


Logistic Regression

Introduction to Binary Outcomes



Continuous vs. Categorical Variables

—

= General linear regression model:
y=Bot B X+ Fx,+ €

- = Independent variables (x’s):
— Continuous: age, income, height = use numerical value.
— Categorical: gender, city, ethnicity = use dummies.

* Dependent variable ( y):
— Continuous: consumption, time spent = use numerical value.
— Categorical: yes/no = use dummies.



Examples of Binary Outcomes

= Should a bank give a person a loan or not!?
= |s an individual transaction fraudulent or not?
* What determines admittance into a school?

= Which people are more likely to vote against a
new law!?

= Which customers are more likely to buy a new
product?



Representing the Binary Outcomes

= There are two outcomes: Yes and No

= We will create a dummy variable to indicate if an
observation is a Yes or a No:
-y=1if Yes
- y=0if No

= |[f we code the variable the other way around, our
coefficients will have the same magnitudes but
opposite signs.



A linear model?

—_ —————

= Aside from being binary, there’s really nothing special
about our dependent variable (y).

= [ts value is higher (from a 0 to a 1) if a customer
subscribes, so whatever makes it higher increases
the likelihood of subscription.

* We can then run:

subscribe = B,+ p,;age + €



Result of Linear Model

gretl: model 1

File Edit Tests Save Graphs Analysis

Model 1: OLS, using observations 1-1000
Dependent variable: subscribe

coefficient std. error t-ratio p-value

F1.70073 0.0638035 -26.66 1.20e-118 **x*
0.0645433 0.00178736 36.11 2.52e-183 **x

Mean dependent var 0.573000 S.D. dependent var 0.494890
Sum squared resid 106.0736 S.E. of regression 0.326016
R-squared 0.566464 Adjusted R-squared 0.566030
F(l1, 998) 1304.002 P-value(F) 2.5e-183
Log-likelihood -297.1275 Akaike criterion 598.2550
Schwarz criterion 608.0705 Hannan-Quinn 601.9855

subscribe = -1.700 + 0.064 age



Interpreting the Result

= |[f our dependent variable is binary, then we want to
see what makes it change from a 0 to 1.
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Interpreting the Result

= |[f our dependent variable is binary, then we want to
see what makes it change from a 0 to 1.

- = This can also be interpreted as what increases the
likelihood of subscription, or P(subscribe = 1),
which we can also simply denote as p.

* The result can be read as:
P(subscribe =1) = p=-1.700 + 0.064 age

= Every additional year of age increases the
probability of subscription by 6.4%.
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Problems with the Linear Approach

* Probabilities are bounded whereby 0 < p < 1.
= The range of age in the data is such that 20 < age < 55.

* The probability that a 35 year-old person subscribes is:
p=-1.700 + 0.064 x 35 = 0.54

* What about people with 25 and 45 years of age!?
p=-1.700 + 0.064 x 25 =-0.09

p=-1.700+ 0.064 X 45 = 1.20
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Two Steps!

1. It must always be positive (since p = 0)

p=exp(B,+ B;age) = ebo Frase
2. It must be less than 1 (since p < 1)

exp(B,+ B;age) _ ePothiage
exp(B,+ B,age) +1 ebothiage 4 1

p=
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The Linear Thinking is not Completely Gone
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= The previous expression (by doing some algebra)
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ln(—lf—p) = f,+ [, age



The Linear Thinking is not Completely Gone

= The previous expression (by doing some algebra)

can be rewritten as:

ln(rgg) = f,+ [, age

= Even though the probability of a customer
subscribing (p ) is not a linear function of age, the
simple transformation is a linear function of age.

—— — -



The Linear Thinking is not Completely Gone

——

= The previous expression (by doing some algebra)
can be rewritten as:

p
In(1=5) = B, + B, age
@though the probability of a customer

subscribing (p ) is not a linear function of age, the
simple transformation is a linear function of age.

The above equation is the one used in
logistic regressions.



Result of Logistic Regression

HalNa gretl model 2
File Edit Tests Save Graphs Analysis

Model 2: Logit, using observations 1-1000

Dependent variable: subscribe

Standard errors based on Hesslian
coefficient std. error

const -26.5240 1.82819 -14.51
age 0.781053 0.0535623 14.58 0.154207

Mean dependent var 0.573000 S.D. dependent var 0.494890

McFadden R-squared 0.636613 Adjusted R-squared 0.633683
Log-likelihood -247.9937 Akaike criterion 499.9873
Schwarz criterion 509.8028 Hannan-Quinn 503.7179

Number of cases 'correctly predicted’' = 884 (88.4%)
f(beta' x) at mean of independent vars = 0.197
Likelihood ratio test: Chi-square(l) = 868.915 [0.0000]

Predicted
0
Actual 0 350
1




Result of Logistic Regression

e NN gretl. model 2
File Edit Tests Save Graphs Analysis

Model 2: Logit, using observations 1-1000
Dependent variable: subscribe
Standard errors based on Hesslian

coefficient std. error

const -26.5240 1.82819 -14
age 0.781053 0.0535623 14.58 0.154207

Mean dependent var 0.573000 S.D. dependent var 0.494890
McFadden R-squared 0.636613 Adjusted R-squared 0.633683
Log-1likelihood -247.9937 Akaike criterion 499.9873
Schwarz criterion 509.8028 Hannan-Quinn 503.7179

Number of cases 'correctly predicted’ 884 (88.4%)
f(beta'x) at mean of independent vars 0.197
Likelihood ratio test: Chi-square(l) = 868.915 [0.0000]

Predicted

0 1

Actual 0 350 17
1 39 534
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The Estimated Logistic Model

= The estimated model was:

In( 25 ) =-26.52 + 0.78 age

* Or written in terms of the probability p we have:

exp(-26.52 + 0.78 age)

e -26.52 + 0.78 age

p=

g

exp(-26.52 + 0.78 age) -

e —26.52 +0.78 age _

21



Logistic Regression

Interpretation of Coefficients and Forecasting



Leveraging the Similarities with Linear Models

——

e 0o gretl. model 2
File Edit Tests Save Graphs Analysis

Model 2: Logit, using observations 1-1000
Dependent variable: subscribe
Standard errors based on Hessian

coefficient std. error

const -26.5240 1.82819
age 0.781053 0.0535623 14.58 0.154207

Mean dependent var 0.573000 S.D. dependent var 0.494890
McFadden R-squared 0.636613 Adjusted R-squared 0.633683
Log-likelihood -247.9937 Akaike criterion 499.9873
Schwarz criterion 509.8028 Hannan-Quinn 503.7179

Number of cases 'correctly predicted’ 884 (88.4%)
f(beta'x) at mean of independent vars 0.197
Likelihood ratio test: Chi-square(l) = 868.915 [(0.0000)

Predicted

0 1

Actual 0 350 77
1 39 534




Leveraging the Similarities with Linear Models
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gretl: model 2

File Edit Tests Save Graphs

Model 2: Logit, usingd observations 1-1000

Dependent variliable:[subscribe

Standard errors bas&d on Hessyan
coefficient std. error

const -26.5240 1.82819
age 0.781053 0.0535623 14.58 0.154207

Mean dependent var 0.573000 S.D. dependent var 0.494890

McFadden R-squared 0.636613 Adjusted R-squared 0.633683
Log-likelihood -247.9937 Akaike criterion 499.9873
Schwarz criterion 509.8028 Hannan-Quinn 503.7179

Number of cases 'correctly predicted’ 884 (88.4%)
f(beta'x) at mean of independent vars 0.197
Likelihood ratio test: Chi-square(l) = 868.915 [0.0000)

Predicted
0
Actual 0 350
1 39




Leveraging the Similarities with Linear Models

——

a N o gretl: model 2

File Edit Tests Save Graphs Analysis Slgn of CoefﬁC|ents St|” represents

Model 2: Logit, using observations 1-1000

Dependent variable: subscribe a positive or negative influence on
dependent variable.

Standard errors based on Hesslian

coefficient

14.58 0.154207

Mean dependent va .573000 S.D. dependent var 0.494890
McFadden R-squared 0.636613 Adjusted R-squared 0.633683
Log-likelihood ~-247.9937 Akaike criterion 499.9873
Schwarz criterion 509.8028 Hannan-Quinn 503.7179

Number of cases 'correctly predicted’ 884 (88.4%)
f(beta'x) at mean of independent vars 0.197
Likelihood ratio test: Chi-square(l) = 868.915 [0.0000)

Predicted
0
Actual 0 350
1 39




Leveraging the Similarities with Linear Models

e
a n n gretl: model 2

File Edit Tests Save Graphs Analysis

Model 2: Logit, using observations 1-1000
Dependent variable: subscribe
Standard errors based on Hesslan

coefficient std.

const f
age 0.781053 « 05. : 14.58 0.154207

Mean dependent va 0 494890
McFadden R-squared 0.636613 R

Log-likelihood -247.9937 Akaike critbe Standard errors can be used to

Schwarz criterion 509.8028 Hannan-Quinn X :
| L estimate confidence intervals:
Number of cases 'correctly predicted’' =
f(beta'x) at mean of independent vars =
Likelihood ratio test: Chi-square(l)

Predicted
0
Actual 0 350
1 39




Leveraging the Similarities with Linear Models

S NO gretl: model 2
File Edit Tests Save Graphs Analysis

Model 2: Logit, using observations 1-1000
Dependent variable: subscribe
Standard errors based on Hesslan

coefficient std. error

-26.5240 1.82819 N
0.781053 0.0535623 . 0.154207

Mean dependent var 0.573000 I 0 494890
McFadden R-squared 0.636613 Adjusted

hog-Likelihood ~~ ~247.9951  Axaike critd Standard errors can be used to
estimate confidence intervals:

Number of cases 'correctly predicted’ 884 (88.
f(beta'x) at mean of independent vars 0.197
Likelihood ratio test: Chi-square(l) = 868.915 [0.

Predicted 078105 + 2 X 0.05356
Actual 0 358 [ ().65771}, ().E;E;E;]

1 39
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What changed?

——— ——— = — —— — -

= We can no longer interpret the (magnitude of) the
coefficients as we did before.

= What is the meaning of 0.78 in our estimated model?
In(1Z; ) =-26.524 +0.781 age

= For every unit increase of age, ln( %) increases
0.78 units.

Increasing In(odd) is actually increasing probability.



In brief
Logistic Regression

- Supervised learning method for classification.

- "logit" = "log odds" YR
e — P (event) v S 01
oaas 1 — P(event) p(X) €10, 1]

_Let Pr(y = 1| X) = p(X) /
. . . ] N 1 s |

- Sigmoid Function: p(X) = —— .
What is unknown in the sigmoid function?

Estimate that parameter
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Parameter Estimation

—)> Goal of learning is to estimate parameter vector E

—) Logistic Regression uses Maximum Likelihood for
parameter estimation. How does this work?

==) Consider N samples with labels either 0 or 1

==) For samples labelled "1": Estimate 5 such that p(X)
IS as close to 1 as possible S
m==) For samples labelled "0": Estimate g such that 1 — p(X)
IS as close to 1 as possible
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Data:

Students = {A,

A = Pass
B = Fail
C = Fail
D = Pass

M1:

P(A = Pass) =.
P(B = Pass) =.
P(C = Pass) =.
P(D = Pass) =.

M?2:

P(A = Pass) =.
P(B = Pass) =.
P(C = Pass) =.
P(D = Pass) =.

M3:

P(A = Pass) =.
P(B = Pass) =.
P(C = Pass) =.
P(D = Pass) =.
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76
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23
10
91
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64
39
47

B, C, D}
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Parameter Estimation

- Goal of learning is to estimate parameter vector E

- Logistic Regression uses Maximum Likelihood for
parameter estimation. How does this work?

- Consider N samples with labels either O or 1

- For samples labelled "1": Estimate 8 such that p(X)
IS as close to 1 as possible R S
- For samples labelled "0": Estimate # such that 1 — p(X)

IS as close to 1 as possible
Note: P(yes, no, no, yes) = p(yes)*p(no)*p(no)*p(yes)
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- Logistic Regression uses Maximum Likelihood for
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Parameter Estimation

- Goal of learning is to estimate parameter vector E

- Logistic Regression uses Maximum Likelihood for
parameter estimation. How does this work?

- Consider N samples with labels either O or 1

- For samples labelled "1": Estimate 8 such that p(X)
IS as close to 1 as possible
- For samples labelled "0": Estimate § such that 1 — p(X )

IS as close to 1 as possible
Note: P(yes, no, no, yes) = p(yes)*p(no)*p(no)*p(yes)

[ 0[] a-pen

sinyi=1 sinyi=0
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Parameter Estimation

= || peox [ | a-pe

sinyi=1 sin yi=0

L) = | [pGd7 x(1-pGd) ™

L(B) = Z yilog(p(x)) + (1 — y)log(1 — p(x))

* Aloss function is for a single training example. It is also sometimes called an error function.
« A cost function, on the other hand, is the average loss over the entire training dataset.

* The optimization strategies aim at minimizing the cost function.



Parameter Estimation

= || peox [ | a-pe

sinyi=1 s in yi=0 Gradient Descent
. 1-yi
L(ﬁ) = np(xi)yl X(l o p(xz)) Vi IHOW?
n
l — Z 1o ) + (1 —v)log(1 — »(x: If we expand these equations, we see
(B) — ‘ g(p( 1)) ( yi) g( p( l)) the parameter f. The job is to Find j

that minimizes the cost

Maximizing /() is equivalent to minimizing —/(f3) '

2
For Linear Regression: l; = (y == f(x)
sy _ _ (~log(l=p), ify=0
For Logistic Regression: L= —9nalogt (Emy I RlOBdd s {

—log(p), if y = 1



THANK YOU!
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