Logistic Regression

Logistic Regression

Introduction to Binary Outcomes

Continuous vs. Categorical Variables

Seneral linear regression model:
 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$

Independent variables $(x's)$:

Continuous: age, income, height \rightarrow use numerical value.

Categorical: gender, city, et

- Independent variables $(x's)$:

 Continuous: age, income, height → use numerical value.

 Categorical: gender, city, ethnicity → use dummies.

 Dependent variable (y):

 Continuous: consumption, time spent → use
	-
- -
	-

-
-
-
- Xamples of Binary Outcomes

 Should a bank give a person a loan or not?

 Is an individual transaction fraudulent or not?

 What determines admittance into a school?

 Which people are more likely to vote against a

 • Is an individual transaction fraudulent or not?
• What determines admittance into a school?
• Which people are more likely to vote against a
new law?
• Which customers are more likely to buy a new
-

- Expresenting the Binary Outcomes

There are two outcomes: Yes and No

We will create a dummy variable to indicate if an

observation is a Yes or a No:
 $-y=1$ if Yes
 $-y=0$ if No

If we code the variable the other way arou • We will create a dummy variable to indicate if an
observation is a Yes or a No:
 $-y=1$ if Yes
 $-y=0$ if No
• If we code the variable the other way around, our
- opposite signs.

- Compared Multimary (here's really nothing special

Aside from being binary, there's really nothing special

about our dependent variable (y) .

Its value is higher (from a 0 to a 1) if a customer

subscribes, so whatever - Its value is higher (from a 0 to a 1) if a customer
subscribes, so whatever makes it higher increases
the likelihood of subscription.
Note can then run:
-

subscribe $= \beta_0 + \beta_1$ age + ε

subscribe $= -1.700 + 0.064$ age

Draft: Sharing is strictly

Interpreting the Result

If our dependent variable is binary, then we want to

see what makes it change from a 0 to 1.

This can also be interpreted as what increases the

likelihood of subscription, or $P(subscript = 1)$,

which **This can also be interpreted as what increases the likelihood of subscription, or** $P(subscripte = 1)$ **, which we can also simply denote as** *p***.**

Interpreting the Result

If our dependent variable is binary, then we want to

see what makes it change from a 0 to 1.

This can also be interpreted as what increases the

likelihood of subscription, or $P(subscript = 1)$,

which • This can also be interpreted as what increases the likelihood of subscription, or $P(subscribe = 1)$, which we can also simply denote as p .
• The result can be read as:
 $P(subscribe = 1) = p = -1.700 + 0.064$ age

Interpreting the Result

If our dependent variable is binary, then we want to

see what makes it change from a 0 to 1.

This can also be interpreted as what increases the

likelihood of subscription, or $P(subscript = 1)$,

which • This can also be interpreted as what increases the likelihood of subscription, or $P(subscribe = 1)$, which we can also simply denote as p .

• The result can be read as:
 $P(subscribe = 1) = p = -1.700 + 0.064$ age

• Every additional year of *age* increases the probability of subscription by 6.4%.

Draft: Sharing is strictly

The Figure 1 Starting II is strictly controlled to the CIR CONDIDENT ADDEDED TO ADDEDED THE PROOF OF A SHARING IN A Product that the data is such that z

roblems with the Linear Approach

subabilities are bounded whereby $0 \le p \le 1$.

the range of *age* in the data is such that $20 \le age \le 5$

the probability that a 35 year-old person subscribes is:
 $p = -1.700 + 0.064 \times 35 = 0.5$ - The range of *age* in the data is such that $20 \le age \le 55$.
- The probability that a 35 year-old person subscribes is:
 $p = -1.700 + 0.064 \times 35 = 0.54$

-
-
- roblems with the Linear Approach

vobabilities are bounded whereby $0 \le p \le 1$.

he range of *age* in the data is such that $20 \le age \le 5$

he probability that a 35 year-old person subscribes is:
 $p = -1.700 + 0.064 \times 35 = 0.54$ ■ The range of *age* in the data is such that $20 \le age \le 55$.

■ The probability that a 35 year-old person subscribes is:
 $p = -1.700 + 0.064 \times 35 = 0.54$

■ What about people with 25 and 45 years of age?
-

-
-
- roblems with the Linear Approach

subabilities are bounded whereby $0 \le p \le 1$.

he range of *age* in the data is such that $20 \le age \le 5$

he probability that a 35 year-old person subscribes is:
 $p = -1.700 + 0.064 \times 35 = 0.54$ ■ The range of *age* in the data is such that $20 \le age \le 55$.

■ The probability that a 35 year-old person subscribes is:
 $p = -1.700 + 0.064 \times 35 = 0.54$

■ What about people with 25 and 45 years of age?
- $p = -1.700 + 0.064 \times 45 = 1.20$

Wo Steps!

Dramatic always be positive (since $p \ge 0$)
 $\frac{1}{2}$

wo Steps!

. It must always be positive (since $p \ge 0$)
 $f(x)=abs(x)=|x|$

wo Steps!

Unit always be positive (since $p \ge 0$)

Unit always be positive (since $p \ge 0$)

Unit always be positive (since $p \ge 0$)

Prohibited!

Wo Steps!

Dramate always be positive (since $p \ge 0$)
 $p = \exp(\beta_0 + \beta_1 \, age) = e^{\beta_0 + \beta_1 \, age}$ $p = \exp(\beta_0 + \beta_1 age) = e^{\beta_0 + \beta_1 age}$

wo Steps!

. It must always be positive (since $p \ge 0$)
 $p = \exp(\beta_0 + \beta_1 \, age) = e^{\beta_0 + \beta_1 \, age}$

. It must be less than 1 (since $p \le 1$) $p = \exp(\beta_0 + \beta_1 age) = e^{\beta_0 + \beta_1 age}$
2. It must be less than 1 (since $p \le 1$)

Two Steps!

1. It must always be positive (since $p \ge 0$)
 $p = \exp(\beta_0 + \beta_1 \, age) = e^{\beta_0 + \beta_1 \, age}$

2. It must be less than 1 (since $p \le 1$)
 $p = \frac{\exp(\beta_0 + \beta_1 \, age)}{\exp(\beta_0 + \beta_1 \, age) + 1} = \frac{e^{\beta_0 + \beta_1 \, age}}{e^{\beta_0 + \beta_1 \, age} + 1}$ $p = \exp(\beta_0 + \beta_1 age) = e^{\beta_0 + \beta_1 age}$

Draft: Sharing is strictly

The Linear Thinking is not Completely Gone

the previous expression (by doing some algebra)

in be rewritten as:
 $\ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1$ age

 $\beta_0 + \beta_1$ age

Log Odds

$$
\ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 \, age
$$

The Linear Thinking is not Completely Gone

the previous expression (by doing some algebra)

in be rewritten as:

In $\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1$ age

ven though the probability of a customer

in be rember in the probability o **Even though the probability of a customer**
subscribing (p) is not a linear function of age, the
simple transformation is a linear function of age.

The Linear Thinking is not Completely Gone

the previous expression (by doing some algebra)

in be rewritten as:
 $\ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1$ age

very though the probability of a customer

in be reader though the probabil $\ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1$ age

• Even though the probability of a customer

subscribing (p) is not a linear function of age, the

simple transformation is a linear function of age.

logistic regressions.

he Estimated Logistic Model

he estimated model was:
 $\ln\left(\frac{p}{1-p}\right) = -26.52 + 0.78$ age $\ln\left(\frac{p}{1-p}\right) = -26.52 + 0.78$ age

The Estimated Logistic Model

the estimated model was:
 $\ln\left(\frac{p}{1-p}\right) = -26.52 + 0.78$ age

Dr written in terms of the probability p we have: $\ln\left(\frac{p}{1-p}\right) = -26.52 + 0.78$ age
• Or written in terms of the probability *p* we have:

he Estimated Logistic Model

he estimated model was:
 $\ln\left(\frac{p}{1-p}\right) = -26.52 + 0.78$ age

or written in terms of the probability p we have:
 $\frac{\exp(-26.52 + 0.78 \text{ age})}{\exp(-26.52 + 0.78 \text{ age}) + 1} = \frac{e^{-26.52 + 0.78 \text{ age}}}{e^{-26.52 + 0.7$ $-26.52 + 0.78$ age

rms of the probability
 $+ 0.78$ age)
 $\frac{e^{-26}}{25}$

Ogistic Regression
District Regression
District and Forecasting Logistic Regression
Interpretation of Coefficients and Forecasting

Phat changed?

Express is strictly in the stri

Vhat changed?

Ve can no longer interpret the (magnitude of) the

coefficients as we did before.

.

What changed?

We can no longer interpret the (magnitude of) the

coefficients as we did before.

What is the meaning of 0.78 in our estimated model?

.

• What is the meaning of 0.78 in our estimated model?

Vhat changed?

We can no longer interpret the (magnitude of) the

coefficients as we did before.

What is the meaning of 0.78 in our estimated model?
 $ln(\frac{p}{1-p}) = -26.524 + 0.781$ age

• What is the meaning of 0.78 in our estimated model?
 $\ln\left(\frac{p}{1-p}\right) = -26.524 + 0.781$ age

 $\ln\left(\frac{p}{1-p}\right) = -26.524 + 0.781$ age

What changed?

• We can no longer interpret the (magnitude of) the

coefficients as we did before.

• What is the meaning of 0.78 in our estimated model?
 $ln(\frac{p}{1-p}) = -26.524 + 0.781$ age

• For every unit increase of age,

Increasing ln(odd) is actually increasing probability.

In brief

-
-

$$
odds = \frac{P(event)}{1 - P(event)}
$$

- Let
$$
Pr(y = 1 | X) = p(X)
$$

What is unknown in the sigmoid function? Estimate that parameter

Parameter Estimation

I of learning is to estimate parameter vector $\widehat{\beta}$

Parameter Estimation
I of learning is to estimate parameter vector $\widehat{\beta}$
stic Regression uses Maximum Likelihood for
neter estimation. How does this work? parameter estimation. How does this work?

- **Parameter Estimation**
I of learning is to estimate parameter vector $\hat{\beta}$
stic Regression uses Maximum Likelihood for
neter estimation. How does this work?
onsider N samples with labels either 0 or 1
	- parameter estimation. How does this work?

	Consider N samples with labels either 0 or 1

- -
- **Parameter Estimation**

I of learning is to estimate parameter vector $\hat{\beta}$

stic Regression uses Maximum Likelihood for

neter estimation. How does this work?

onsider N samples with labels either 0 or 1

or samples la parameter estimation. How does this work?
 \rightarrow Consider N samples with labels either 0 or 1
 \rightarrow For samples labelled "1": Estimate $\hat{\beta}$ such that $p(X)$ is as close to 1 as possible

Parameter Estimation

I of learning is to estimate parameter vector $\hat{\beta}$

stic Regression uses Maximum Likelihood for

neter estimation. How does this work?

onsider N samples with labels either 0 or 1

or samples la parameter estimation. How does this work?
 \Rightarrow Consider N samples with labels either 0 or 1
 \Rightarrow For samples labelled "1": Estimate $\hat{\beta}$ such that $p(X)$

is as close to 1 as possible
 \Rightarrow For samples labelled "0": E

Data: Students = ${A, B, C, D}$

 $A = Pass$ $B = Fail$ $C =$ Fail

$D = Pass$

M1:

 $P(A = Pass) = .85$ $P(B = Pass) = .25$ $P(C = Pass) = .45$ $P(D = Pass) = .76$

M2:

 $P(A = Pass) = .94$ $P(B = Pass) = .23$ $P(C = Pass) = .10$ $P(D = Pass) = .91$

M3:

 $P(A = Pass) = .75$ $P(B = Pass) = .64$ $P(C = Pass) = .39$ $P(D = Pass) = .47$

Data:

Students = ${A, B, C, D}$ $A = Pass$ $B = Fail$ $C = Fail$

$D = Pass$

M1:

 $P(A = Pass) = .85$ $P(B = Pass) = .25$ $P(C = Pass) = .45$ $P(D = Pass) = .76$

M2:

 $P(A = Pass) = .94$ $P(B = Pass) = .23$ $P(C = Pass) = .10$ $P(D = Pass) = .91$

M3: $P(A = Pass) = .75$ $P(B = Pass) = .64$

- $P(C = Pass) = .39$
- $P(D = Pass) = .47$

-
- -
- **Parameter Estimation**

I of learning is to estimate parameter vector $\hat{\beta}$

stic Regression uses Maximum Likelihood for

neter estimation. How does this work?

onsider N samples with labels either 0 or 1

or samples la parameter estimation. How does this work?

- Consider N samples with labels either 0 or 1

- For samples labelled "1": Estimate $\hat{\beta}$ such that $\hat{p(X)}$

is as close to 1 as possible

- For samples labelled "0": Estimat

*Note: P(yes, no, no, yes) = p(yes)*p(no)*p(no)*p(yes)*

-
- -
- **Parameter Estimation**

I of learning is to estimate parameter vector $\hat{\beta}$

stic Regression uses Maximum Likelihood for

neter estimation. How does this work?

onsider N samples with labels either 0 or 1

or samples la parameter estimation. How does this work?

- Consider N samples with labels either 0 or 1

- For samples labelled "1": Estimate $\hat{\beta}$ such that $\hat{p(X)}$

is as close to 1 as possible

- For samples labelled "0": Estimat

*Note: P(yes, no, no, yes) = p(yes)*p(no)*p(no)*p(yes)*

$$
\prod_{\text{ s in }yi=1} p(x_i
$$

-
- -
- **Parameter Estimation**

I of learning is to estimate parameter vector $\hat{\beta}$

stic Regression uses Maximum Likelihood for

neter estimation. How does this work?

onsider N samples with labels either 0 or 1

or samples la parameter estimation. How does this work?

- Consider N samples with labels either 0 or 1

- For samples labelled "1": Estimate $\hat{\beta}$ such that $\hat{p(X)}$

is as close to 1 as possible

- For samples labelled "0": Estimat

*Note: P(yes, no, no, yes) = p(yes)*p(no)*p(no)*p(yes)*

$$
\prod_{\text{sin }yi=1} p(x_i) \qquad \prod_{\text{sin }yi=0} (1-p(x_i))
$$

Parameter Estimation
 $\left[\begin{array}{c}p(x_i) \times \prod_{s \in \mathbb{N}} (1-p(x_i))\ 0(x_i)^{y_i} \times (1-p(x_i))^{1-y_i}\end{array}\right]$

$$
L(\beta) = \prod_{s \text{ in } yi=1} p(x_i) \times \prod_{s \text{ in } yi=0} (1 - p(x_i))
$$

$$
L(\beta) = \prod_{s} p(x_i)^{y_i} \times (1 - p(x_i))^{1 - y_i}
$$

Parameter Estimation

$$
L(\beta) = \prod_{s \ in \ y i = 1} p(x_i) \times \prod_{s \ in \ y i = 0} (1 - p(x_i))
$$

$$
L(\beta) = \prod_{i=1}^{s} p(x_i)^{y_i} \times (1 - p(x_i))^{1 - y_i}
$$

$$
l(\beta) = \sum_{i=1}^{s} y_i \log(p(x_i)) + (1 - y_i) \log(1 - p(x_i))
$$

Parameter Estimation

$$
L(\beta) = \prod_{s \text{ in } y i = 1} p(x_i) \times \prod_{s \text{ in } y i = 0} (1 - p(x_i))
$$

\n
$$
L(\beta) = \prod_{i=1}^{s} p(x_i)^{y_i} \times (1 - p(x_i))^{1 - y_i}
$$

\n
$$
l(\beta) = \sum_{i=1}^{s} y_i \log(p(x_i)) + (1 - y_i) \log(1 - p(x_i))
$$

\n• A loss function is for a single training example. It is also sometimes called an error
\n• A cost function, on the other hand, is the average loss over the entire training data:
\n• The optimization strategies aim at minimizing the cost function.

- A loss function is for a single training example. It is also sometimes called an **error function**.
- A cost function, on the other hand, is the **average loss** over the entire training dataset.
- The optimization strategies aim at minimizing the cost function.

Parameter Estimation

$$
L(\beta) = \prod_{s \text{ in } y^{i}} p(x_i) \times \prod_{s \text{ in } y^{i} = 0} (1 - p(x_i))
$$

\n
$$
L(\beta) = \prod_{s \text{ in } y^{i}} p(x_i)^{y_i} \times (1 - p(x_i))^{1 - y_i}
$$

\n
$$
l(\beta) = \sum_{i=1}^{s} y_i \log(p(x_i)) + (1 - y_i) \log(1 - p(x_i))
$$

\n
$$
\text{Maximizing } \text{ (}\beta\text{) is equivalent to minimizing } -\text{ (}\beta\text{)}
$$

\nFor Linear Regression:
$$
L = (y - f(x))^{2}
$$

\nFor Logistic Regression:
$$
L = -y * \log(p) - (1 - y) * \log(1 - p) = \begin{cases} -\log(1 - p), & \text{ if } y = 0 \\ -\log(p), & \text{ if } y = 1 \end{cases}
$$

THANK YOU! THANK YOU!