Logistic Regression

Logistic Regression

Introduction to Binary Outcomes

Continuous vs. Categorical Variables

• General linear regression model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$

Independent variables (x's):

- Continuous: age, income, height \rightarrow use numerical value.
- Categorical: gender, city, ethnicity \rightarrow use dummies.
- Dependent variable (y):
 - Continuous: consumption, time spent \rightarrow use numerical value.
 - Categorical: yes/no \rightarrow use dummies.

Examples of Binary Outcomes

- Should a bank give a person a loan or not?
- Is an individual transaction fraudulent or not?
- What determines admittance into a school?
- Which people are more likely to vote against a new law?
- Which customers are more likely to buy a new product?

Representing the Binary Outcomes

There are two outcomes: Yes and No

- We will create a dummy variable to indicate if an observation is a Yes or a No:
 y=1 if Yes
 y=0 if No
- If we code the variable the other way around, our coefficients will have the same magnitudes but opposite signs.

A linear model?

 Aside from being binary, there's really nothing special about our dependent variable (y).

- Its value is higher (from a 0 to a 1) if a customer subscribes, so whatever makes it higher increases the likelihood of subscription.
- We can then run:

subscribe = $\beta_0 + \beta_1 age + \varepsilon$

Result of Linear Model

000		gretl: model 1			
File Edit Tests	Save Graphs A	nalysis LaTeX			8
Model 1: OLS, using observations 1-1000 Dependent variable: subscribe					
	coefficient	std. error	t-ratio	p-value	
const age	-1.70073 0.0645433	0.0638035 0.00178736	-26.66 36.11	1.20e-118 2.52e-183	* * * * * *
Mean depende Sum squared R-squared F(1, 998) Log-likeliho Schwarz crit	nt var 0.57 resid 106. 0.56 1304 od -297. erion 608.	3000 S.D. de 0736 S.E. of 6464 Adjuste .002 P-value 1275 Akaike .0705 Hannan-	pendent va regression d R-square (F) criterion Quinn	ar 0.49489 on 0.32603 ed 0.56603 2.5e-18 598.255 601.985	90 16 30 33 50 55

subscribe = -1.700 + 0.064 *age*

 If our dependent variable is binary, then we want to see what makes it change from a 0 to 1.

 If our dependent variable is binary, then we want to see what makes it change from a 0 to 1.

 This can also be interpreted as what increases the likelihood of subscription, or P(*subscribe* = 1), which we can also simply denote as *p*.

 If our dependent variable is binary, then we want to see what makes it change from a 0 to 1.

 This can also be interpreted as what increases the likelihood of subscription, or P(*subscribe* = 1), which we can also simply denote as *p*.

• The result can be read as: P(subscribe = 1) = p = -1.700 + 0.064 age

 If our dependent variable is binary, then we want to see what makes it change from a 0 to 1.

- This can also be interpreted as what increases the likelihood of subscription, or P(*subscribe* = 1), which we can also simply denote as *p*.
- The result can be read as: P(subscribe = 1) = p = -1.700 + 0.064 age
- Every additional year of age increases the probability of subscription by 6.4%.

• Probabilities are bounded whereby $0 \le p \le 1$.

Probabilities are bounded whereby 0 ≤ p ≤ 1.
 The range of age in the data is such that 20 ≤ age ≤ 55.

Probabilities are bounded whereby 0 ≤ p ≤ 1.
The range of *age* in the data is such that 20 ≤ *age* ≤ 55.
The probability that a 35 year-old person subscribes is: p = -1.700 + 0.064 × 35 = 0.54

- Probabilities are bounded whereby $0 \le p \le 1$.
- The range of age in the data is such that $20 \le age \le 55$.
- The probability that a 35 year-old person subscribes is: $p = -1.700 + 0.064 \times 35 = 0.54$
- What about people with 25 and 45 years of age? $p = -1.700 + 0.064 \times 25 = -0.09$

- Probabilities are bounded whereby $0 \le p \le 1$.
- The range of age in the data is such that $20 \le age \le 55$.
- The probability that a 35 year-old person subscribes is: $p = -1.700 + 0.064 \times 35 = 0.54$
- What about people with 25 and 45 years of age?
 p = -1.700 + 0.064 × 25 = -0.09
 p = -1.700 + 0.064 × 45 = 1.20

1. It must always be positive (since $p \ge 0$)

1. It must always be positive (since $p \ge 0$)

f(x)=abs(x)=|x|

1. It must always be positive (since $p \ge 0$)

 $f(x)=x^2$

1. It must always be positive (since $p \ge 0$) $p = \exp(\beta_0 + \beta_1 age) = e^{\beta_0 + \beta_1 age}$

1. It must always be positive (since $p \ge 0$) $p = \exp(\beta_0 + \beta_1 age) = e^{\beta_0 + \beta_1 age}$ 2. It must be less than 1 (since $p \le 1$)

1. It must always be positive (since $p \ge 0$) $\mathbf{p} = \exp(\beta_0 + \beta_1 \operatorname{age}) = e^{\beta_0 + \beta_1 \operatorname{age}}$ 2. It must be less than 1 (since $p \leq 1$) $\mathbf{p} = \frac{\exp(\beta_0 + \beta_1 \operatorname{age})}{\exp(\beta_0 + \beta_1 \operatorname{age}) + 1} = \frac{e^{\beta_0 + \beta_1 \operatorname{age}}}{e^{\beta_0 + \beta_1 \operatorname{age}} + 1}$

Logistic Model Plot

Logistic Model Plot

Logistic Model Plot

 The previous expression (by doing some algebra) can be rewritten as:

 $\ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 \, age$

 The previous expression (by doing some algebra) can be rewritten as:

Log Odds

$$\ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 \, age$$

 Even though the probability of a customer subscribing (p) is not a linear function of age, the simple transformation is a linear function of age.

 The previous expression (by doing some algebra) can be rewritten as:

 $\ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 \, age$

 Even though the probability of a customer subscribing (p) is not a linear function of age, the simple transformation is a linear function of age.

The above equation is the one used in logistic regressions.

Result of Logistic Regression

000		greti: model 2		
File Edit Tests	Save Graphs Anal	lysis LaTeX		G
Model 2: Logit, using observations 1-1000 Dependent variable: subscribe Standard errors based on Hessian				
	coefficient	std. error	Z	slope
const age	-26.5240 0.781053	1.82819 0.0535623	-14.51 14.58	0.154207
Mean depender McFadden R-so Log-likelihoo Schwarz crite	nt var 0.573 quared 0.636 od -247.9 erion 509.8	000 S.D. de 613 Adjuste 937 Akaike 028 Hannan	ependent va ed R-square criterion -Quinn	r 0.494890 d 0.633683 499.9873 503.7179
<pre>Number of cases 'correctly predicted' = 884 (88.4%) f(beta'x) at mean of independent vars = 0.197 Likelihood ratio test: Chi-square(1) = 868.915 [0.0000]</pre>				
P: Actual 0 1	redicted 0 1 350 77 39 534			

Result of Logistic Regression

000		gretl: model 2		
File Edit Tests	Save Graphs A	nalysis LaTeX	GU B	
Model 2: Logit, using observations 1-1000 Dependent variable: subscribe Standard errors based on Hessian				
	coefficient	std. error z	slope	
const age	-26.5240 0.781053	1.82819 -14. 0.0535623 14.	51 58 0.154207	
Mean dependent var McFadden R-squared0.573000 0.636613S.D. dependent var Adjusted R-squared0.494890 0.633683Log-likelihood Schwarz criterion-247.9937 509.8028Akaike criterion Hannan-Quinn0.633683 503.7179				
<pre>Number of cases 'correctly predicted' = 884 (88.4%) f(beta'x) at mean of independent vars = 0.197 Likelihood ratio test: Chi-square(1) = 868.915 [0.0000]</pre>				
Actual 0 1	Predicted 0 1 350 77 39 534			

The Estimated Logistic Model

The estimated model was:

 $\ln\left(\frac{p}{1-p}\right) = -26.52 + 0.78 \text{ age}$

The Estimated Logistic Model

The estimated model was:
 ln(^p/_{1-p}) = -26.52 + 0.78 age
 Or written in terms of the probability p we have:

The Estimated Logistic Model

The estimated model was: $\ln\left(\frac{p}{1-p}\right) = -26.52 + 0.78 age$ Or written in terms of the probability p we have: $p = \frac{\exp(-26.52 + 0.78 \text{ age})}{\exp(-26.52 + 0.78 \text{ age}) + 1} =$ e^{-26.52} + 0.78 age $e^{-26.52 + 0.78} age + 1$

Logistic Regression

Interpretation of Coefficients and Forecasting

Image: Organization of the second	
File Edit Tests Save Graphs Analysis LaTeX	8
Model 2: Logit, using observations 1-1000 Dependent variable: subscribe Standard errors based on Hessian	
coefficient std. error z slope	
const -26.5240 1.82819 -14.51 age 0.781053 0.0535623 14.58 0.154207	
Mean dependent var McFadden R-squared0.573000 0.636613S.D. dependent var Adjusted R-squared0.494890 0.633683Log-likelihood Schwarz criterion-247.9937 509.8028Akaike criterion Hannan-Quinn0.633683 503.7179	
<pre>Number of cases 'correctly predicted' = 884 (88.4%) f(beta'x) at mean of independent vars = 0.197 Likelihood ratio test: Chi-square(1) = 868.915 [0.0000]</pre>	
Predicted 0 1 Actual 0 350 77 1 39 534	

000		gretl: model 2		
File Edit Tests	Save Graphs Ana	lysis LaTeX		8
Model 2: Log Dependent va Standard err	it, using observations based on He	rvations 1-10 ibe essian	000	
	coefficient	std. error	Z S	lope
const age	-26.5240 0.781053	1.82819 0.0535623	-14.51 14.58 0.	154207
Mean depende McFadden R-s Log-likeliho Schwarz crit	ent var 0.573 quared 0.636 od -247.9 erion 509.8	000 S.D. de 613 Adjuste 937 Akaike 028 Hannan-	ependent var ed R-squared criterion -Quinn	0.494890 0.633683 499.9873 503.7179
Number of cases 'correctly predicted' = 884 (88.4%) f(beta'x) at mean of independent vars = 0.197 Likelihood ratio test: Chi-square(1) = 868.915 [0.0000]				
P Actual 0 1	Predicted 0 1 350 77 39 534			

G gretl: model 2	
File Edit Tests Save Graphs Analysis LaTeX	8
Model 2: Logit, using observations 1-1000 Dependent variable: subscribe Standard errors based on Hessian	
coefficient std. error z	slope
const -26.5240 1.82819 -14.51 age 0.781053 0.0535623 14.58	0.154207
Mean dependent var 0.573000 S.D. dep Vent var	0.494890
McFadden R-squared 0.636613 Adjusted Reference Log-likelihood -247.9937 Akaike crite	Standard errors can be used
Schwarz criterion 509.8028 Hannan-Quinn	Standard errors carroe dsed
Number of cases 'correctly predicted' = 884 (88.4	estimate confidence interva
f(beta'x) at mean of independent vars = 0.197	
Likelihood ratio test: Chi-square(1) = 868.915 [0	0.70105 ± 2.5005256
Predicted	$0.76105 \pm 2 \times 0.05550$
0 1 Actual 0 350 77	0.674, 0.888
1 39 534	L

ors can be used to fidence intervals:

 We can no longer interpret the (magnitude of) the coefficients as we did before.

 We can no longer interpret the (magnitude of) the coefficients as we did before.

• What is the meaning of 0.78 in our estimated model?

 We can no longer interpret the (magnitude of) the coefficients as we did before.

• What is the meaning of 0.78 in our estimated model?

 $\ln\left(\frac{p}{1-p}\right) = -26.524 + 0.781 \, age$

 We can no longer interpret the (magnitude of) the coefficients as we did before.

• What is the meaning of 0.78 in our estimated model?

 $\ln\left(\frac{p}{1-p}\right) = -26.524 + 0.781 \, age$

For every unit increase of age, ln(^p/_{1-p}) increases
 0.78 units.

Increasing In(odd) is actually increasing probability.

In brief Logistic Regression

- Supervised learning method for classification.
- "logit" = "log odds"

$$odds = \frac{P(event)}{1 - P(event)}$$

- Let
$$\Pr(y = 1 | X) = p(X)$$

- Sigmoid Function: $p(X) = \frac{1}{1 + e^{-\beta X}}$

What is unknown in the sigmoid function? Estimate that parameter

 $X \in \mathbf{R}$

 $p(X) \in [0, 1]$

 \Longrightarrow Goal of learning is to estimate parameter vector \widehat{eta}

 \Longrightarrow Goal of learning is to estimate parameter vector \widehat{eta}

Logistic Regression uses Maximum Likelihood for parameter estimation. How does this work?

 \Longrightarrow Goal of learning is to estimate parameter vector \widehat{eta}

- Logistic Regression uses Maximum Likelihood for parameter estimation. How does this work?
 - Consider N samples with labels either 0 or 1

 \Longrightarrow Goal of learning is to estimate parameter vector \widehat{eta}

- Logistic Regression uses Maximum Likelihood for parameter estimation. How does this work?
 - Consider N samples with labels either 0 or 1
 - For samples labelled "1": Estimate $\widehat{\beta}$ such that p(X) is as close to 1 as possible

 \Longrightarrow Goal of learning is to estimate parameter vector \widehat{eta}

Logistic Regression uses Maximum Likelihood for parameter estimation. How does this work?

Consider N samples with labels either 0 or 1

For samples labelled "1": Estimate $\widehat{\beta}$ such that p(X)is as close to 1 as possible For samples labelled "0": Estimate $\widehat{\beta}$ such that 1 - p(X)

is as close to 1 as possible

Data:

Students = {A, B, C, D} A = Pass B = Fail C = Fail

D = Pass

M1: P(A = Pass) = .85 P(B = Pass) = .25 P(C = Pass) = .45 P(D = Pass) = .76

M2:

P(A = Pass) = .94 P(B = Pass) = .23 P(C = Pass) = .10 P(D = Pass) = .91

M3:

- P(A = Pass) = .75P(B = Pass) = .64P(C = Pass) = .39P(D = Pass) = .47
- P(D = Pass) = .47

Data:

Students = {A, B, C, D} A = Pass B = Fail C = Fail D = Pass

M1:

P(A = Pass) = .85 P(B = Pass) = .25 P(C = Pass) = .45 P(D = Pass) = .76

M2:

P(A = Pass) = .94 P(B = Pass) = .23 P(C = Pass) = .10 P(D = Pass) = .91

M3: P(A = Pass) = .75 P(B = Pass) = .64 P(C = Pass) = .39 P(D = Pass) = .47

- Goal of learning is to estimate parameter vector \widehat{eta}
- Logistic Regression uses Maximum Likelihood for parameter estimation. How does this work?
 - Consider N samples with labels either 0 or 1
 - For samples labelled "1": Estimate $\widehat{\beta}$ such that p(X) is as close to 1 as possible

- For samples labelled "0": Estimate $\widehat{\beta}$ such that 1 - p(X) is as close to 1 as possible

Note: P(yes, no, no, yes) = p(yes)*p(no)*p(no)*p(yes)

- Goal of learning is to estimate parameter vector \widehat{eta}
- Logistic Regression uses Maximum Likelihood for parameter estimation. How does this work?
 - Consider N samples with labels either 0 or 1
 - For samples labelled "1": Estimate $\widehat{\beta}$ such that p(X) is as close to 1 as possible

- For samples labelled "0": Estimate $\widehat{\beta}$ such that 1 - p(X) is as close to 1 as possible

Note: P(yes, no, no, yes) = p(yes)*p(no)*p(no)*p(yes)

$$\prod_{s \text{ in } yi=1} p(x_i)$$

- Goal of learning is to estimate parameter vector \widehat{eta}
- Logistic Regression uses Maximum Likelihood for parameter estimation. How does this work?
 - Consider N samples with labels either 0 or 1
 - For samples labelled "1": Estimate $\widehat{\beta}$ such that p(X) is as close to 1 as possible

- For samples labelled "0": Estimate $\widehat{\beta}$ such that 1 - p(X) is as close to 1 as possible

Note: P(yes, no, no, yes) = p(yes)*p(no)*p(no)*p(yes)

$$\prod_{\substack{s \text{ in } yi=1}} p(x_i) \qquad \prod_{\substack{s \text{ in } yi=0}} (1-p(x_i))$$

$$L(\beta) = \prod_{s \text{ in } yi=1} p(x_i) \times \prod_{s \text{ in } yi=0} (1 - p(x_i))$$

$$L(\beta) = \prod_{s} p(x_i)^{y_i} \times \left(1 - p(x_i)\right)^{1 - y_i}$$

$$L(\beta) = \prod_{s \text{ in } yi=1} p(x_i) \times \prod_{s \text{ in } yi=0} (1 - p(x_i))$$
$$L(\beta) = \prod_{s \text{ in } yi=1} p(x_i)^{y_i} \times (1 - p(x_i))^{1 - y_i}$$
$$l(\beta) = \sum_{i=1}^{s} y_i \log(p(x_i)) + (1 - y_i) \log(1 - p(x_i))$$

$$L(\beta) = \prod_{s \text{ in } yi=1} p(x_i) \times \prod_{s \text{ in } yi=0} (1 - p(x_i))$$
$$L(\beta) = \prod_{s \text{ in } yi=1} p(x_i)^{y_i} \times (1 - p(x_i))^{1 - y_i}$$
$$l(\beta) = \sum_{i=1}^{s} y_i \log(p(x_i)) + (1 - y_i) \log(1 - p(x_i))$$

- A loss function is for a single training example. It is also sometimes called an error function.
- A cost function, on the other hand, is the **average loss** over the entire training dataset.
- The optimization strategies aim at minimizing the cost function.

$$L(\beta) = \prod_{s \text{ in } yi=1} p(x_i) \times \prod_{s \text{ in } yi=0} (1 - p(x_i))$$

$$L(\beta) = \prod_{s \text{ in } yi=1} p(x_i)^{y_i} \times (1 - p(x_i))^{1 - y_i}$$

$$l(\beta) = \sum_{i=1}^{n} y_i \log(p(x_i)) + (1 - y_i) \log(1 - p(x_i))$$

Maximizing *l(β)* is equivalent to minimizing *-l(β)*
For Linear Regression:

$$L = (y - f(x))^2$$

For Logistic Regression:

$$L = -y * \log(p) - (1 - y) * \log(1 - p) = \begin{cases} -\log(1 - p), & \text{if } y = 0 \\ -\log(p), & \text{if } y = 1 \end{cases}$$

THANK YOU!