard errors in your output are unreliable

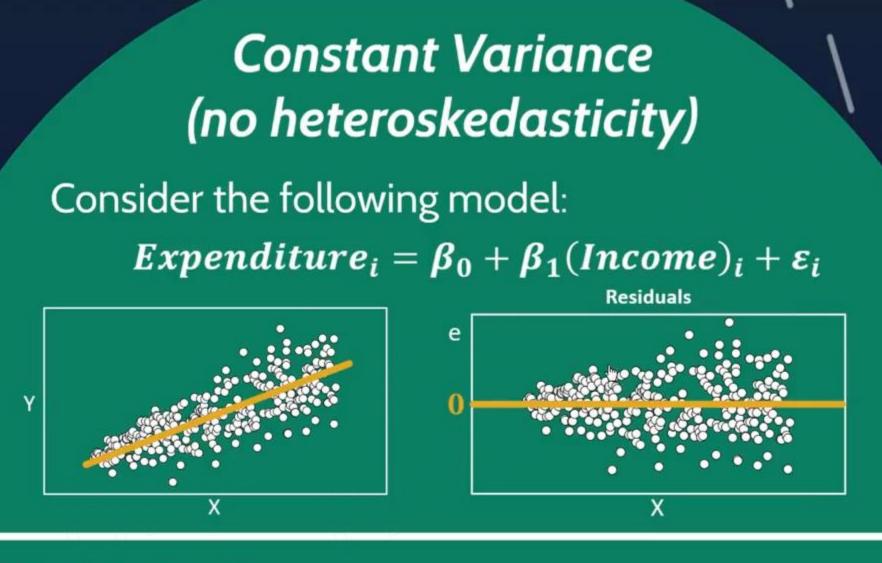
Detection:

- Residual plots
- Likelihood ratio (LR) test

Remedies:

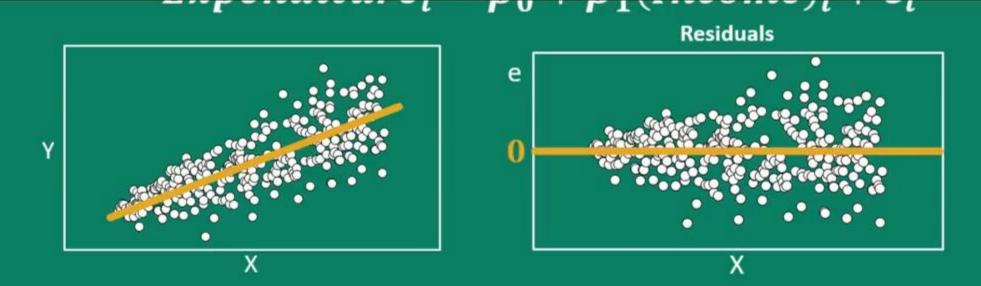
 Get the specification correct (trial and error)





What's the issue?

Under heteroskedasticity, standard errors in output cannot be relied upon



What's the issue?

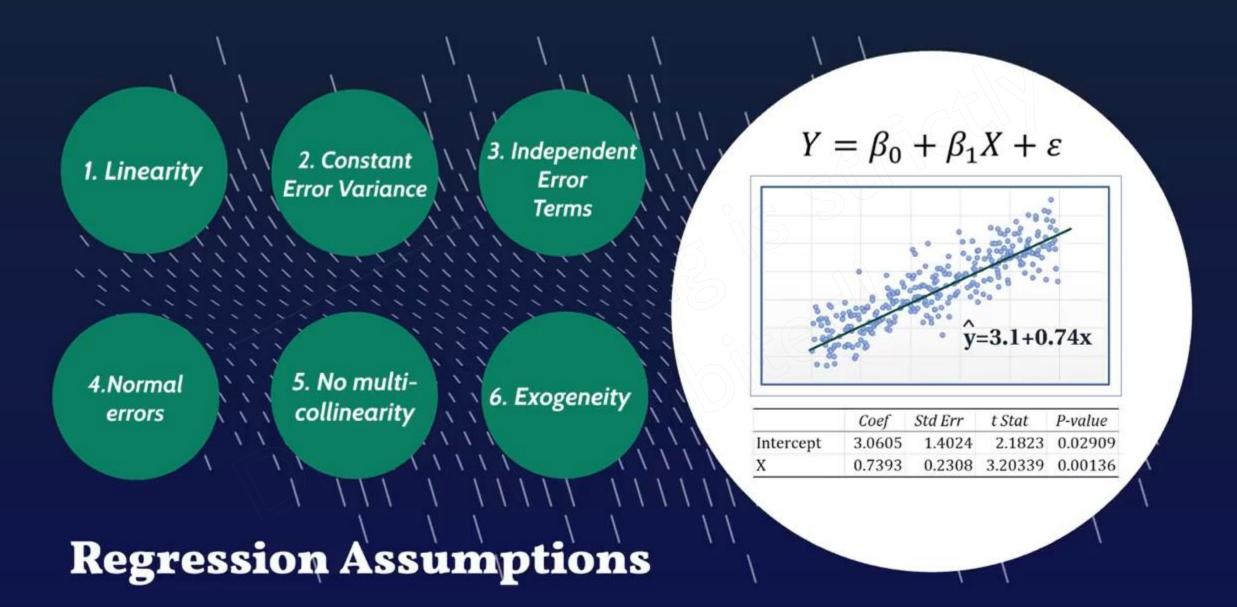
Under heteroskedasticity, standard errors in output cannot be relied upon

Detection:

- Goldfeldt-Quant test
- Breusch-Pagan test

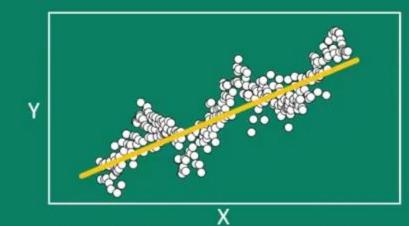
Remedies:

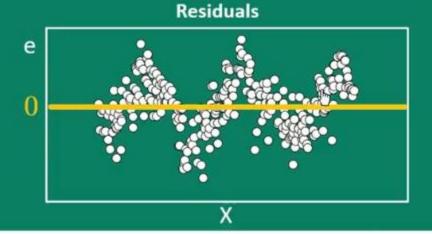
- White's standard errors
- Weighted least squares
- Log things!



Independent error terms (no autocorrelation)

Consider the following model: **Stock Index**_i = $\beta_0 + \beta_1 (Time)_i + \varepsilon_i$

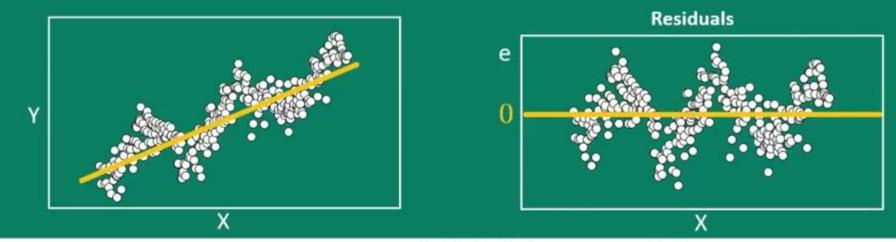




What's the issue?

Under autocorrelation, standard errors in output cannot be relied upon

Stock Index_i = $\beta_0 + \beta_1 (Time)_i + \varepsilon_i$



What's the issue?

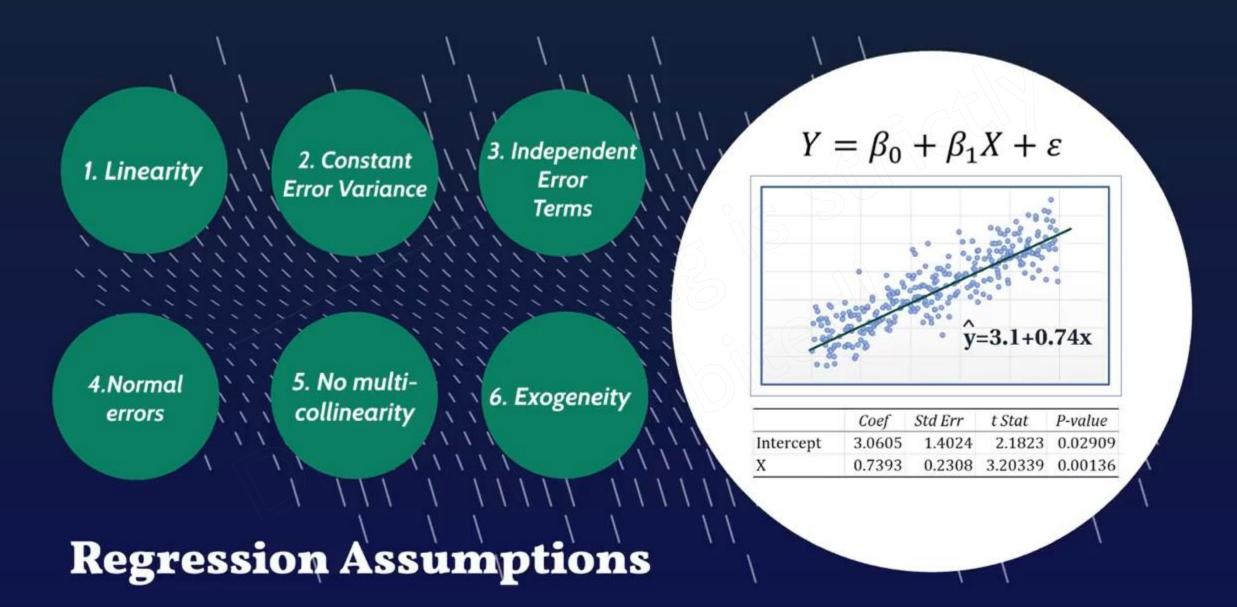
Under autocorrelation, standard errors in output cannot be relied upon

Detection:

- Durbin-Watson test
- Breusch-Godfrey test

Remedies:

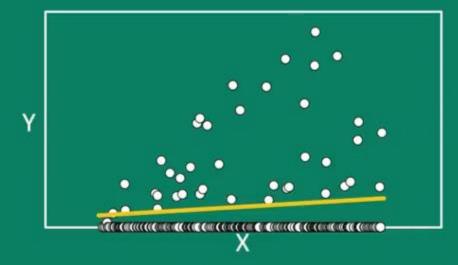
- Investigate omitted variables
- Generalised difference equation (Cochrane-Orchutt or AR(1) methods)



Normality of errors

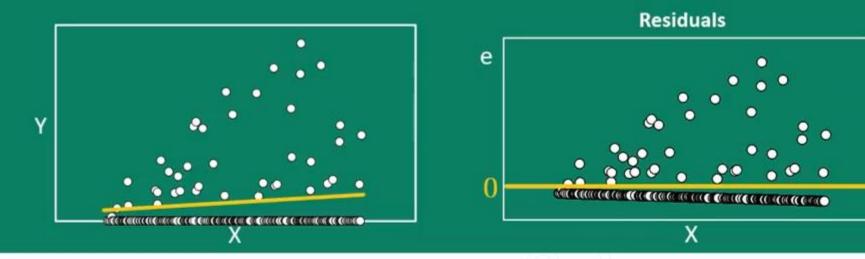
Consider the following model:

Medical Insurance Payout_i = $\beta_0 + \beta_1 (Customer Age)_i + \varepsilon$



Pesiduals

Medical Insurance Payout_i = $\beta_0 + \beta_1$ (Customer Age)_i + ε

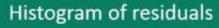


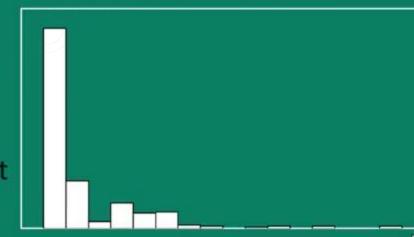
What's the issue?

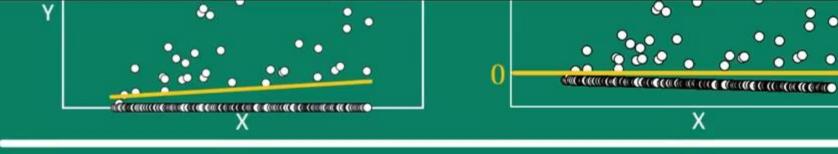
• If normality is violated and n is small, standard errors in output are affected Histogram of residuals

Detection:

- Histogram or Q-Q plot
- Shapiro-Wilk test
- Komolgorov-Smirnov test
- Anderson-Darling test





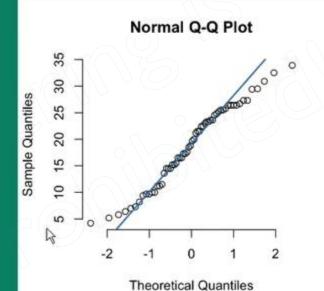


What's the issue?

• If normality is violated and n is small, standard errors in output are affected

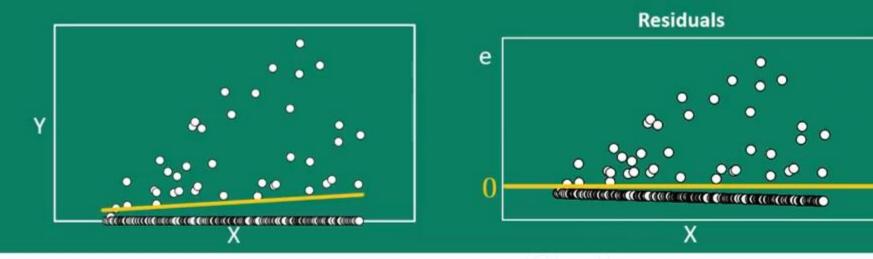
Detection:

- Histogram or Q-Q plot
- Shapiro-Wilk test
- Komolgorov-Smirnov test
- Anderson-Darling test



0

Medical Insurance Payout_i = $\beta_0 + \beta_1$ (Customer Age)_i + ε



What's the issue?

 If normality is violated and n is small, standard errors in output are affected

Detection:

- Histogram or Q-Q plot
- Shapiro-Wilk test
- Komolgorov-Smirnov test
- Anderson-Darling test

Remedies:

Change functional form (log?)

No multicollinearity

Consider the following model:

 $\begin{array}{l} \textit{Motor Accidents}_i = \beta_0 + \beta_1(\textit{Num cars})_i \\ + \beta_2(\textit{Num residents})_i + \varepsilon \\ & i = \textit{suburb } 1,2,3 \dots \end{array} \\ \textbf{Multi-collinearity} \text{ occurs where the X variables} \\ \textit{are themselves related} \end{array}$

What's the issue?

Coefficients and standard errors of affected variables are unreliable.

Detection:

- Look at correlation (p) between X variables
- Look at Variance Inflation Factors (VIF)

are themselves related

What's the issue?

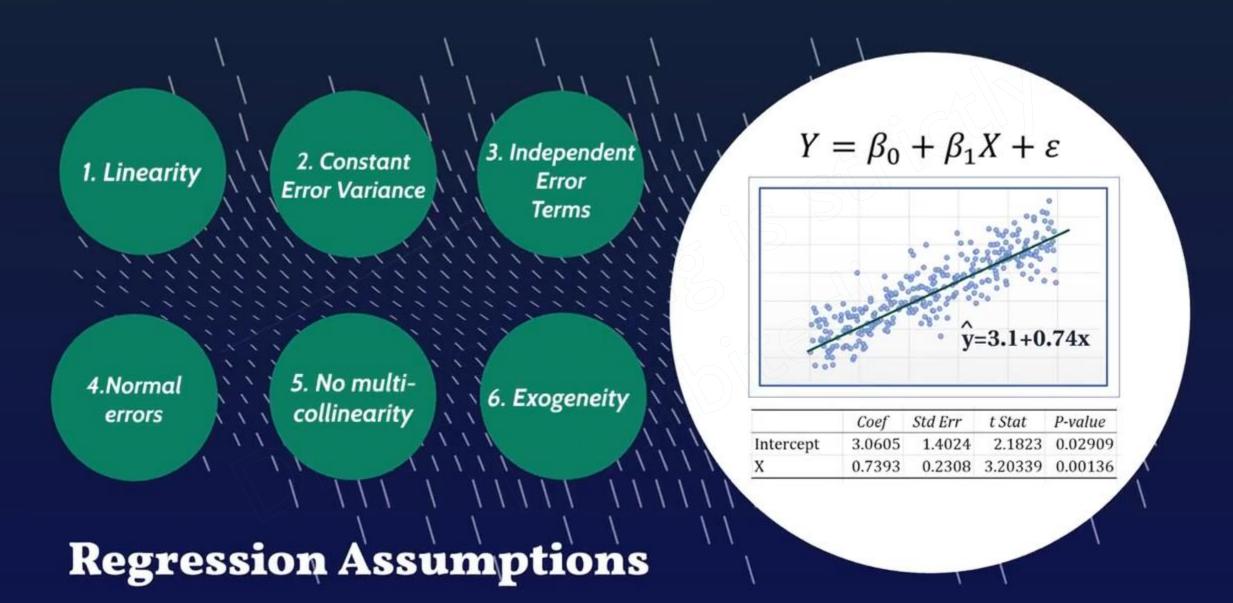
Coefficients and standard errors of affected variables are unreliable.

Detection:

- Look at correlation (ρ) between X variables
- Look at Variance Inflation Factors (VIF)

Remedies:

Remove one of the variables



Consider the following model: $Salary_{i} = \beta_{0} + \beta_{1}(Years \ of \ education)_{i} + \varepsilon_{i}$

Consider the following model:

 $Salary_i = \beta_0 + \beta_1 (Years of education)_i + \varepsilon_i$

Socio-economic status affects **both** X and Y variables, thus would cause **omitted variable bias**.

TECHNICALLY - Socio-economic status would affect ε_i in the model, thus, Education is no longer wholly exogenous as it can be explained in part by the error term.

Consider the following model:

Salary_i = $\beta_0 + \beta_1$ (Years of education)_i + ε_i Socio-economic status affects both X and Y variables, thus would cause omitted variable bias.

TECHNICALLY - Socio-economic status would affect ε_i in the model, thus, Education is no longer wholly exogenous as it can be explained in part by the error term.

What's the issue?

Model can only be used for predictive purposes (can not infer causation)

Consider the following model:

Salary_i = $\beta_0 + \beta_1$ (Years of education)_i + ε_i Socio-economic status affects both X and Y variables, thus would cause omitted variable bias.

TECHNICALLY - Socio-economic status would affect ε_i in the model, thus, Education is no longer wholly exogenous as it can be explained in part by the error term.

What's the issue?

Model can only be used for predictive purposes (can not infer causation)

Omitted variables contributes in error. If omitted variable is correlated with any independent variable, error becomes correlated with that variable. Error should not be correlated with the independent variable.

Consider the following model: $Salary_i = \beta_0 + \beta_1 (Years of education)_i + \varepsilon_i$ Socio-economic status affects both X and Y variables, thus would cause omitted variable bias.

TECHNICALLY - Socio-economic status would affect ε_i in the model, thus, Education is no longer wholly exogenous as it can be explained in part by the error term.

What's the issue?

Model can only be used for predictive purposes (can not infer causation)

Detection:

- Intuition
- Checking correlations

Remedy:

 Using instrumental variables

THANK YOU!