

False Positive

False Negative

ML Testing and Error Metrics

Testing

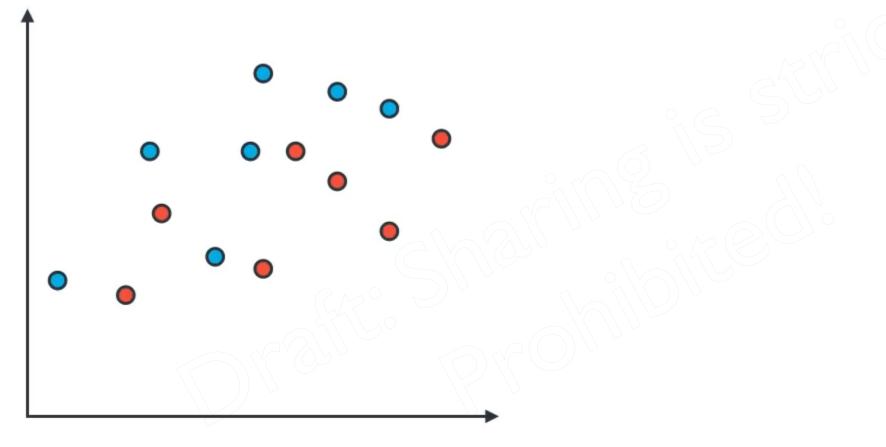
How well is my model doing?

Testing

How well is my model doing?

How do I improve it?

Which model is better

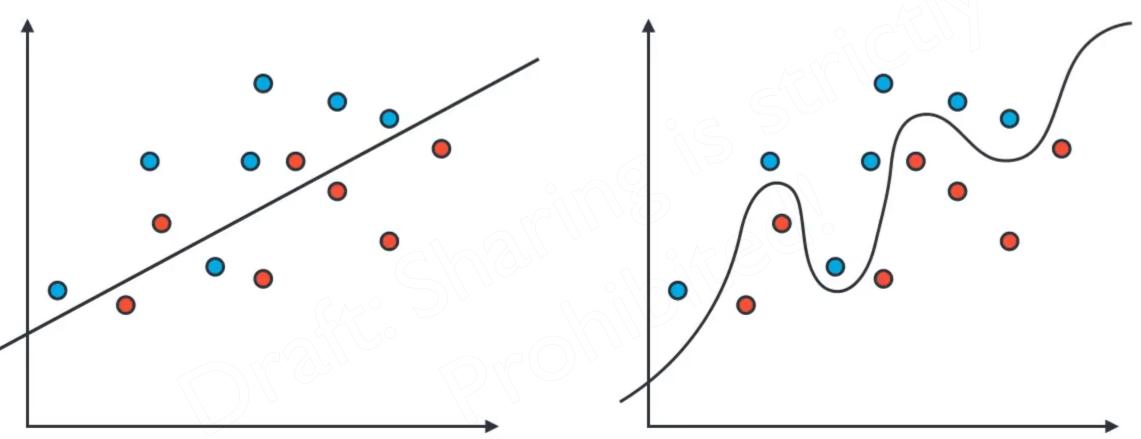


Which model is better

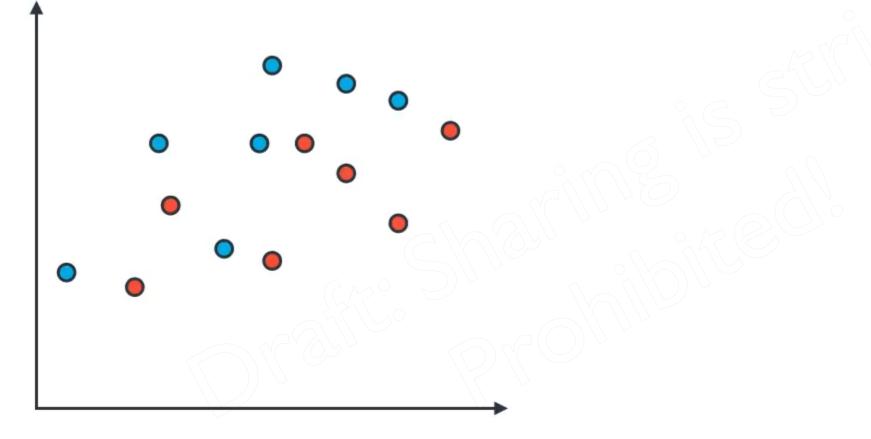




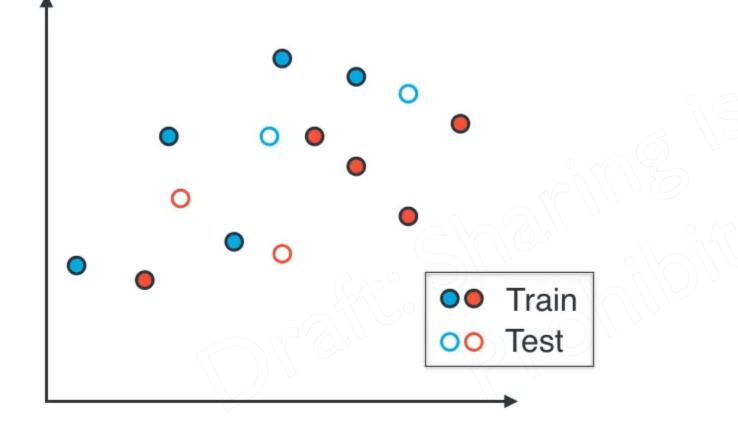
Which model is better

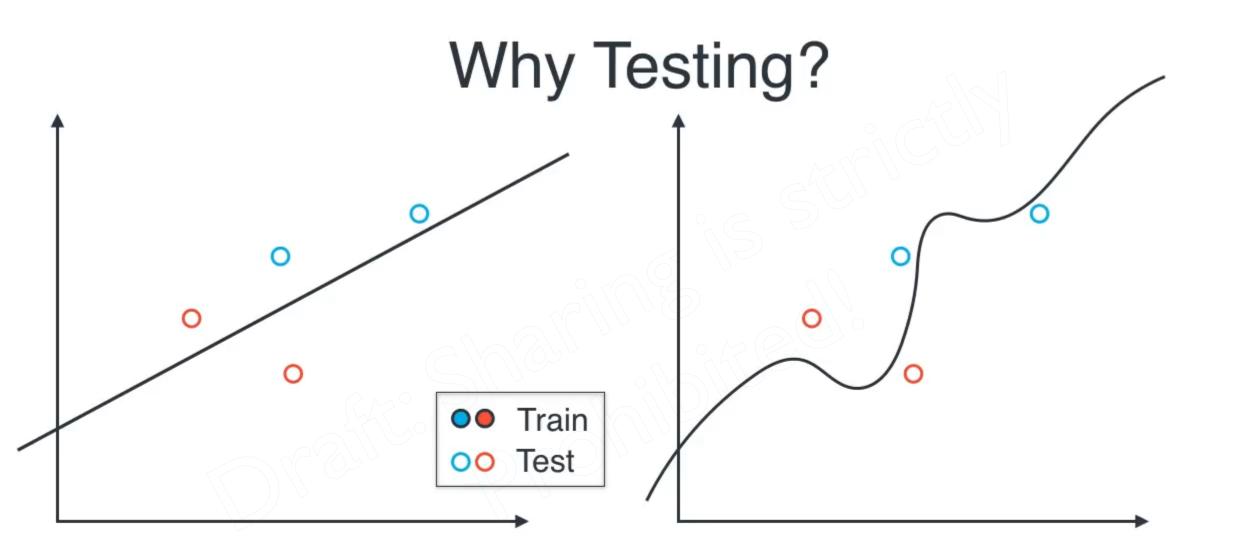


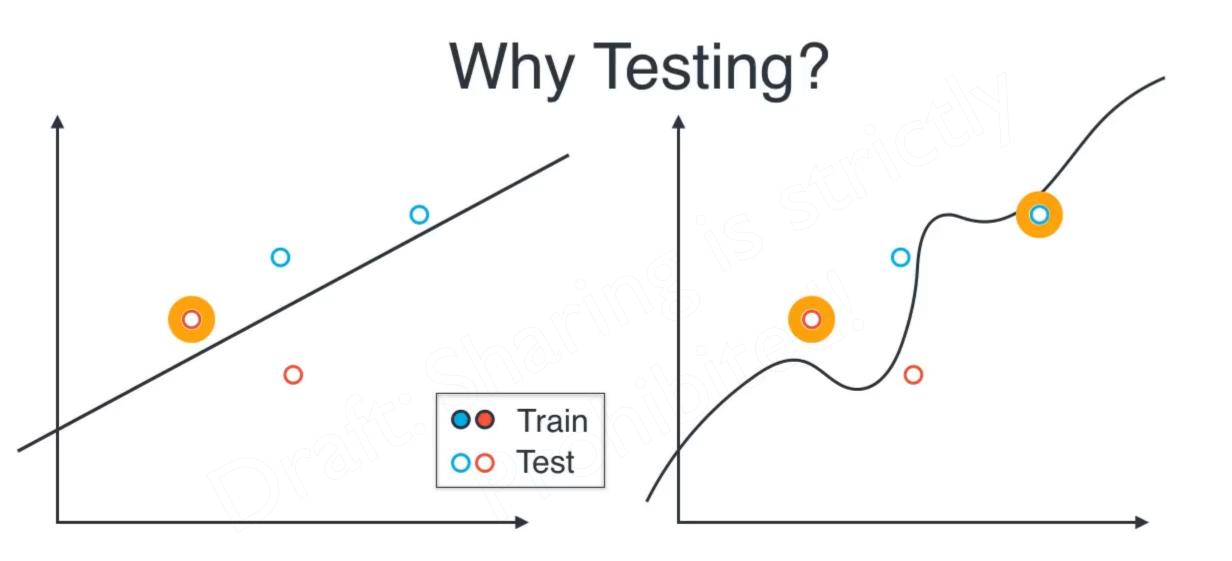
Why Testing?

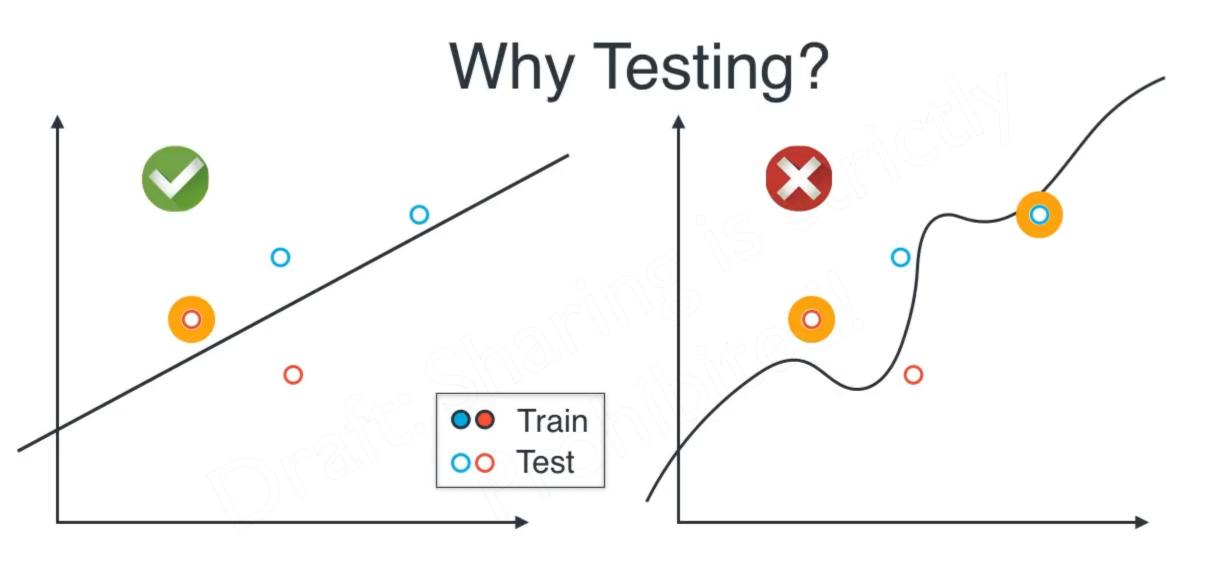


Why Testing?







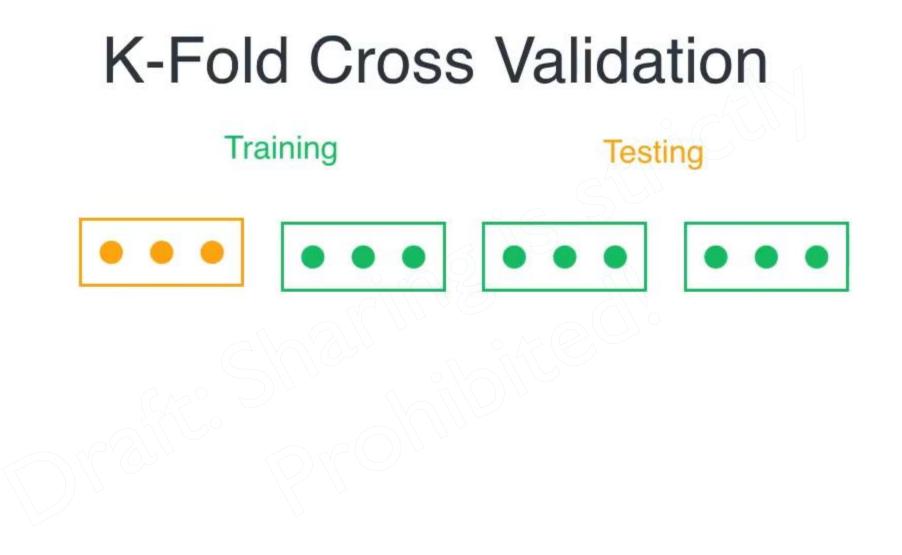


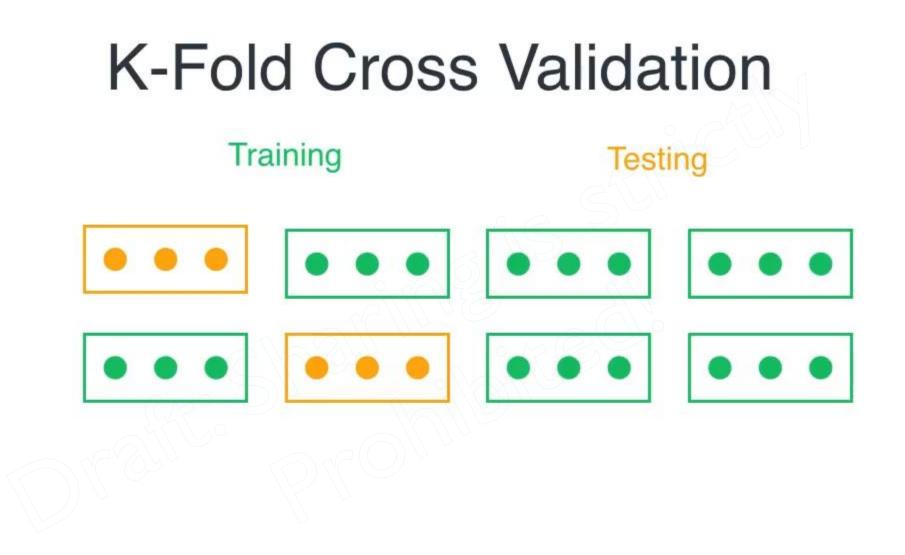
Golden Rule # 1

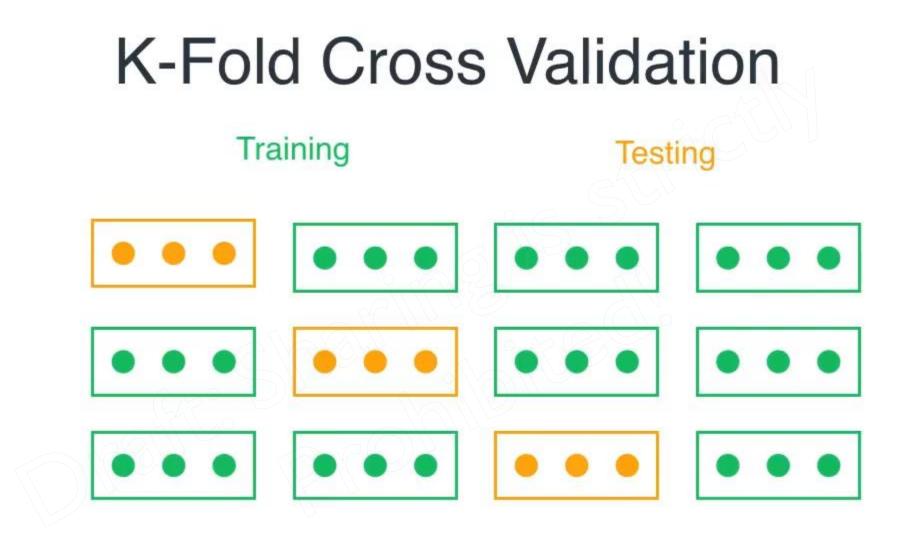
Golden Rule # 2

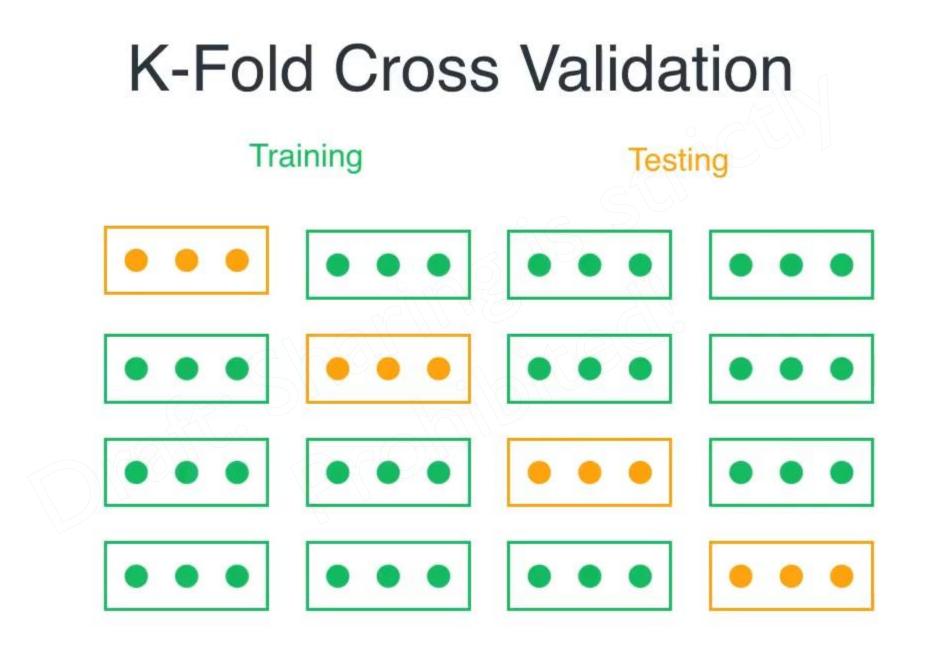
Golden Rule # 3

How do we not 'lose' the training data?

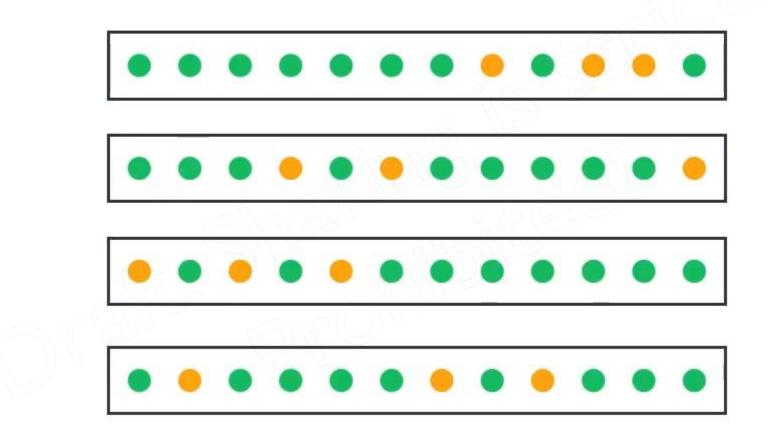






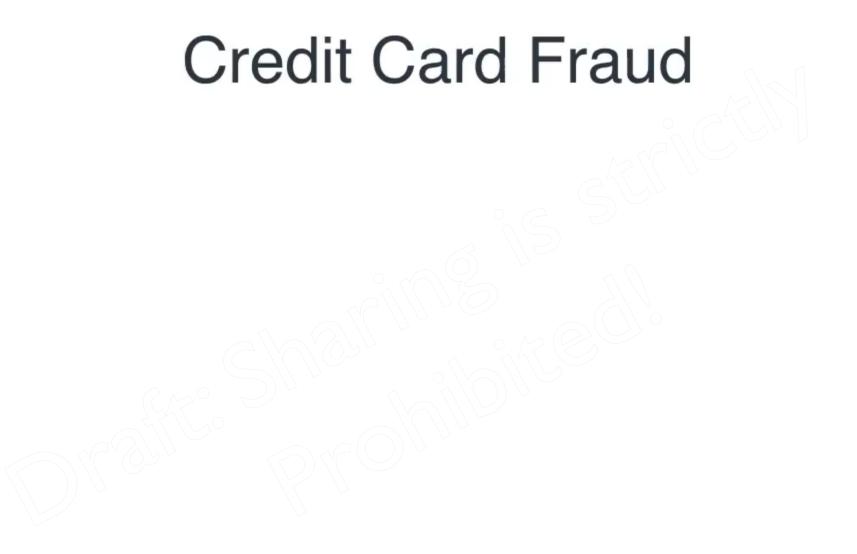


Randomizing in Cross Validation



Evaluation Metrics

How well is my model doing?



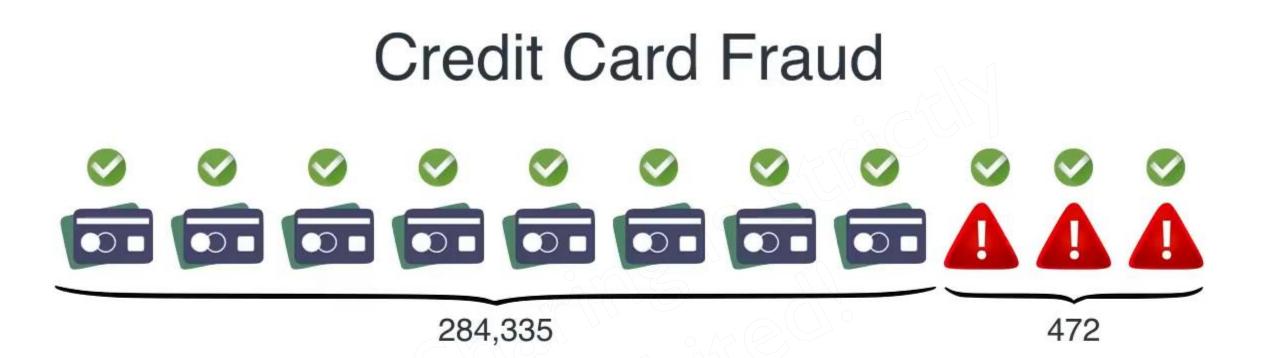
472

284,335

284,335

Model: All transactions are good.

472



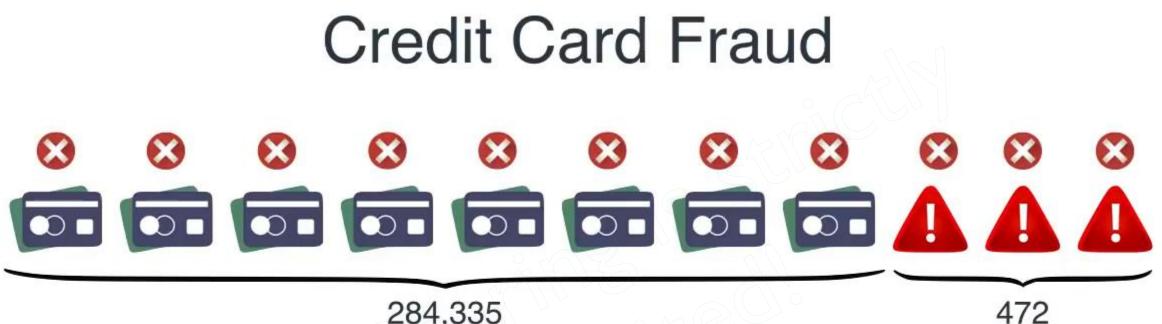
Model: All transactions are good.

$$Correct = \frac{284,335}{284,807} = 99.83\%$$

Problem: I'm not catching any of the bad ones!

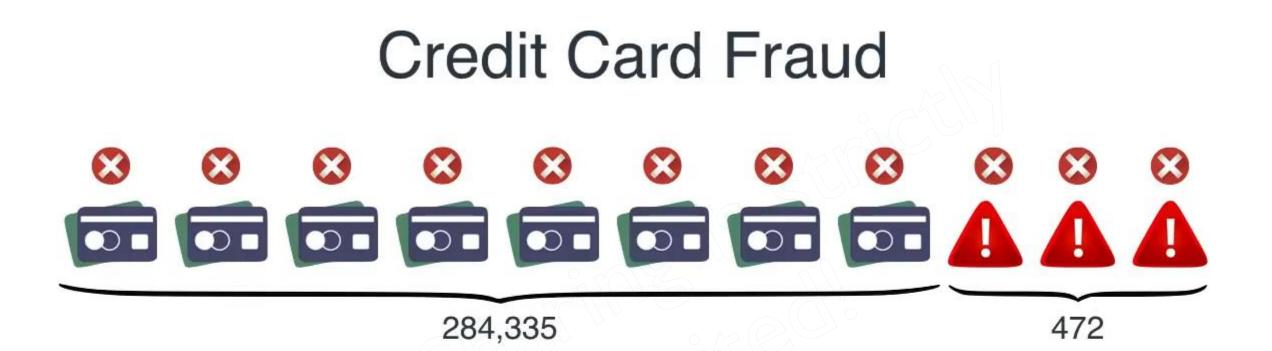
472

284,335



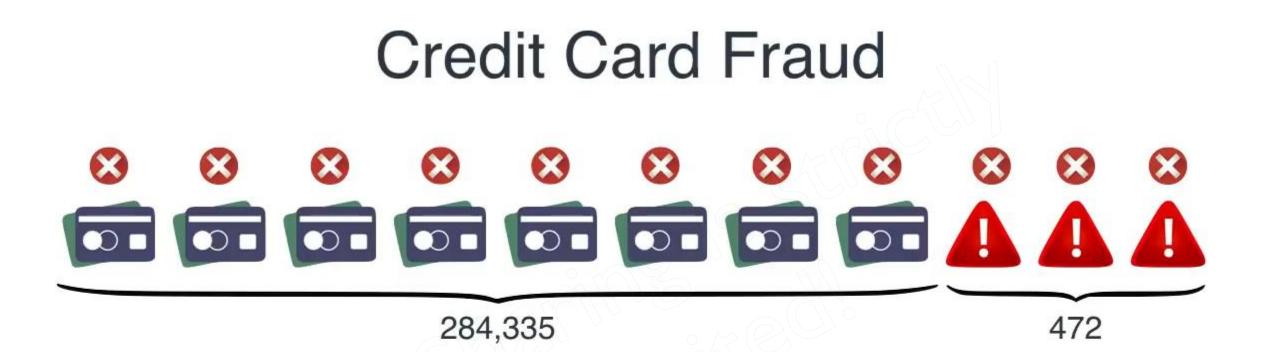
284,335

Model: All transactions are fraudulent.



Model: All transactions are fraudulent.

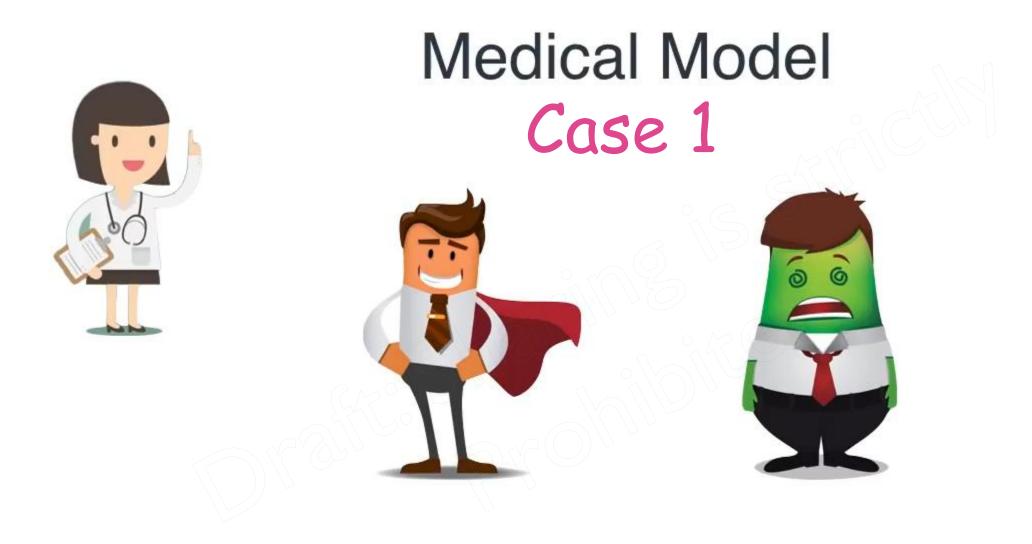
Great! Now I'm catching all the bad transactions!

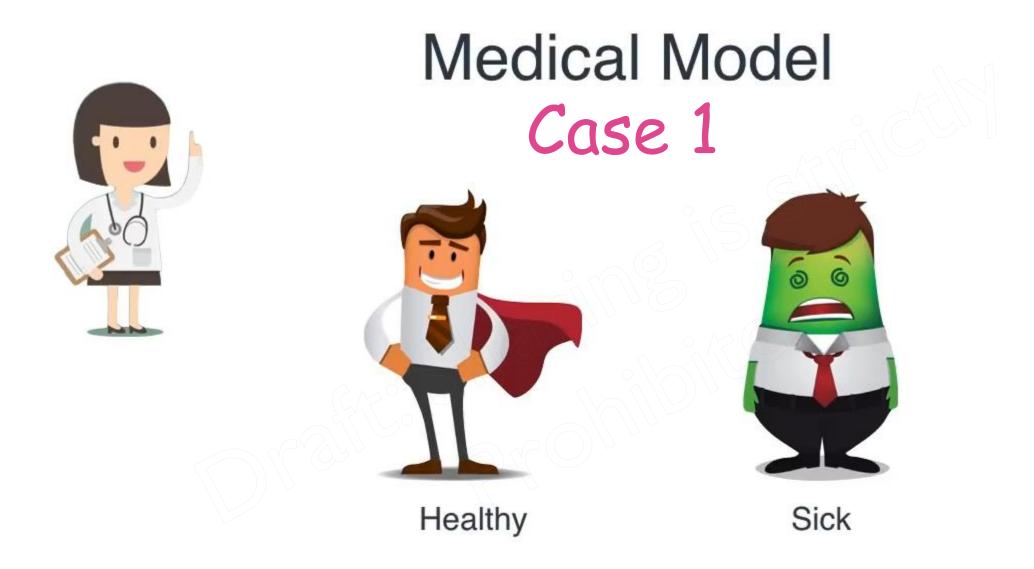


Model: All transactions are fraudulent.

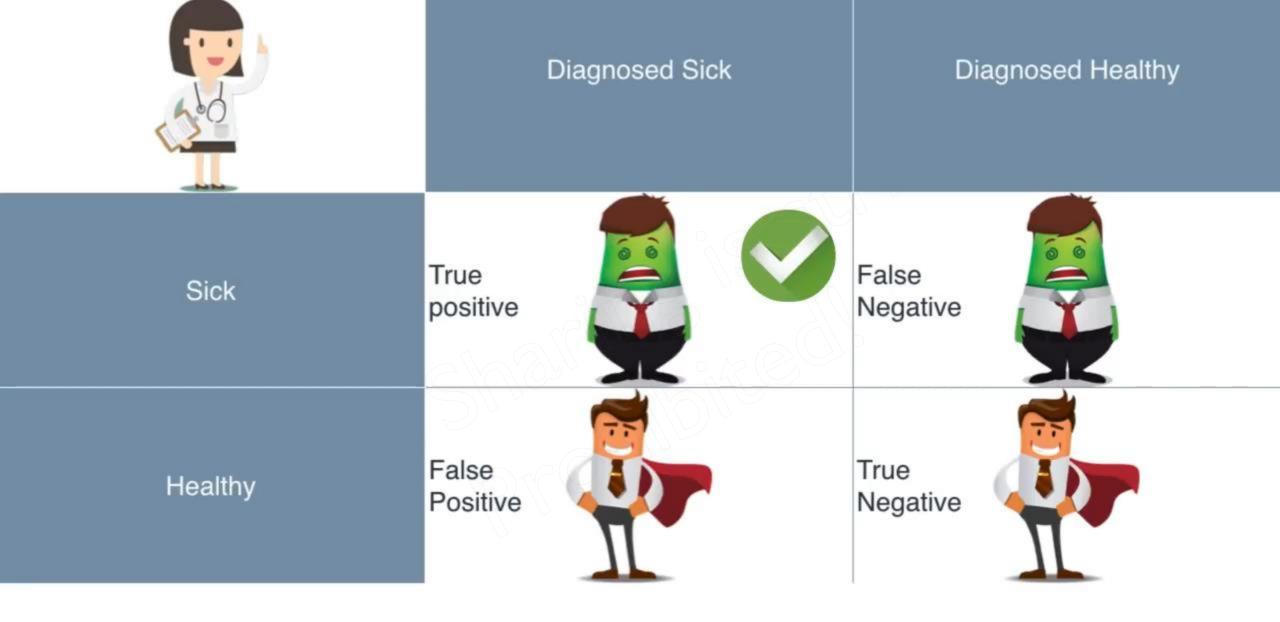
Great! Now I'm catching all the bad transactions!

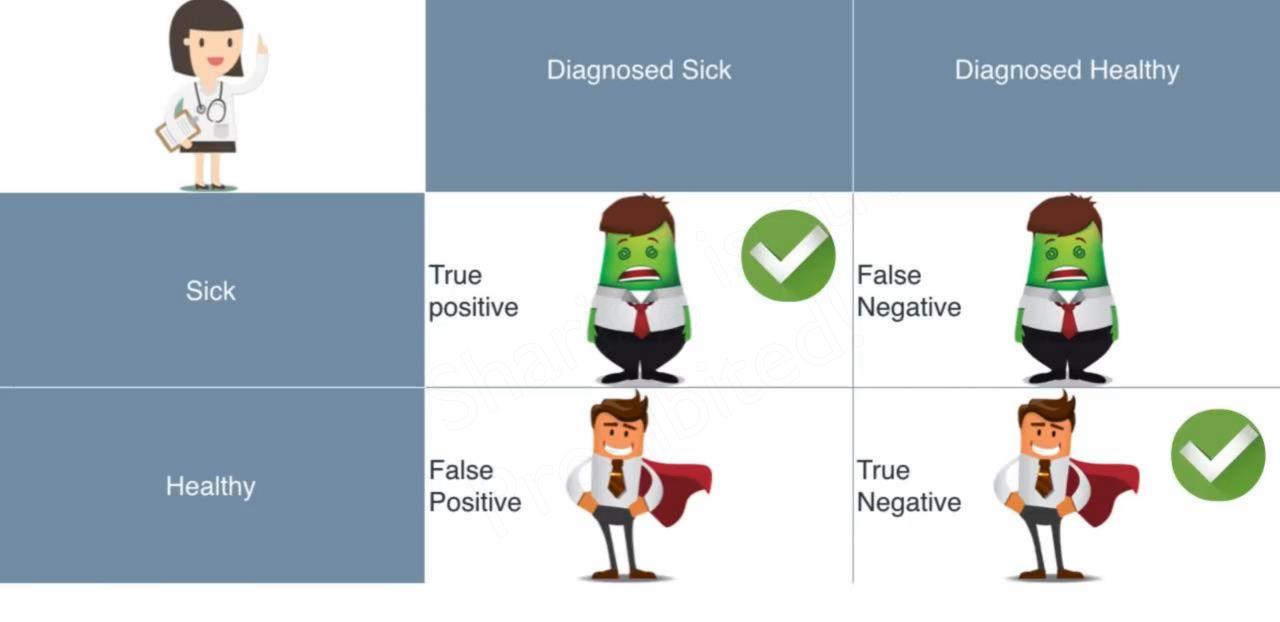
Problem: I'm accidentally catching all the good ones!

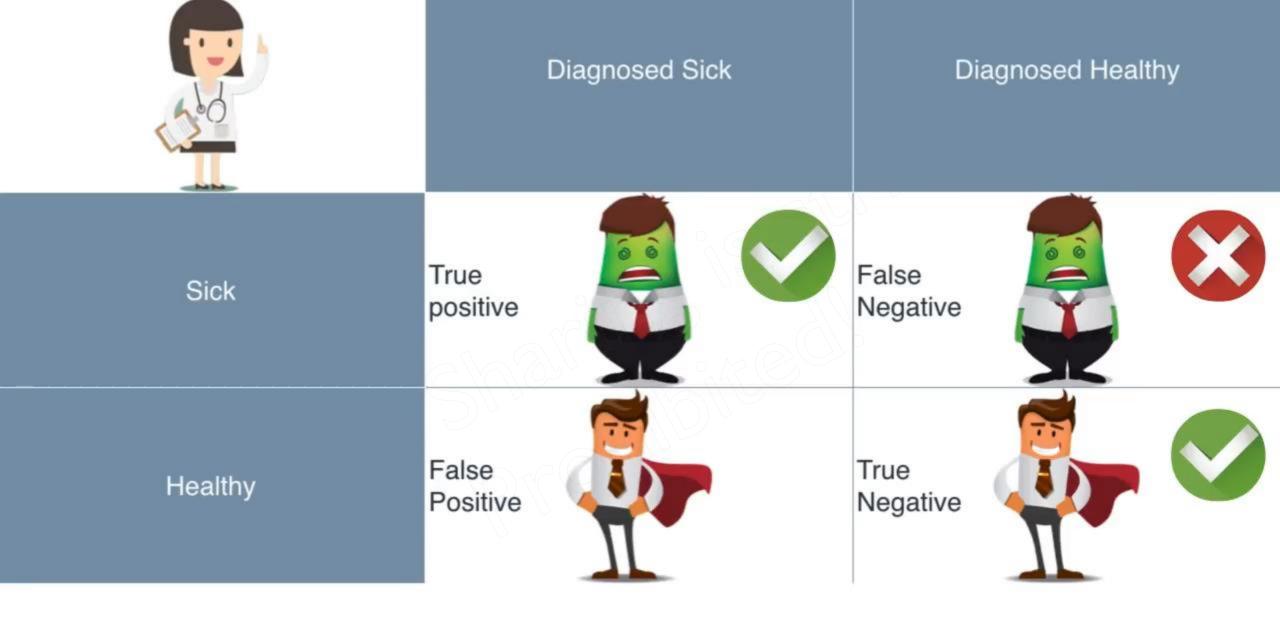


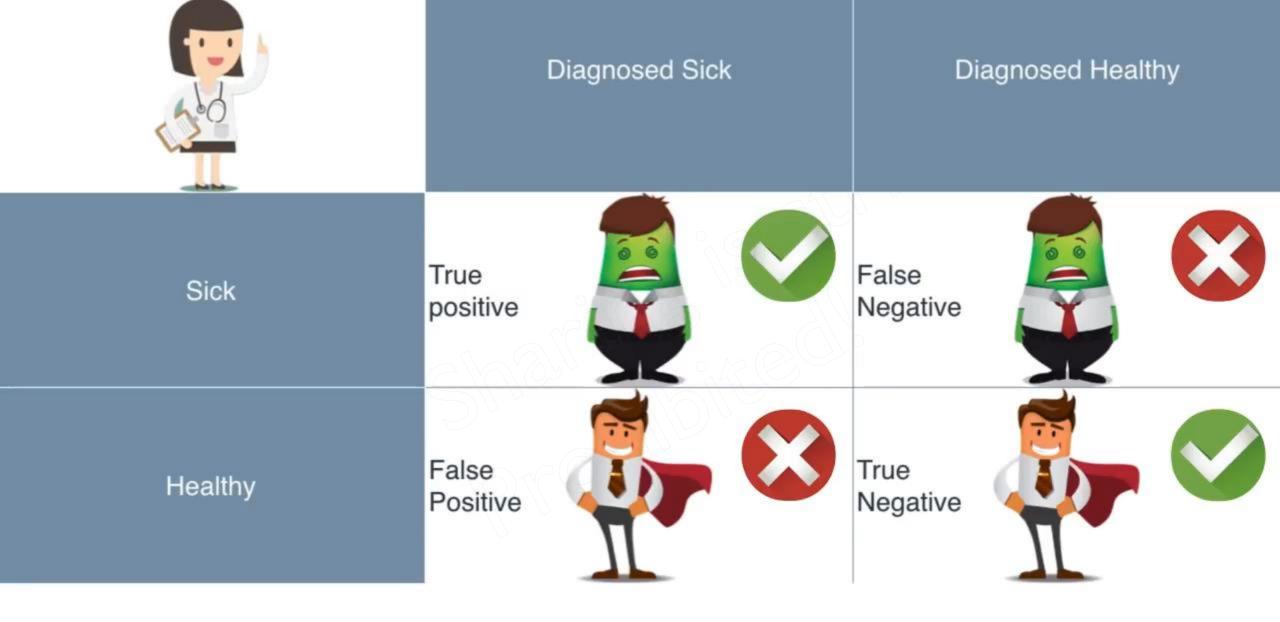


	Diagnosed Sick	Diagnosed Healthy	
SICK	True positive	False Negative	
HABITAV	False Positive	True Negative	









10,000

Patients

Diagnosis Diagnosed Diagnosed Healthy sick Patients Sick 1000 200 Healthy 800 8000

10,000

Patients

Diagnosis Diagnosed Diagnosed Healthy sick Patients Sick 1000 200 True positives Healthy 800 8000

10,000

Patients

Diagnosis Diagnosed Diagnosed Healthy sick Patients Sick 1000 200 True positives **False Negatives** Healthy 800 8000

10,000

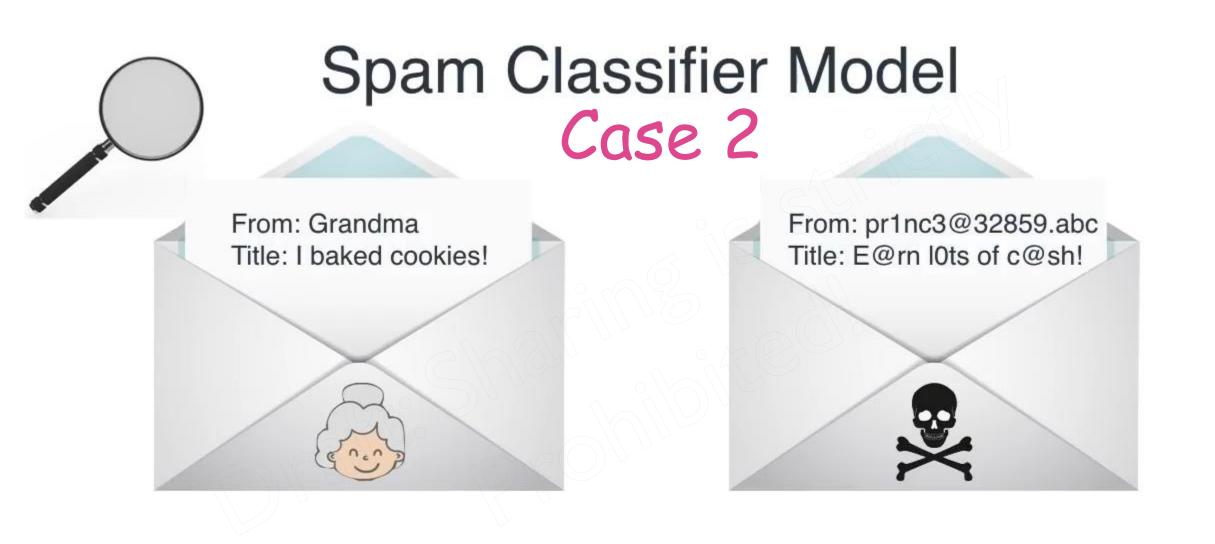
Patients

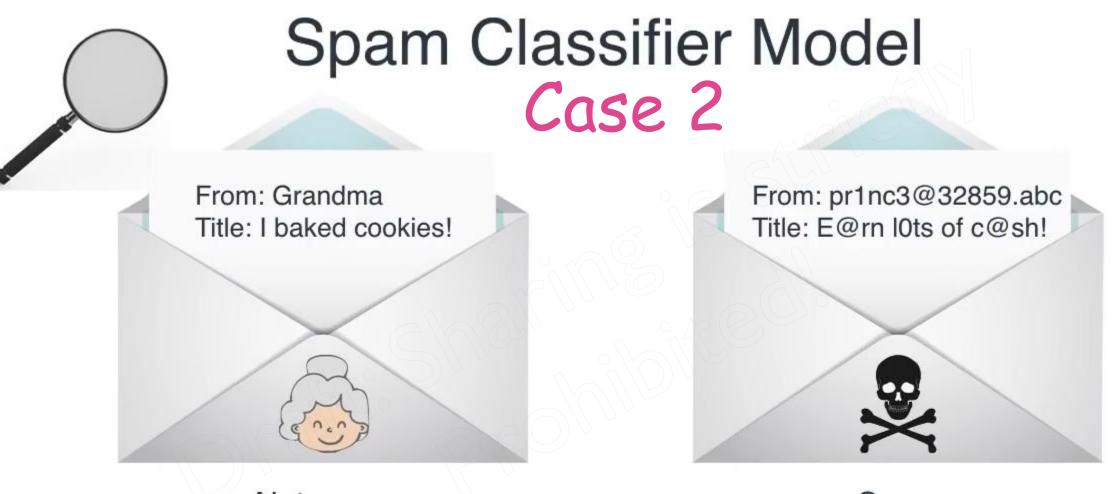
Diagnosis Diagnosed Diagnosed Healthy sick Patients Sick 1000 200 True positives **False Negatives** Healthy 8000 800 **False Positives**

10,000

Patients

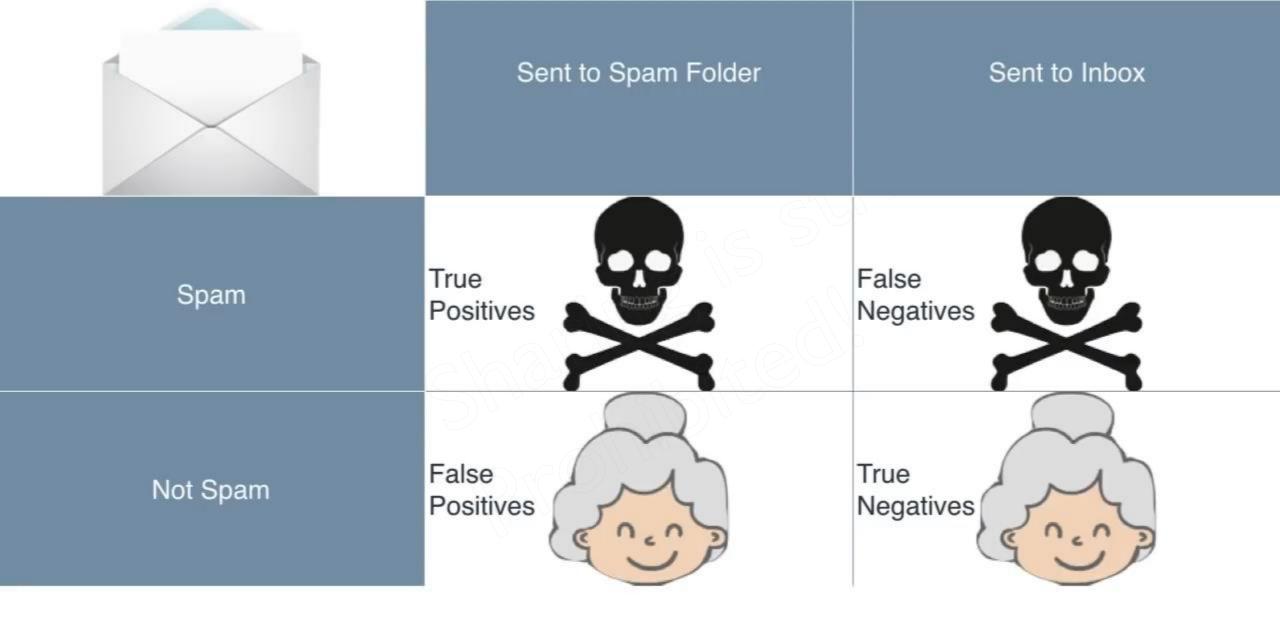
Diagnosis Diagnosed Diagnosed Healthy sick atients Sick 1000 200 True positives **False Negatives** Healthy 800 8000 **True Negatives** False Positives

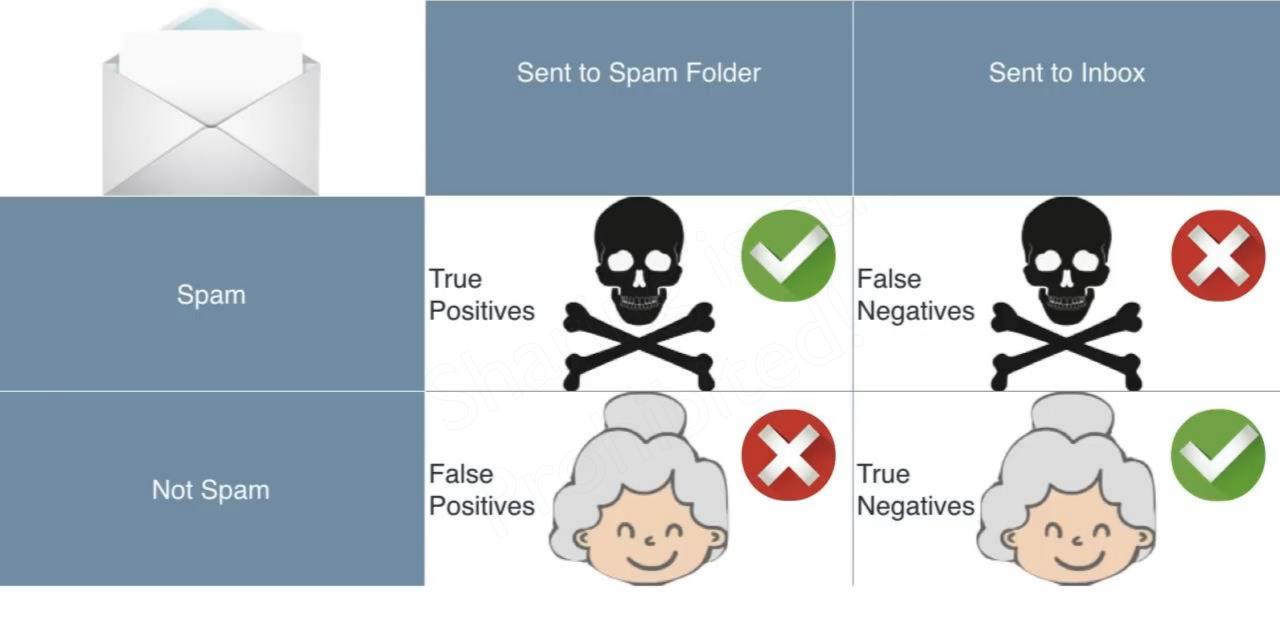




Not spam

Spam



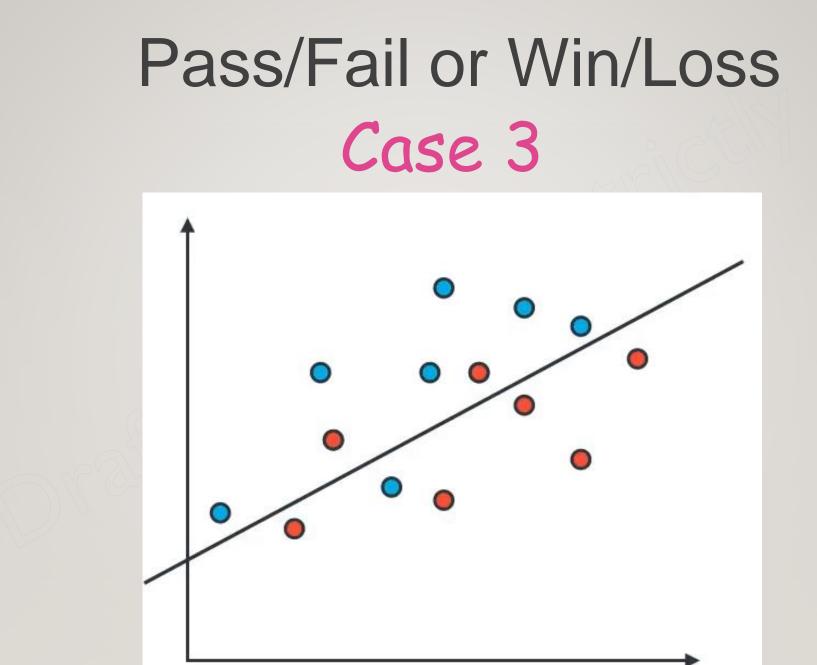


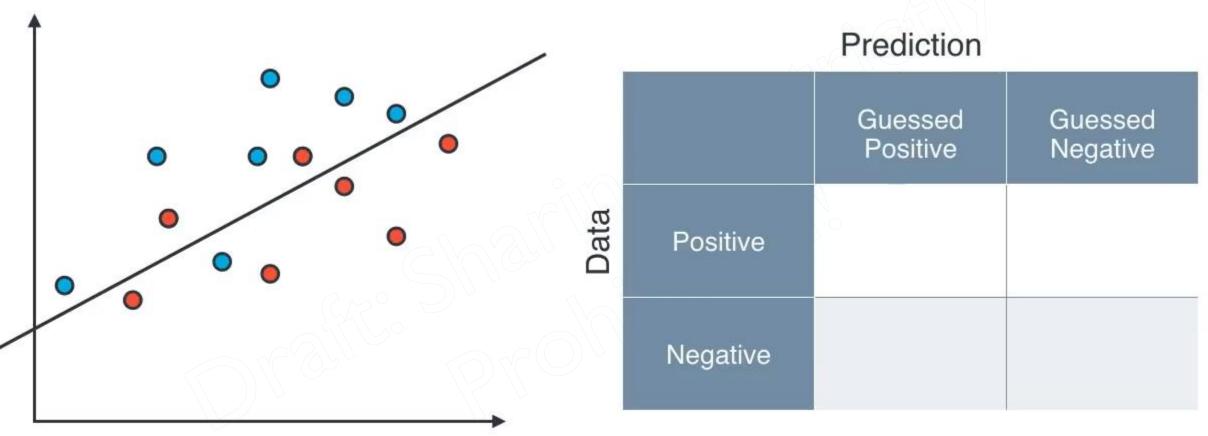
Folder Inbox Spam Folder E-mail Spam 100 170 True positives Not spam 700 30

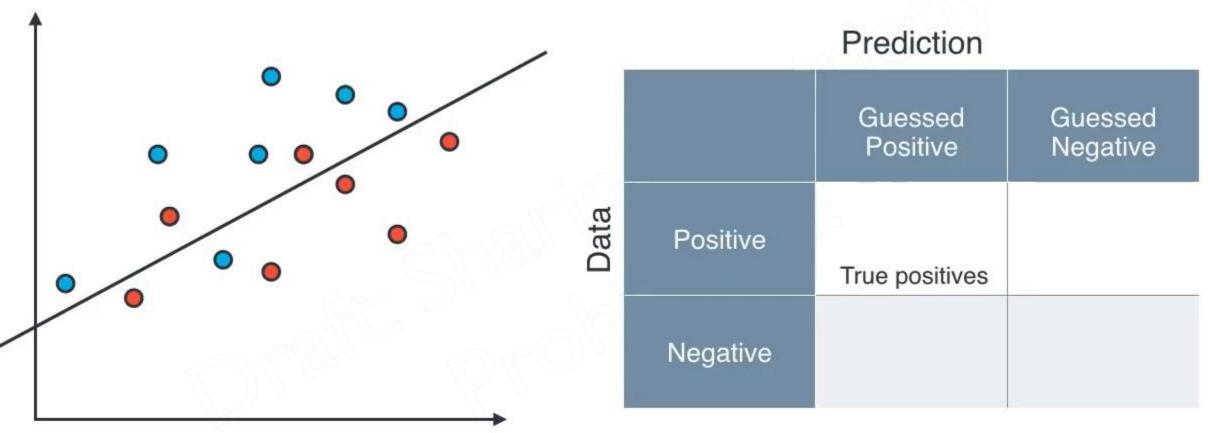
Folder Inbox Spam Folder E-mail Spam 100 170 True positives **False Negatives** Not spam 30 700

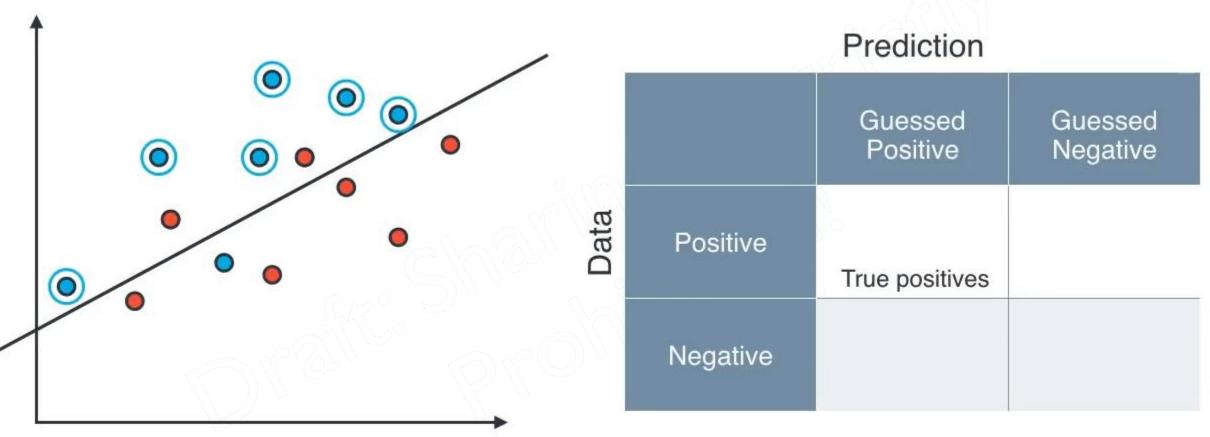
Folder Inbox Spam Folder E-mail Spam 100 170 True positives **False Negatives** Not spam 30 700 **False Positives**

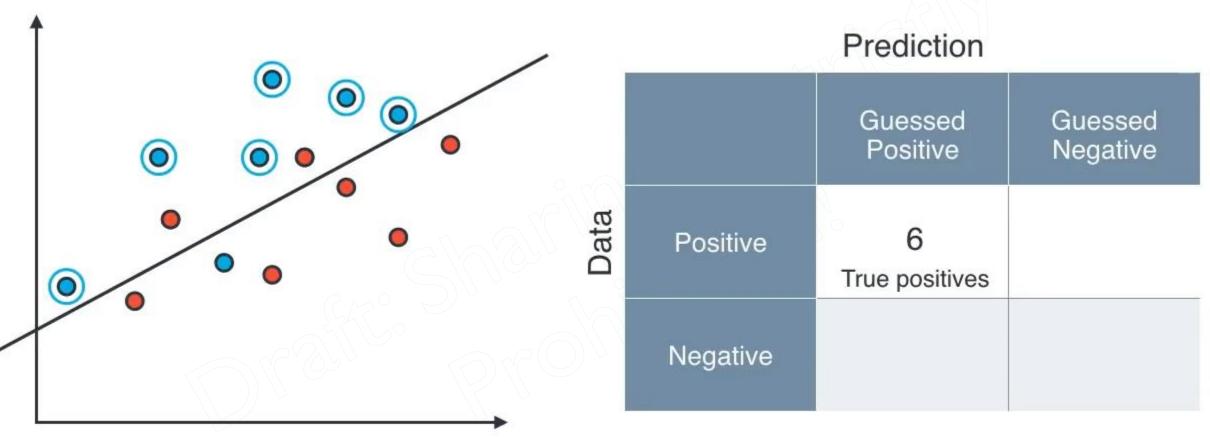
Folder Inbox Spam Folder E-mail Spam 100 170 True positives **False Negatives** Not spam 30 700 False Positives **True Negatives**

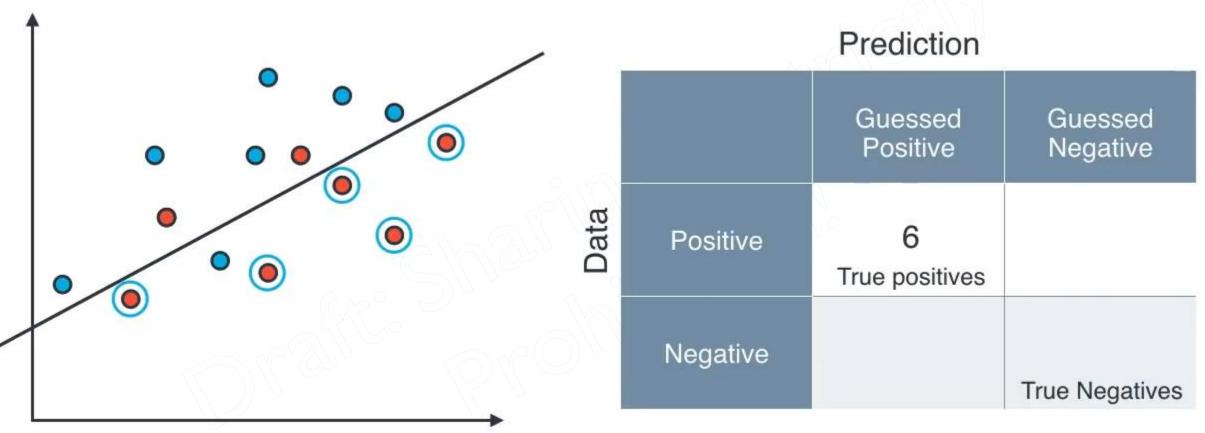


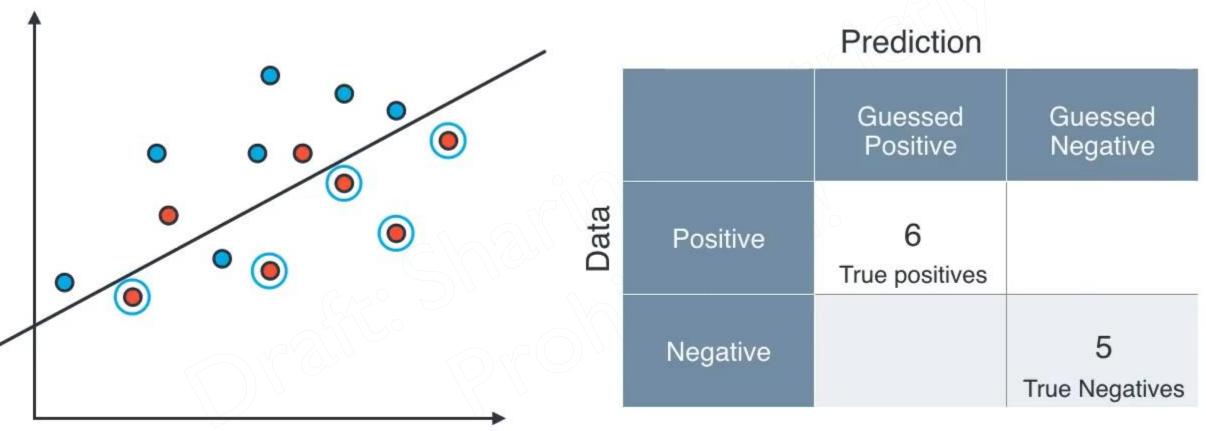


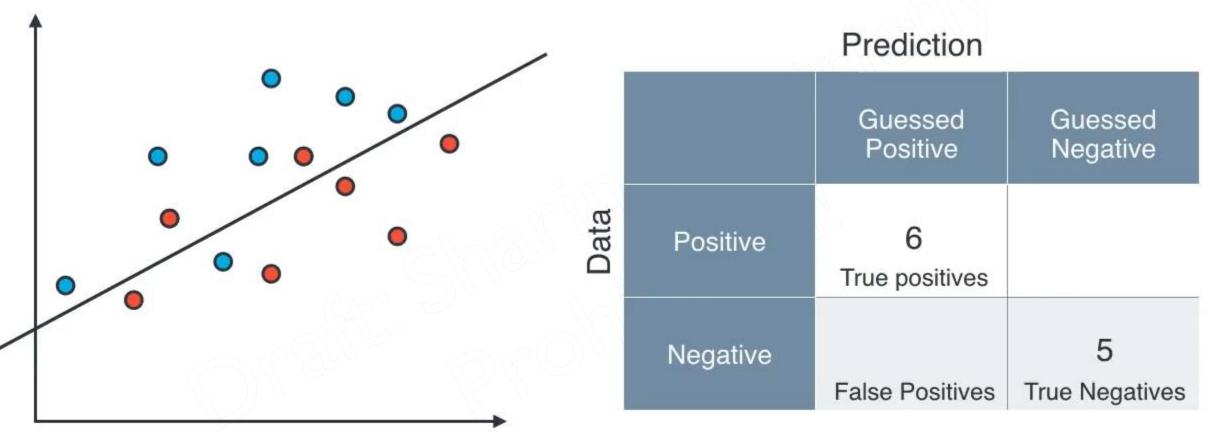


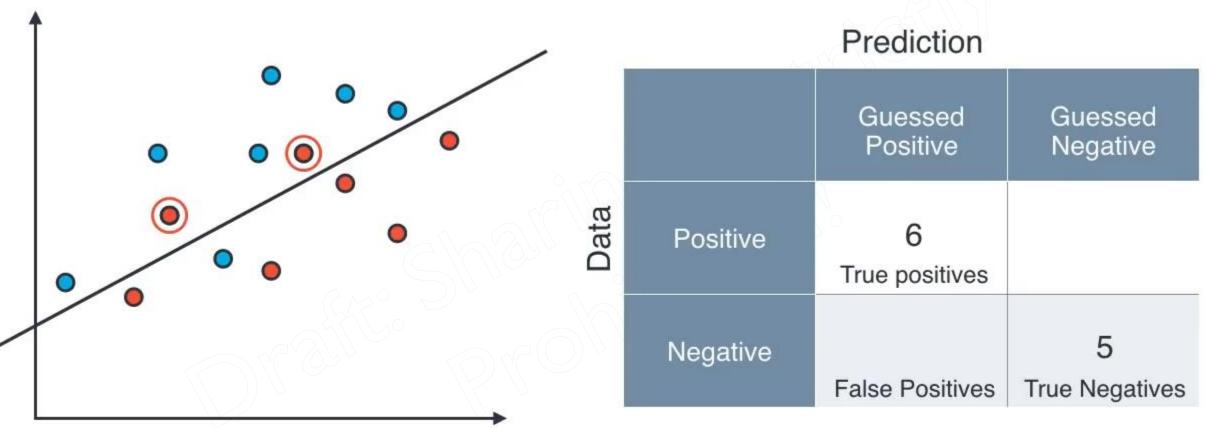




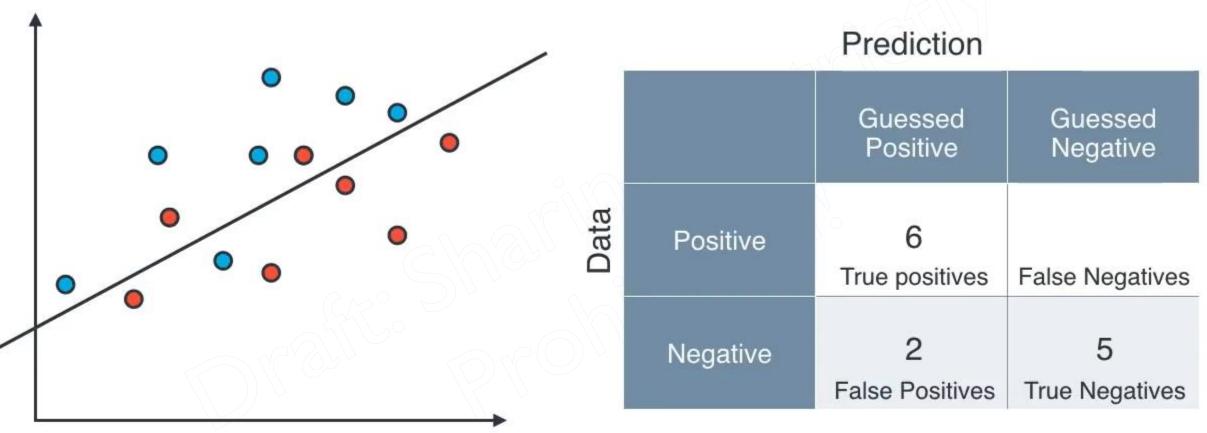


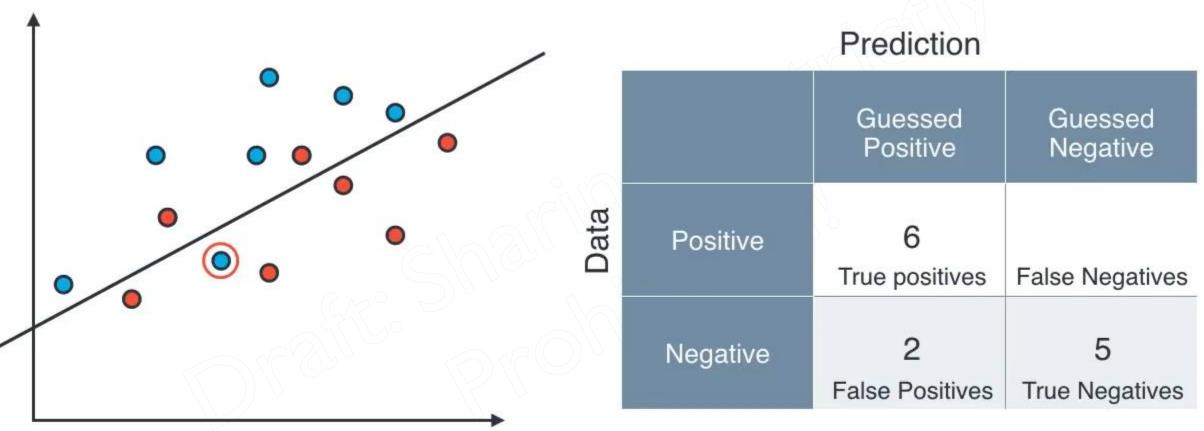


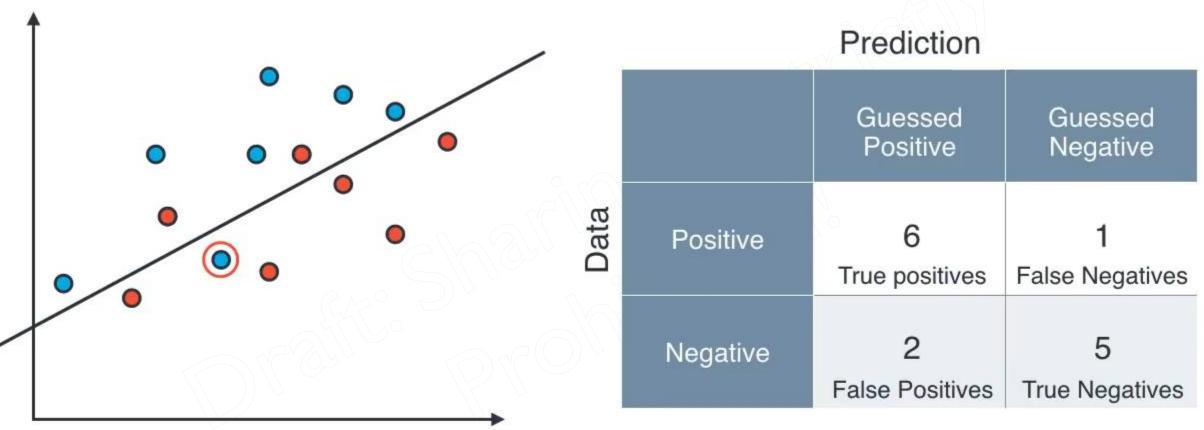


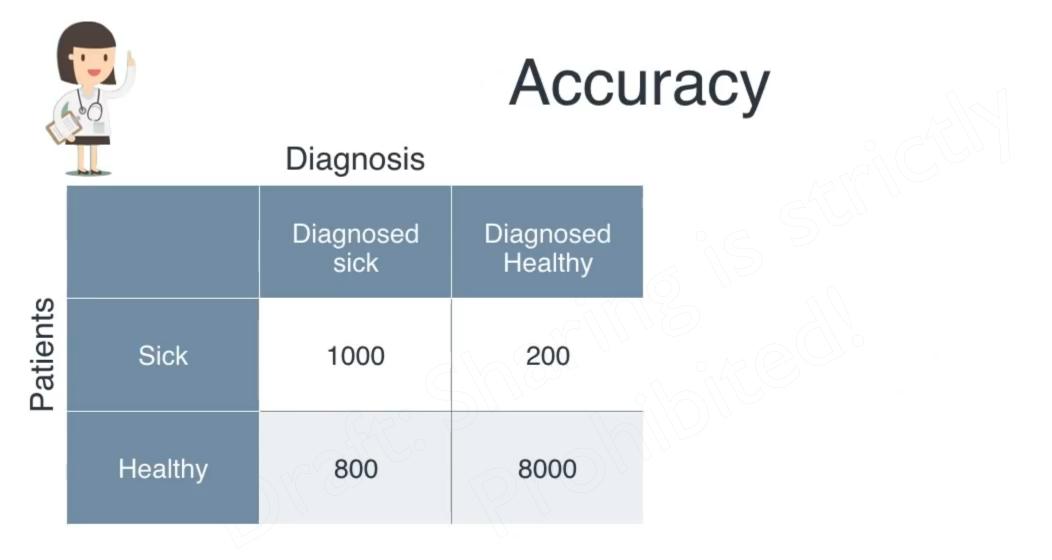












Accuracy

Diagnosis

	Diagnosed sick	Diagnosed Healthy	Ac ho
	1000	200	
ıy	800	8000	
		1000	1000 200

Accuracy: Out of the all the patients, how many did we classify correctly?

Patients

Accuracy

Diagnosis

		Diagnosed sick	Diagnosed Healthy	Accuracy: Out of the all the patients, how many did we classify correctly?
Patients	Sick	1000	200	Accuracy = $\frac{1,000 + 8,000}{1,000 + 8,000}$
	Healthy	800	8000	

Diagnosis

	Diagnosed sick	Diagnosed Healthy
Sick	1000	200
Healthy	800	8000

Accuracy: Out of the all the patients, how many did we classify correctly?

Accuracy = $\frac{1,000 + 8,000}{10,000} = 90\%$

Patients

Folder

	Spam Folder	Inbox	Accuracy how mar
Spam	100	170	Accuracy
Not spam	30	700	
		Folder Spam 100	FolderSpam100

Accuracy: Out of the all the e-mails, how many did we classify correctly?

E-mail

Folder

		Spam Folder	Inbox
E-mail	Spam	100	170
	Not spam	30	700
		/	

Accuracy: Out of the all the e-mails, how many did we classify correctly?

Accuracy = $\frac{100 + 700}{1000} = 80\%$

Medical Model False positives ok False negatives **NOT** ok Spam Detector False positives **NOT** ok False negatives ok

EVALUATION METRICS

Medical Model False positives ok False negatives **NOT** ok

Find all the sick people Ok if not all are sick Spam Detector False positives **NOT** ok False negatives ok

Medical Model False positives ok False negatives **NOT** ok Spam Detector False positives **NOT** ok False negatives ok

Find all the sick people Ok if not all are sick You don't necessarily need to find all spam But they better all be spam

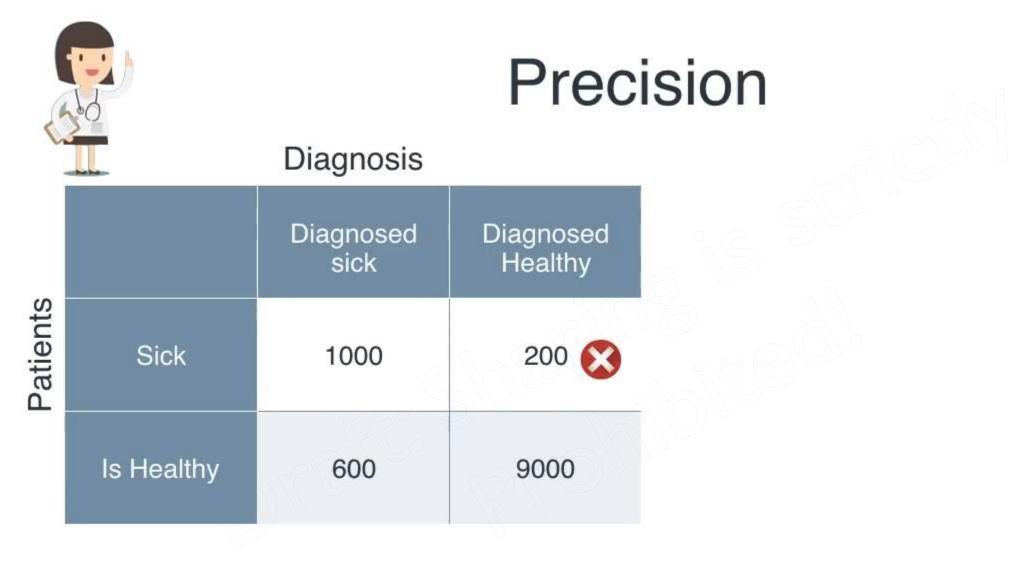
Medical Model False positives ok False negatives **NOT** ok Spam Detector False positives **NOT** ok False negatives ok

Find all the sick people Ok if not all are sick

High Recall

You don't necessarily need to find all spam But they better all be spam

High Precision



Diagnosis

		Diagnosed sick	Diagnosed Healthy
Patients	Sick	1000	200 🚫
	Is Healthy	600	9000

Precision: Out of the patients we diagnosed with an illness, how many did we classify correctly?

Diagnosis

		Diagnosed sick	Diagnosed Healthy	
ם מותחווס	Sick	1000	200 🚫	
	Healthy	800	8000	
3		Barry 8		

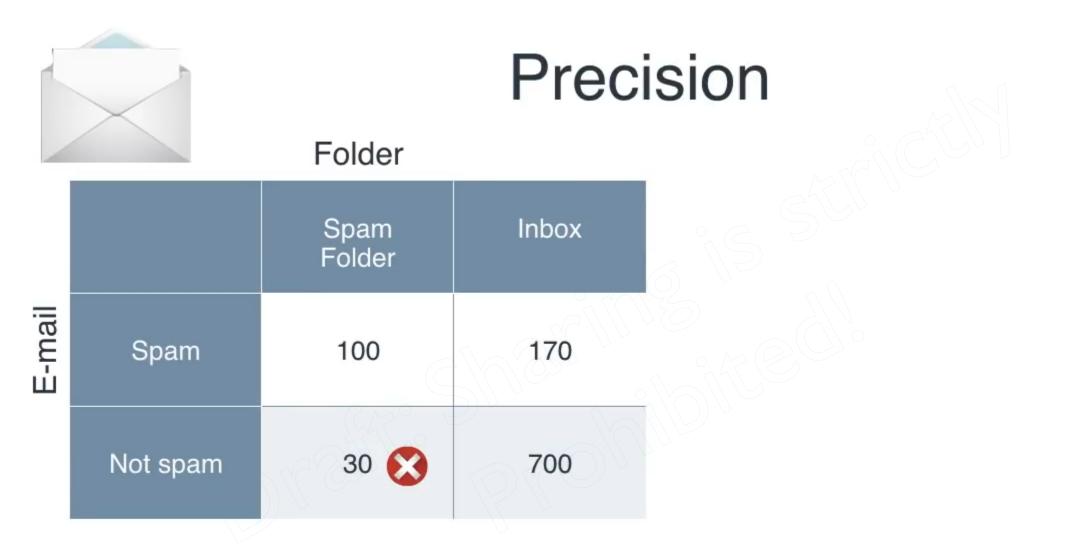
Precision: Out of the patients we diagnosed with an illness, how many did we classify correctly?

Diagnosis

		Diagnosed sick	Diagnosed Healthy	P w how
Patients	Sick	1000	200 🚫	Precisi
	Healthy	800	8000	

Precision: Out of the patients we diagnosed with an illness, ow many did we classify correctly?

Precision = $\frac{1,000}{1,000 + 800} = 55.7\%$



Folder

		Spam Folder	Inbox	
E-mail	Spam	100	170	
	Not spam	30 🚫	700	

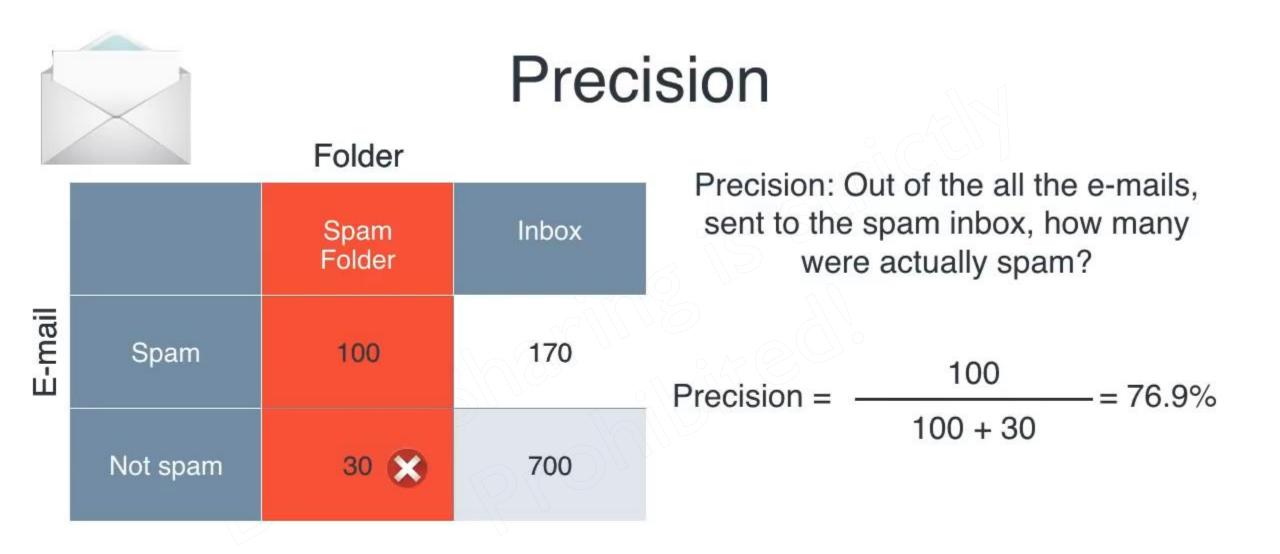
Precision: Out of the all the e-mails, sent to the spam inbox, how many were actually spam?

Folder

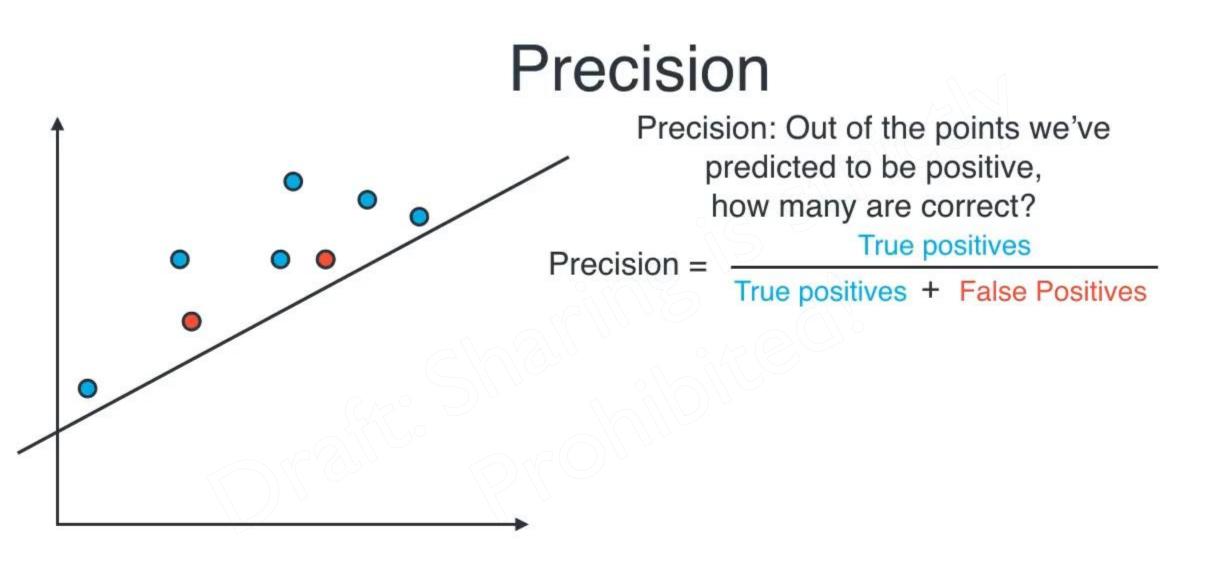
		Spam Folder	Inbox	S
E-mail	Spam	100	170	
	Not spam	30 🗙	700	
8		/		

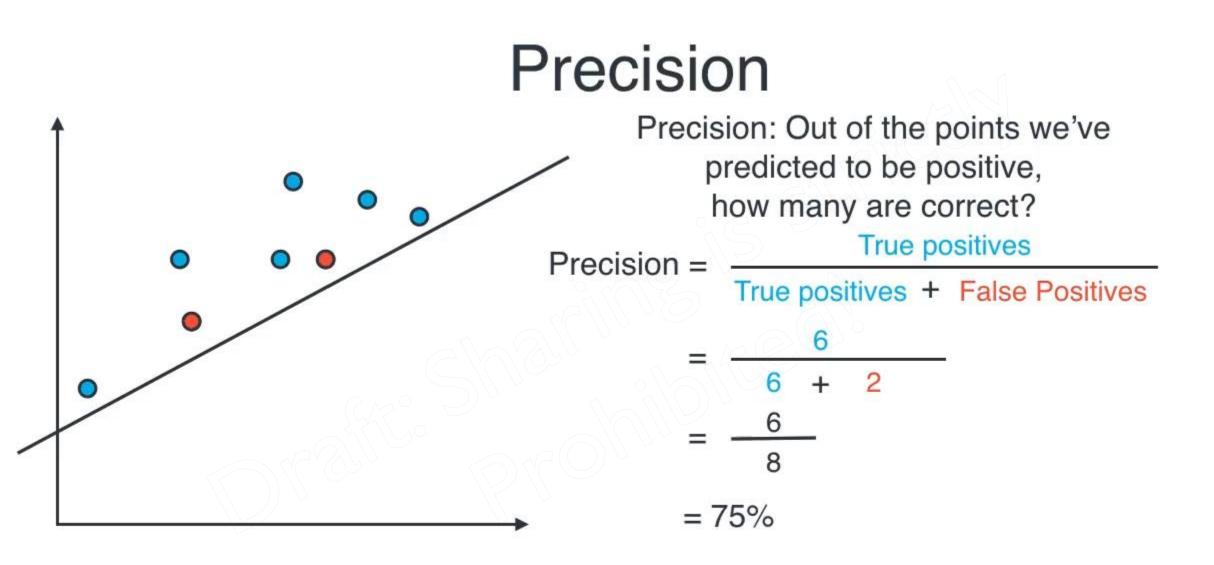
Precision: Out of the all the e-mails, sent to the spam inbox, how many were actually spam?

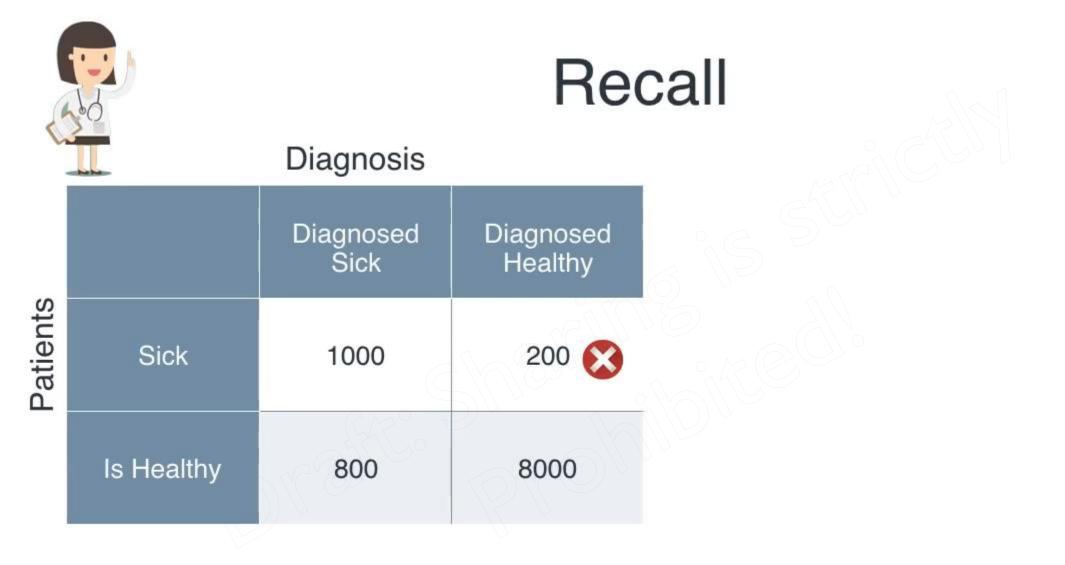
E-mai



Precision: Out of the points we've predicted to be positive, how many are correct?







Diagnosis

	Diagnosed Sick	Diagnosed Healthy	
Sick	1000	200 🚫	
Is Healthy	800	8000	
		Sick 1000	Sick 1000 200 🐼

Recall: Out of the sick patients, how many did we correctly diagnose as sick?

Patients

Diagnosis

	Diagnosed Sick	Diagnosed Healthy
Sick	1000	200 🗙
Is Healthy	800	8000

Recall: Out of the sick patients, how many did we correctly diagnose as sick?

Patients

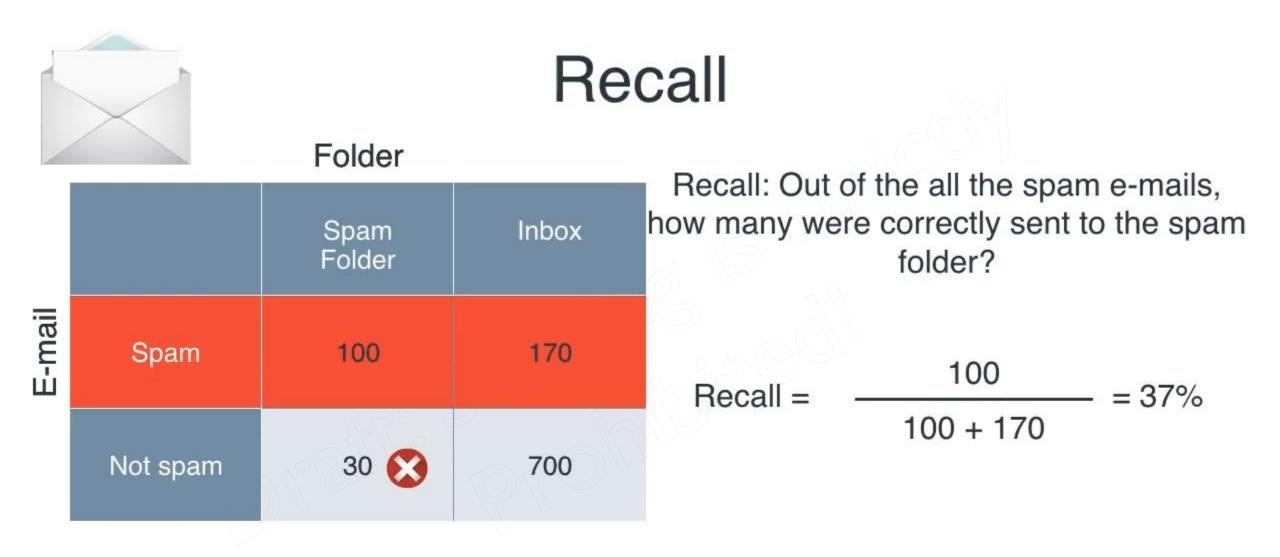
Diagnosis

		Diagnosed Sick	Diagnosed Healthy
Patients	Sick	1000	200 🗙
	Is Healthy	800	8000

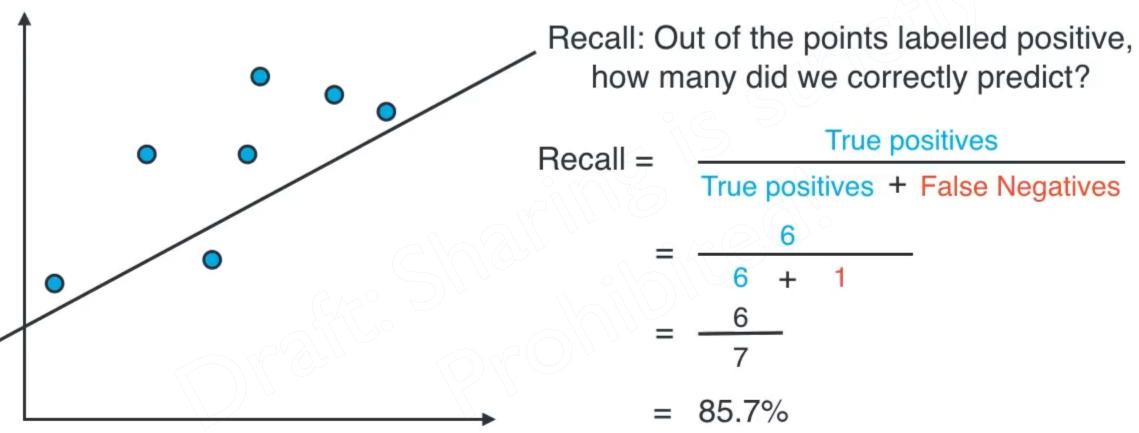
Recall: Out of the sick patients, how many did we correctly diagnose as sick?

Recall = $\frac{1,000}{1,000 + 200} = 83.3\%$

1			Re	call
		Folder		Recall: Out of the all the spam e-mails,
		Spam Folder	Inbox	how many were correctly sent to the spam folder?
E-mail	Spam	100	170	
	Not spam	30 🚫	700	



Recall: Out of the points labelled positive, how many did we correctly predict?



Precision and Recall

Medical Model Precision: 55.7% Recall: 83.3% Spam Detector

Precision: 76.9% Recall: 37%

Medical Model Precision: 55.7%

Recall: 83.3%

Spam Detector

Precision: 76.9% Recall: 37%

Medical Model Precision: 55.7% **Recall: 83.3%**

Average = 69.5%

Spam Detector

F1 Score

Precision: 76.9% Recall: 37%

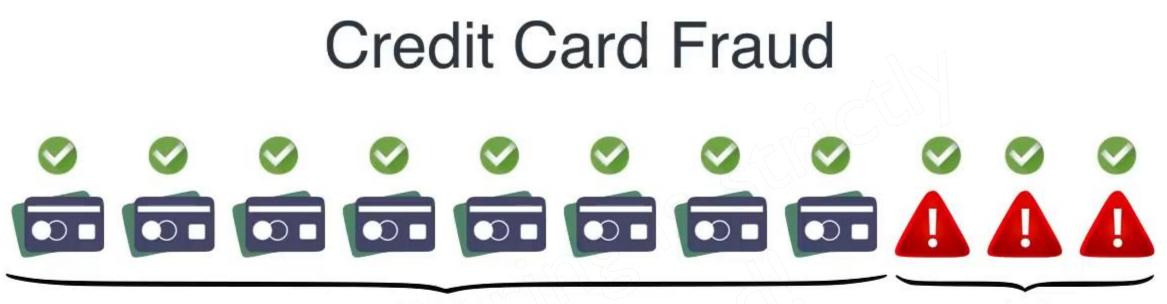
Average = 56.95%

Credit Card Fraud

Credit Card Fraud

472

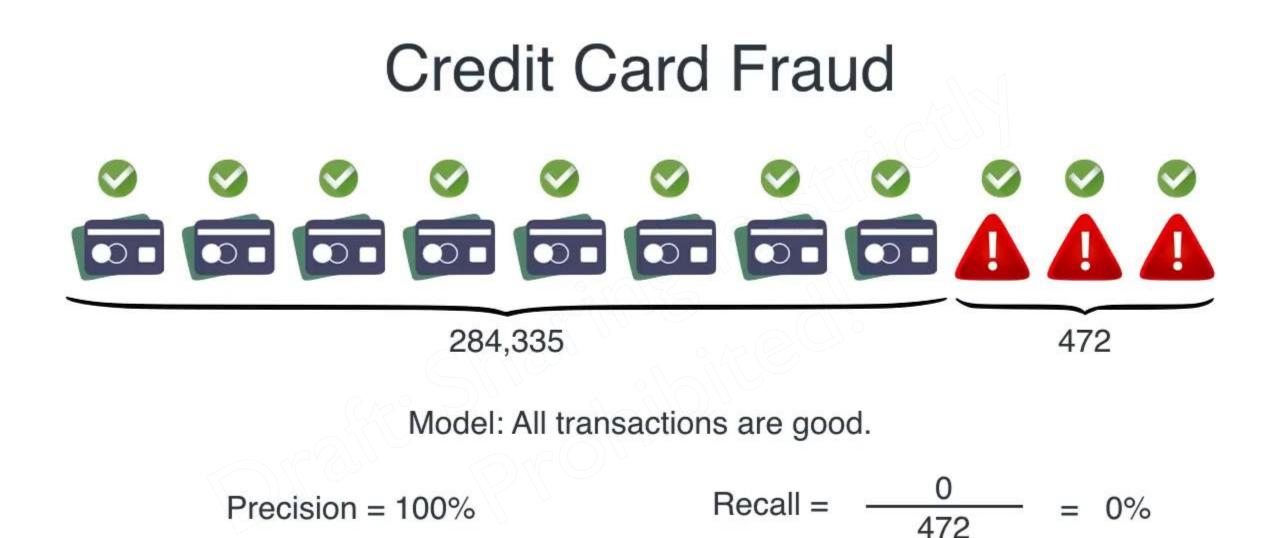
284,335

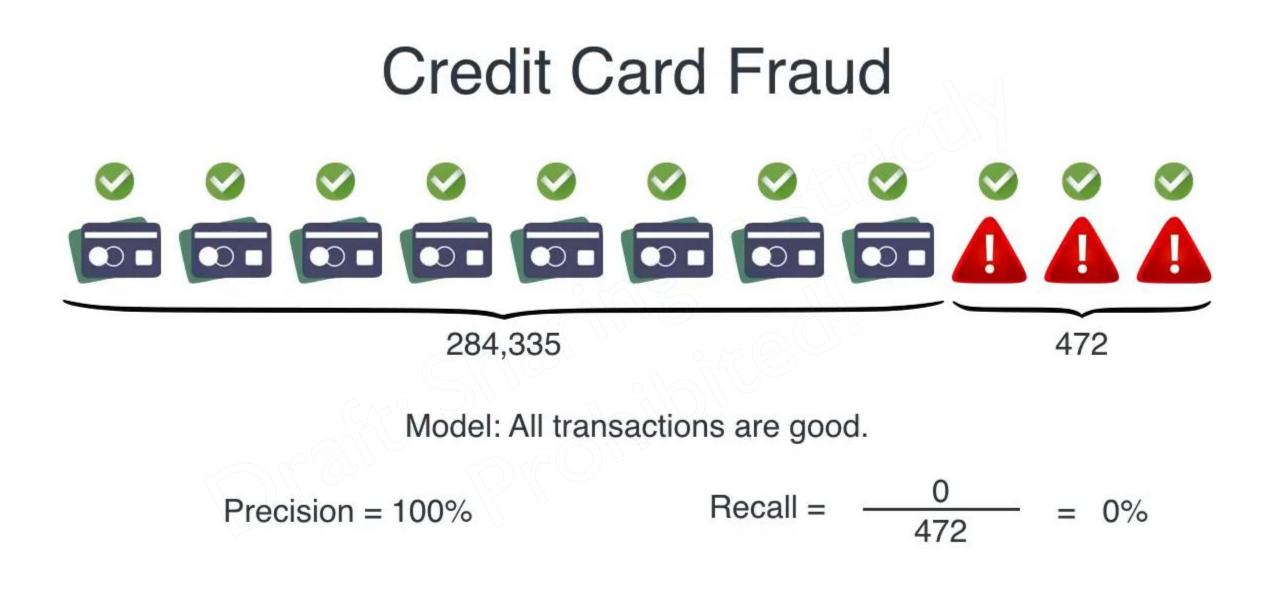


284,335

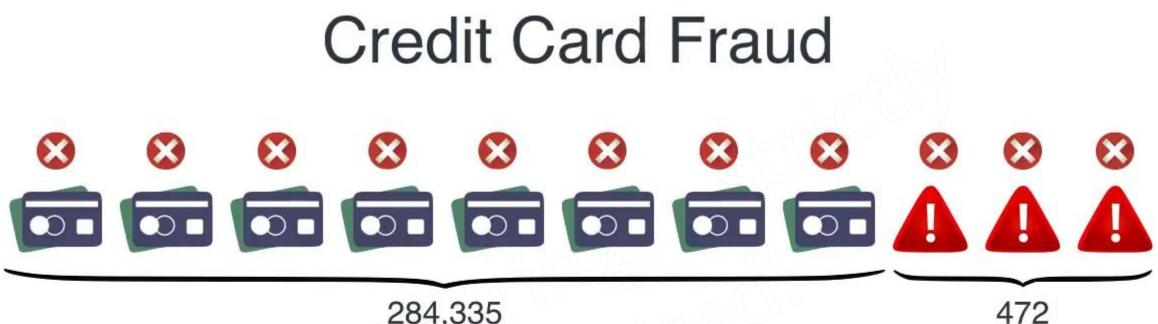
472

Model: All transactions are good.

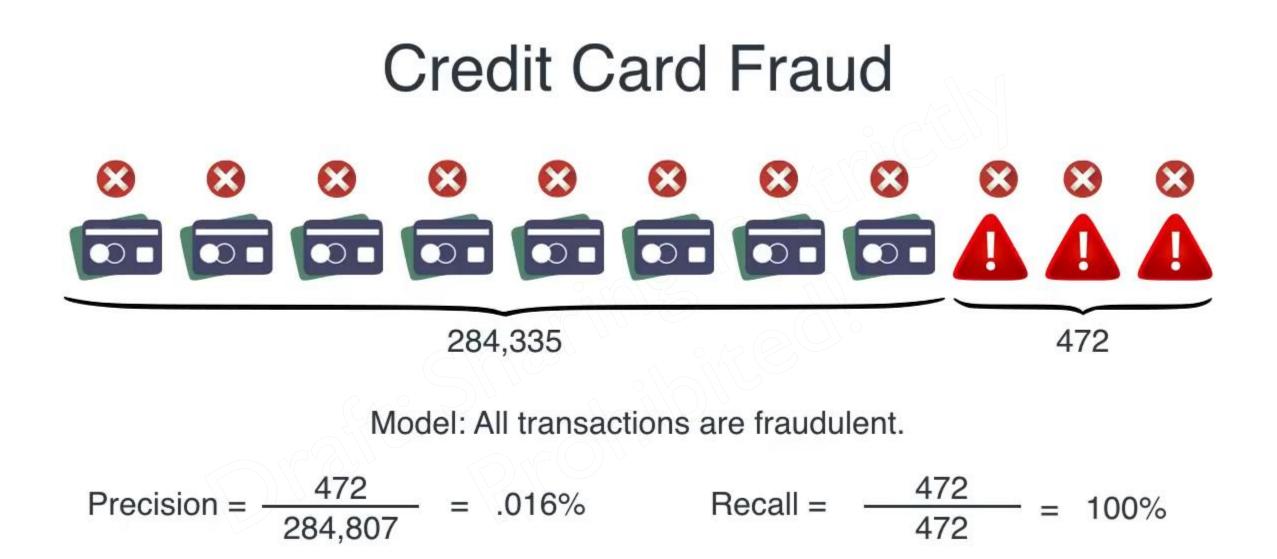


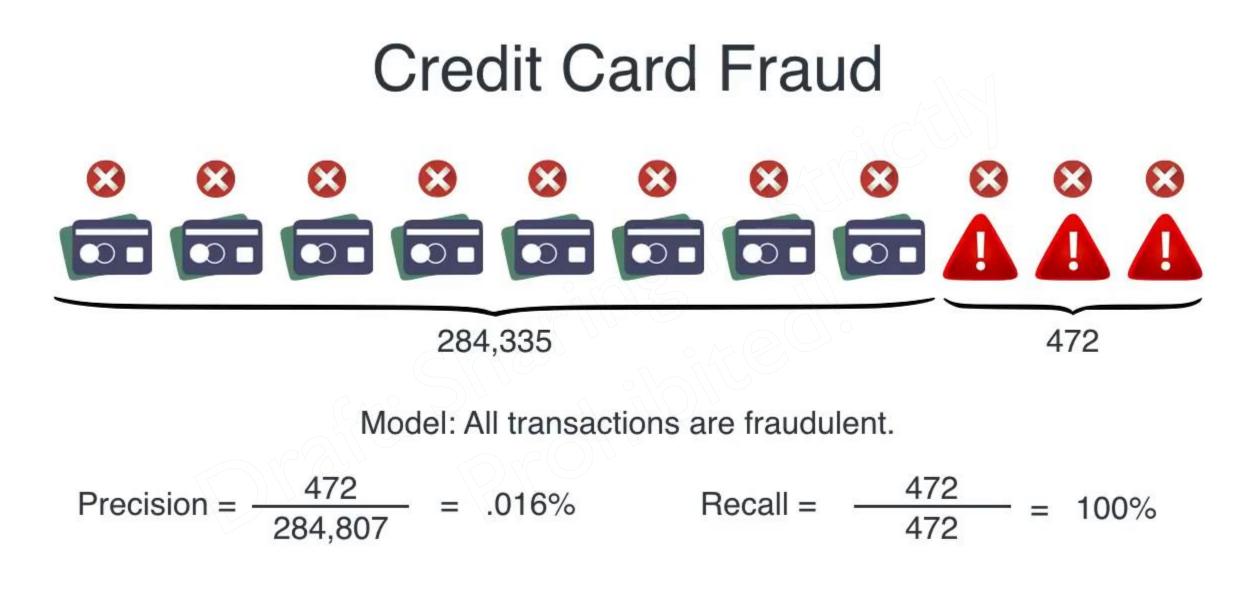


Average = 50%

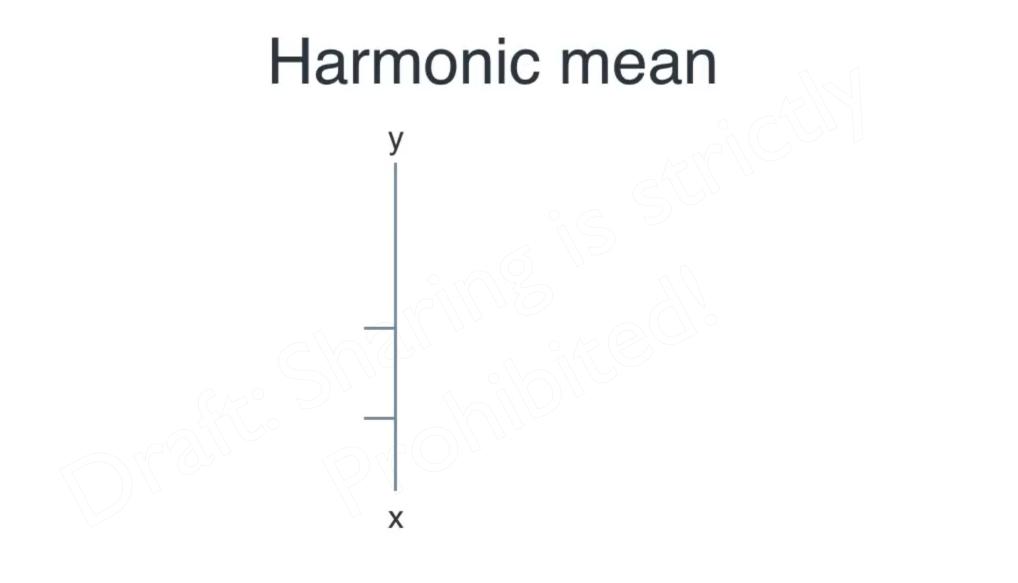


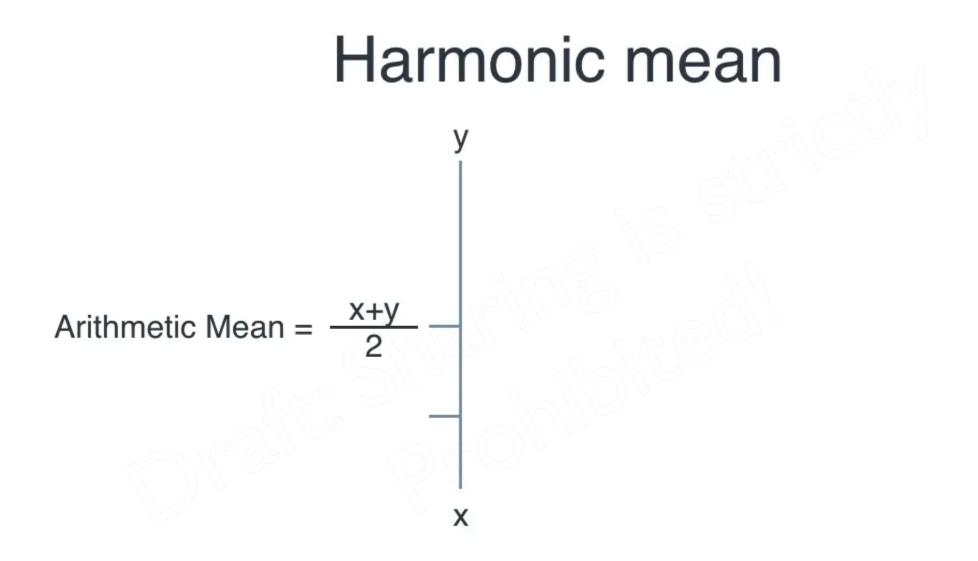
284,335

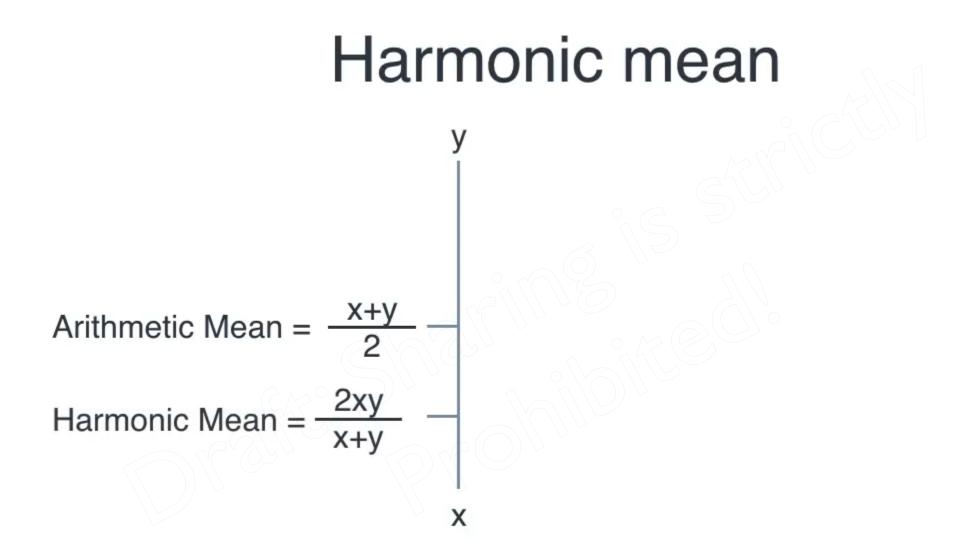


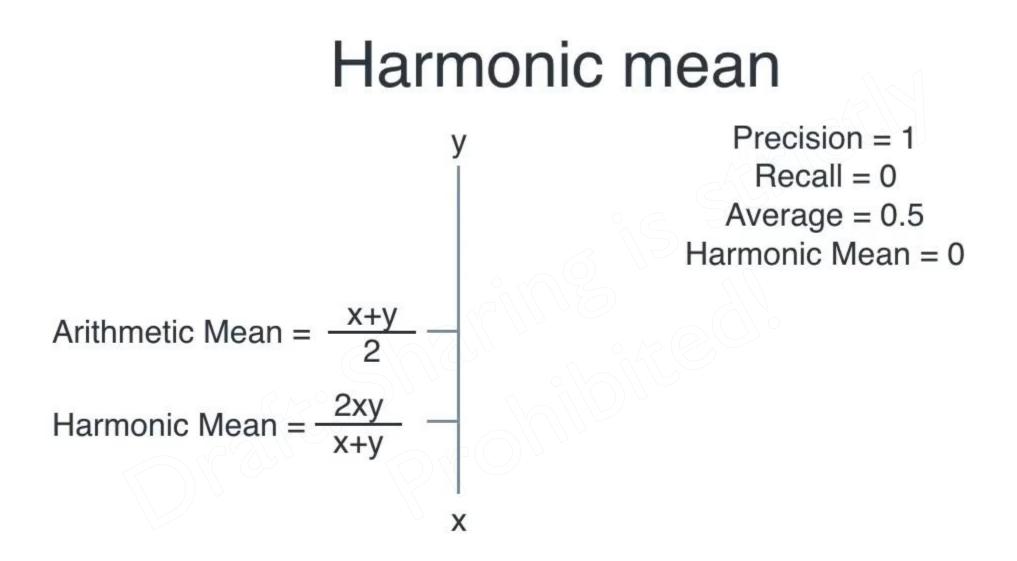


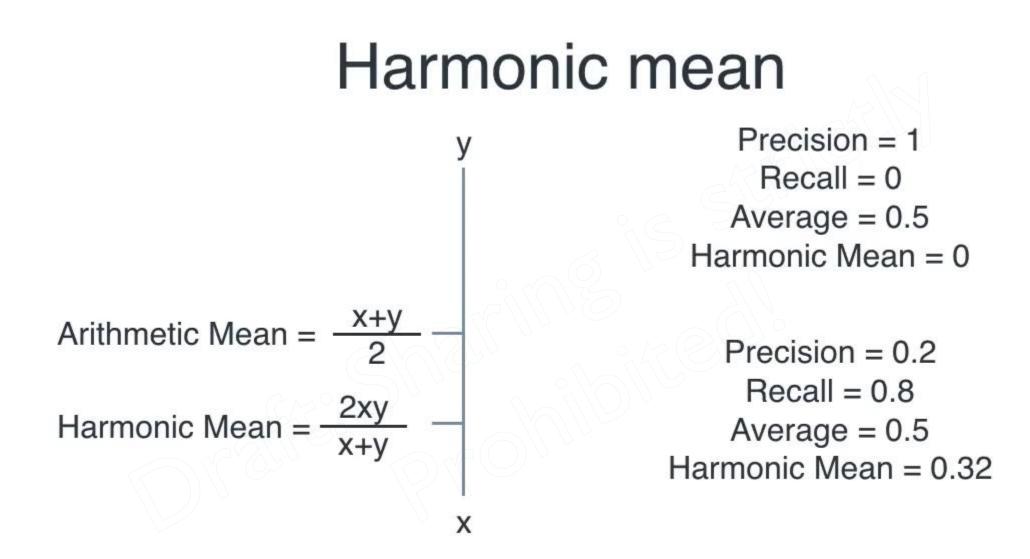
Average = 50.008%

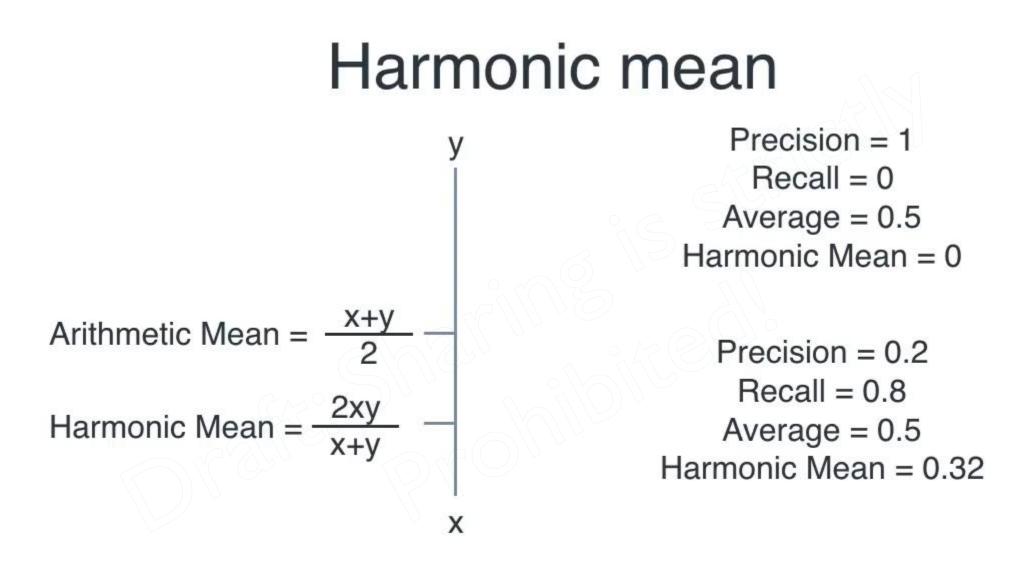




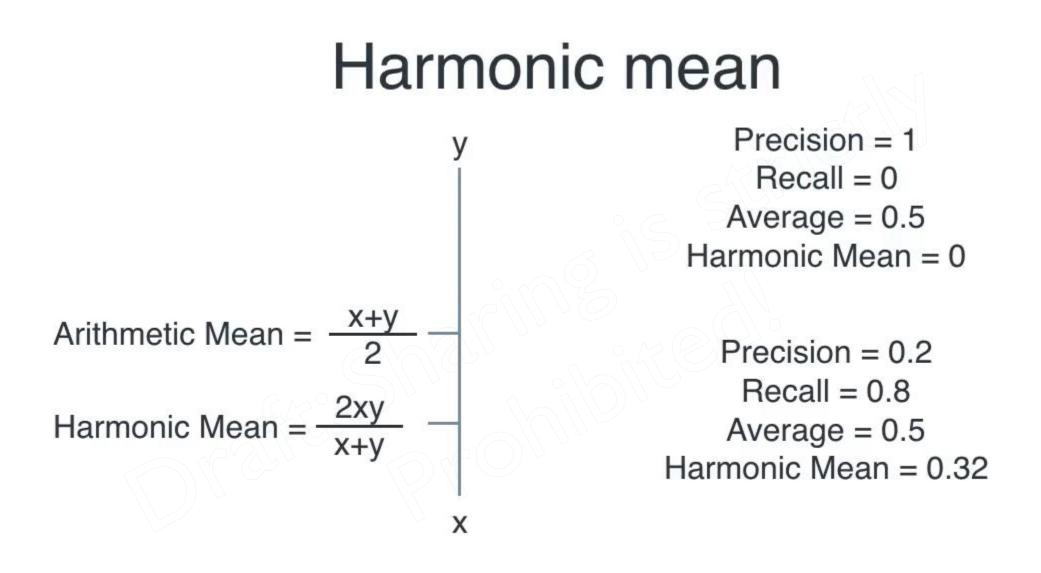








Arithmetic Mean(Precision, Recall)



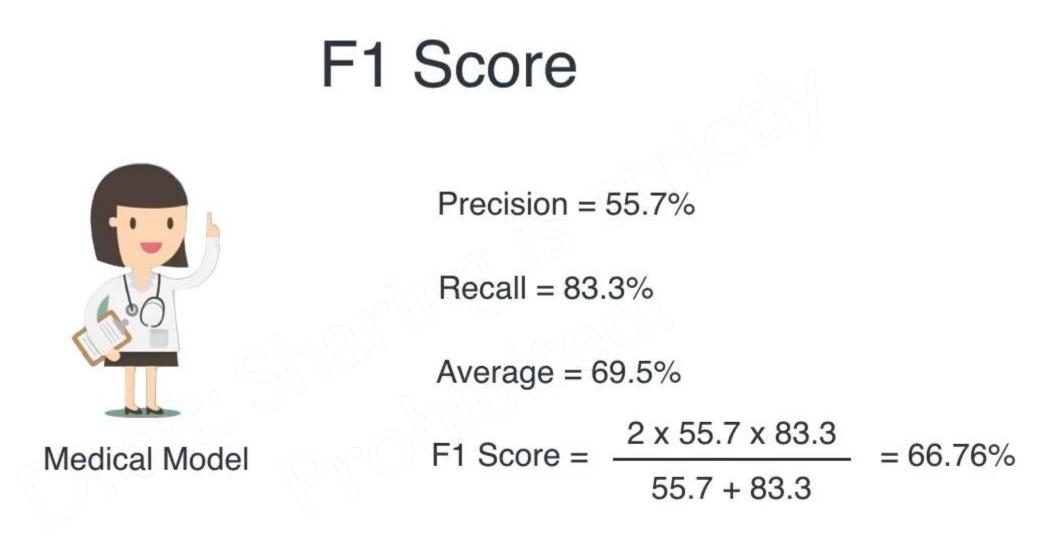
Arithmetic Mean(Precision, Recall) F1 Score = Harmonic Mean(Precision, Recall)

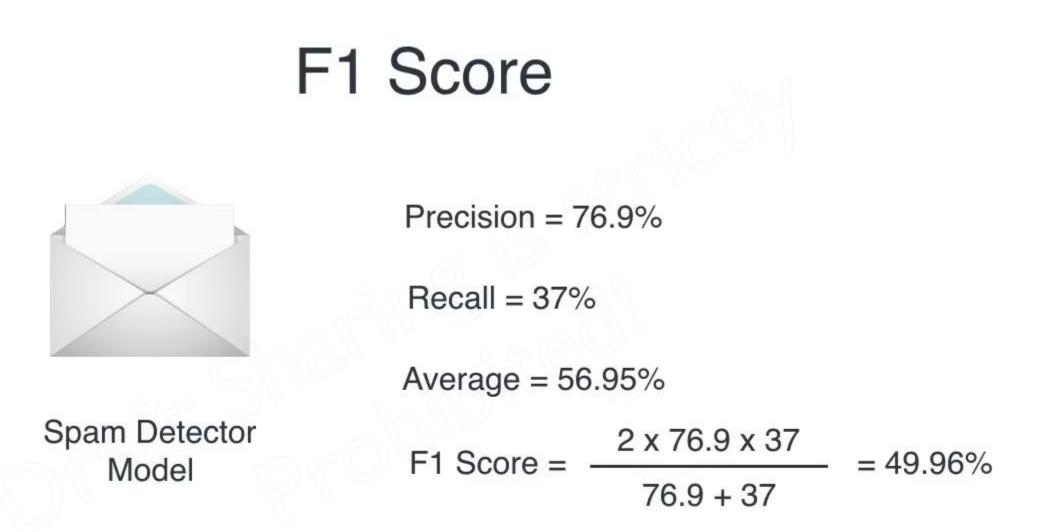
F1 Score

Precision = 55.7%

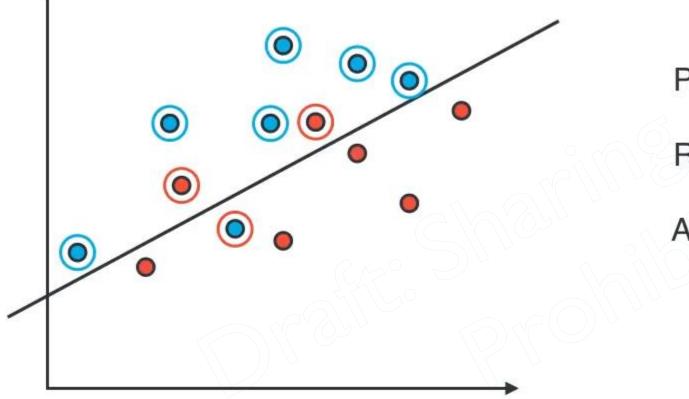
Recall = 83.3%

Average = 69.5%





F1 Score

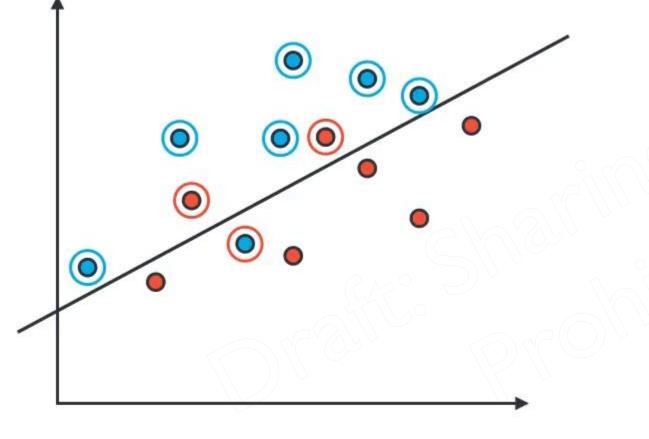


Precision = 75%

Recall = 85.7%

Average = 80.35

F1 Score

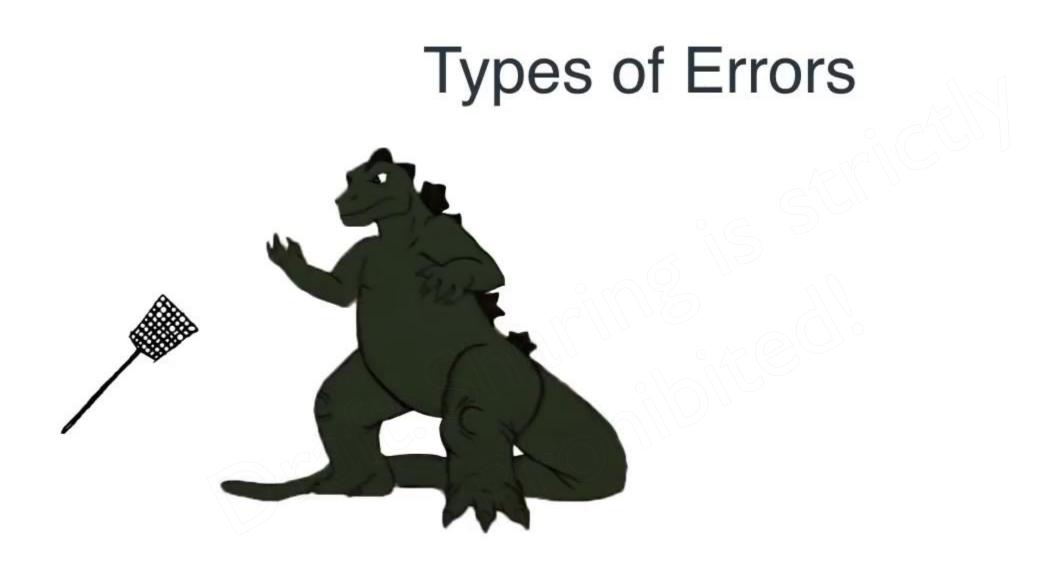


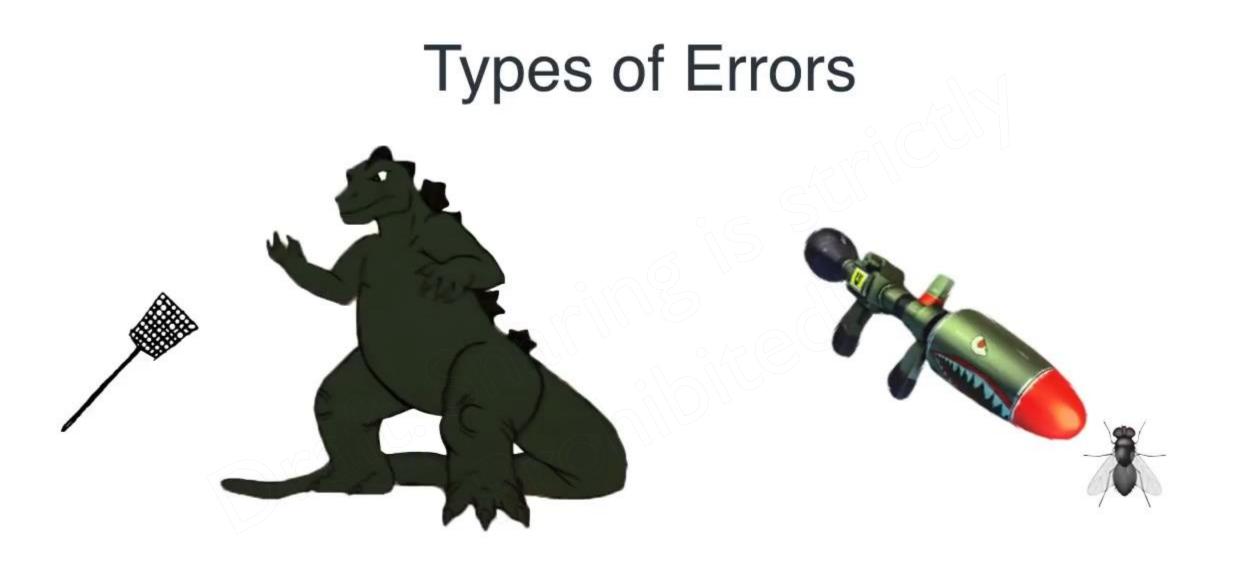
Precision = 75%

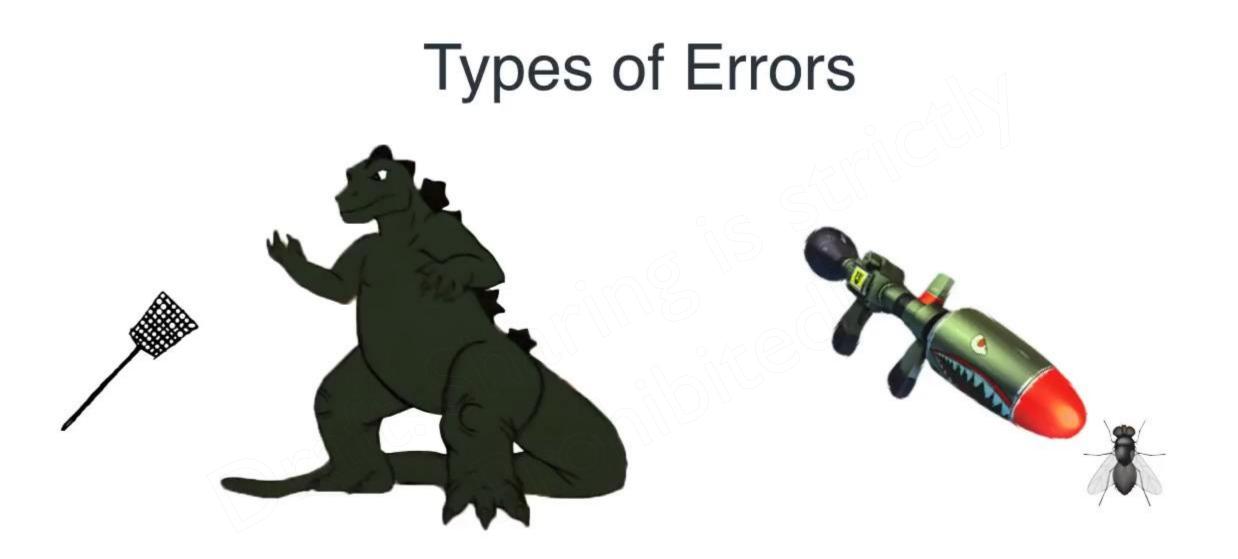
Recall = 85.7%

Average = 80.35

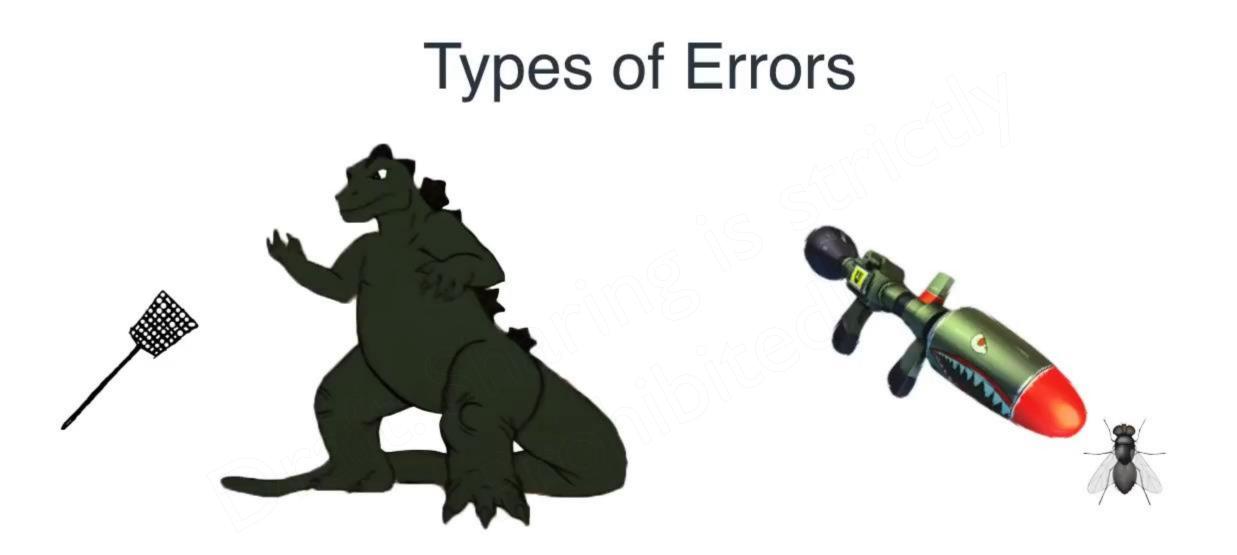
F1 Score = $\frac{2 \times 75 \times 85.7}{75 + 85.7} = 80\%$





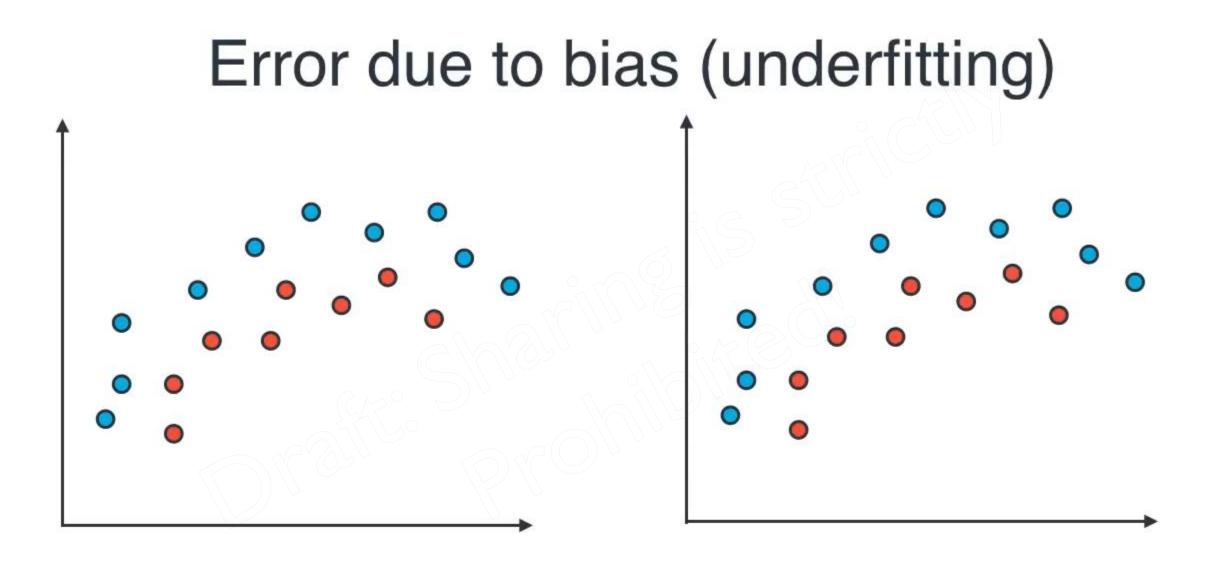


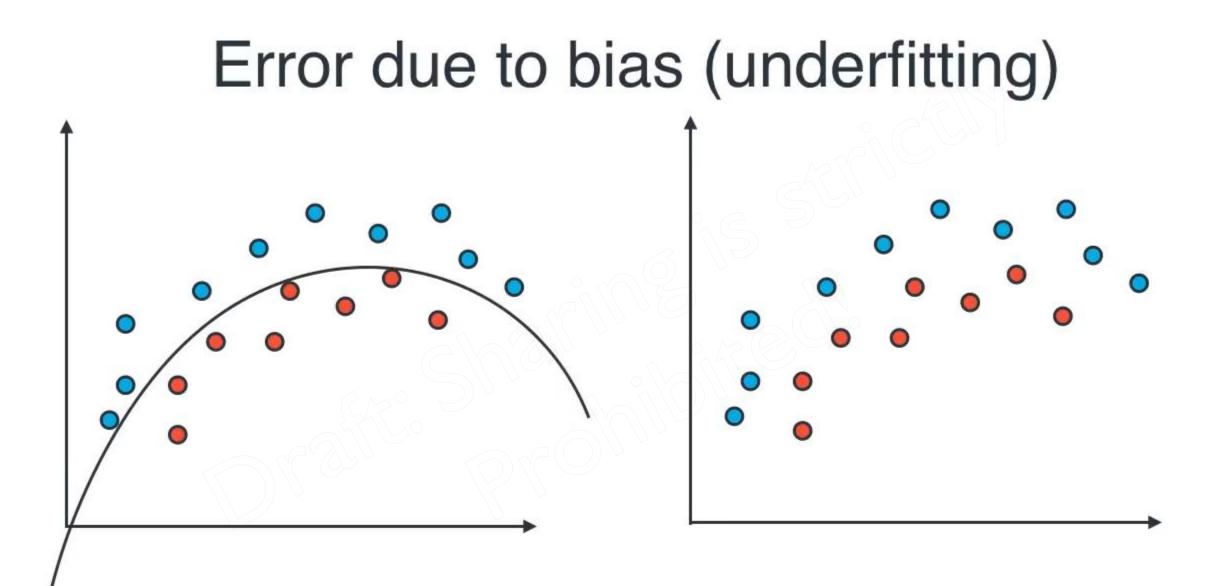
Underfitting

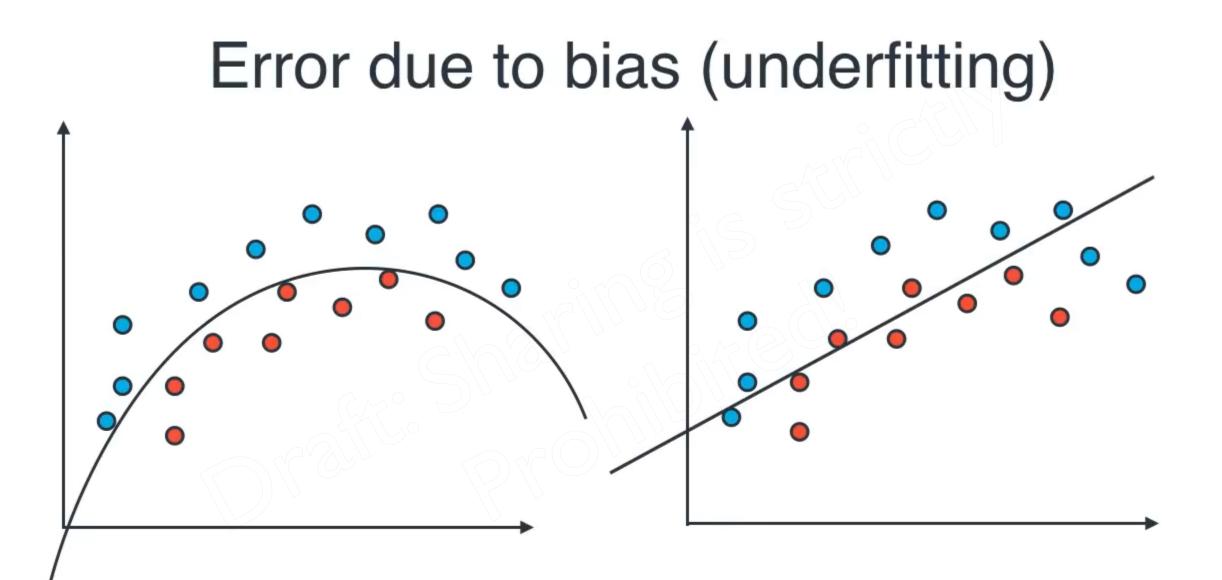


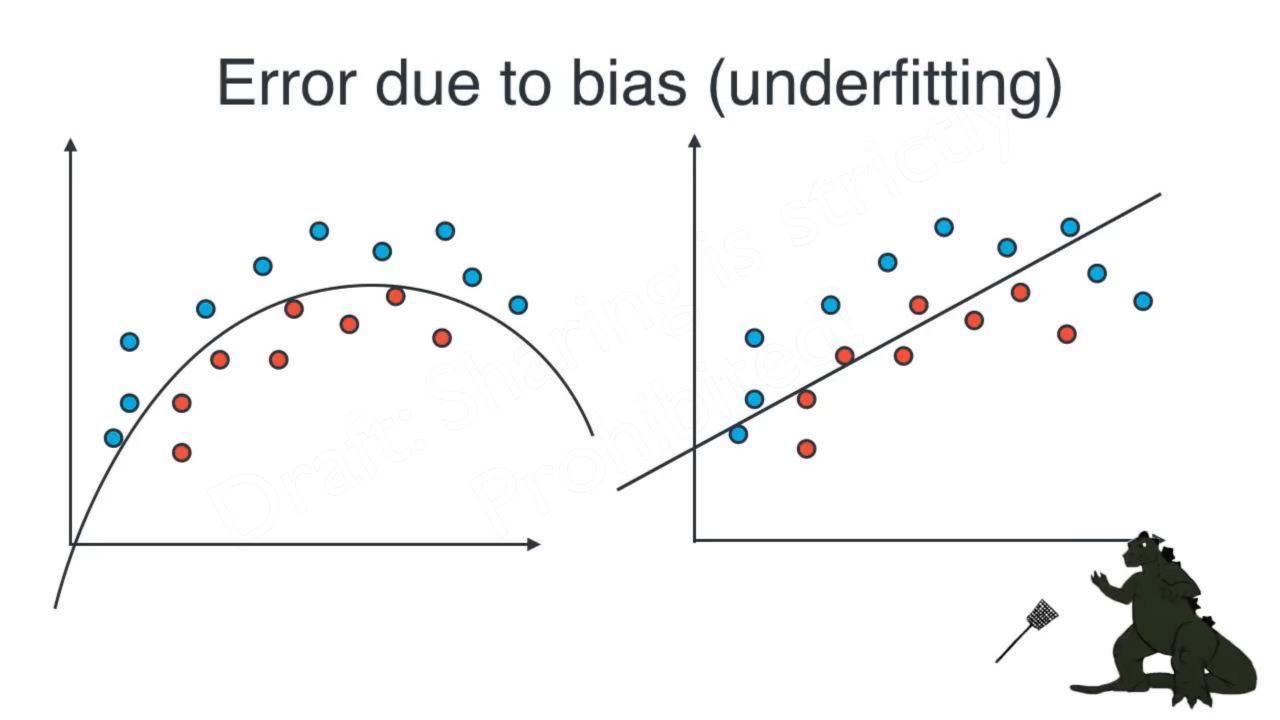
Underfitting

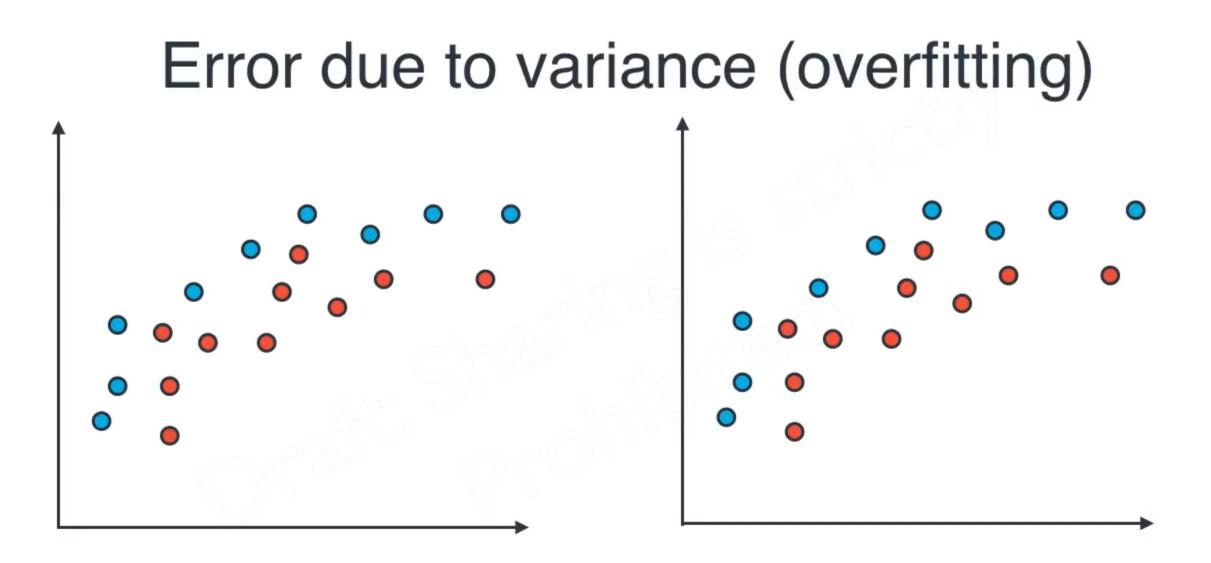
Overfitting

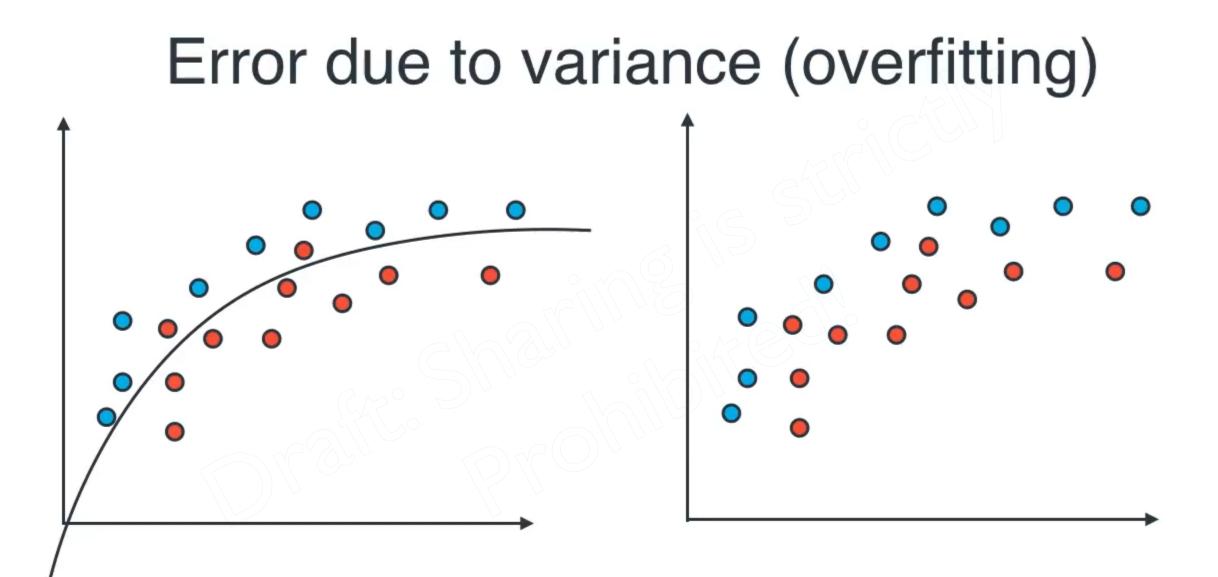






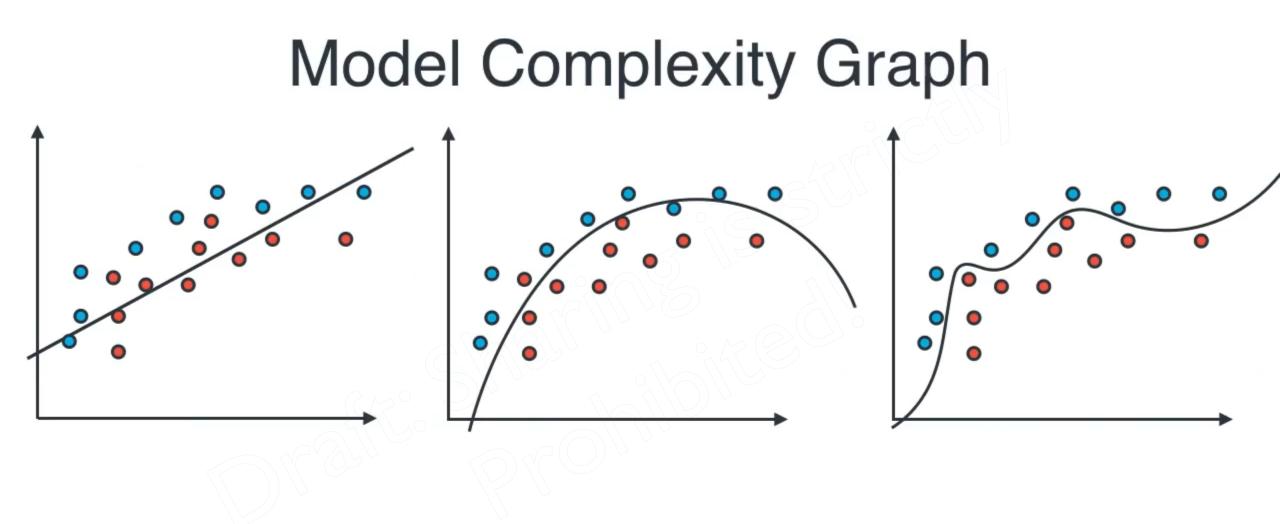


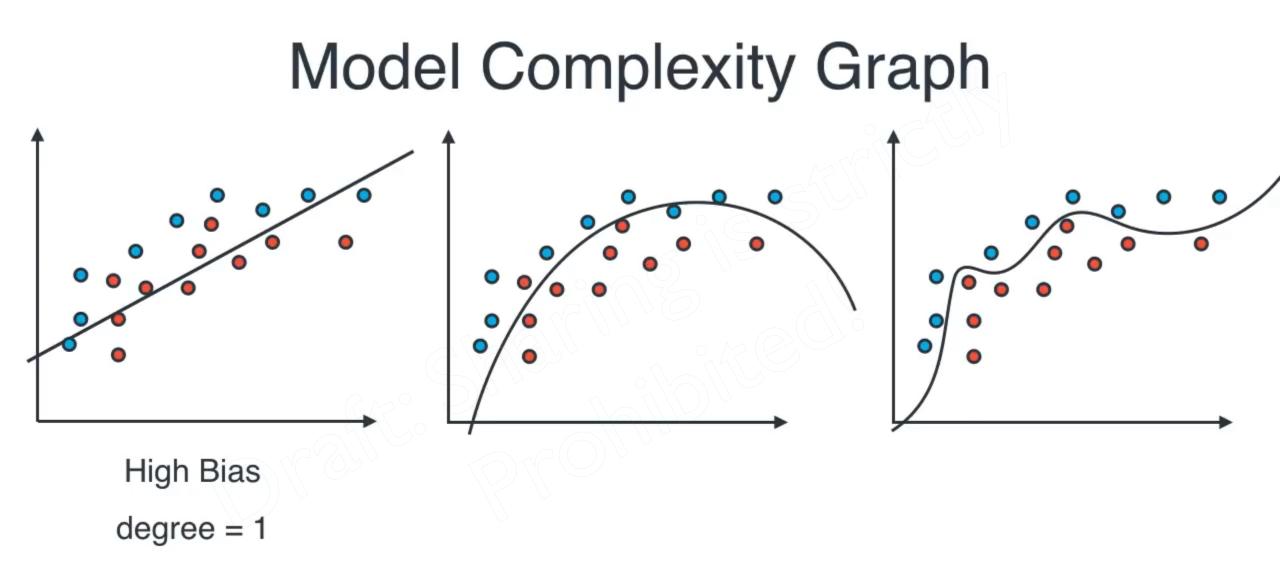


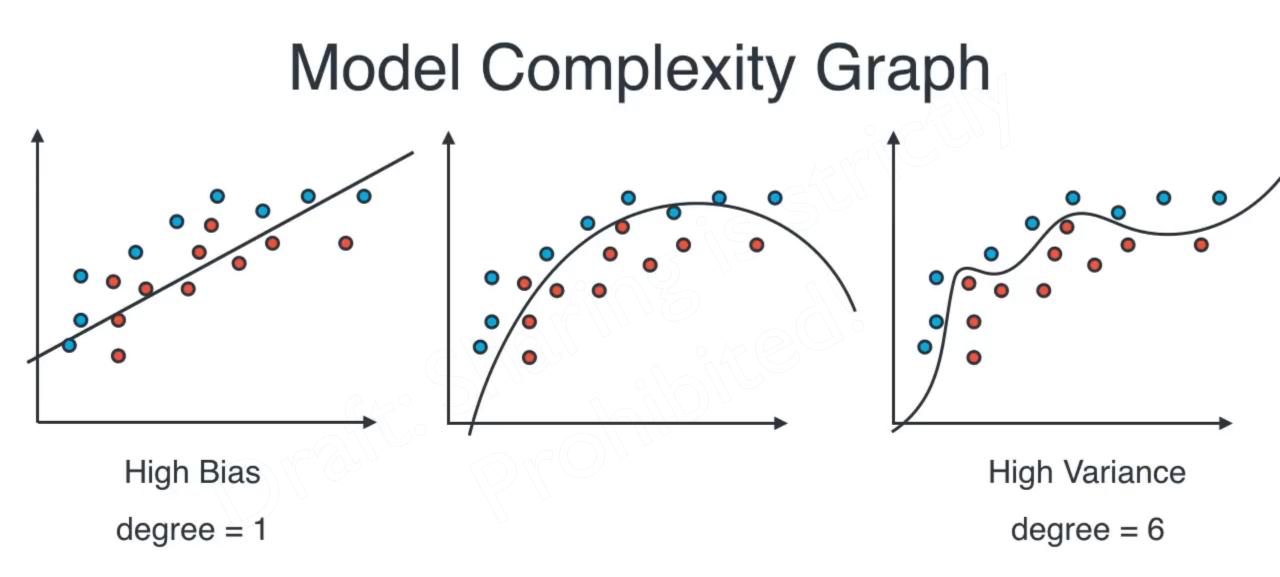


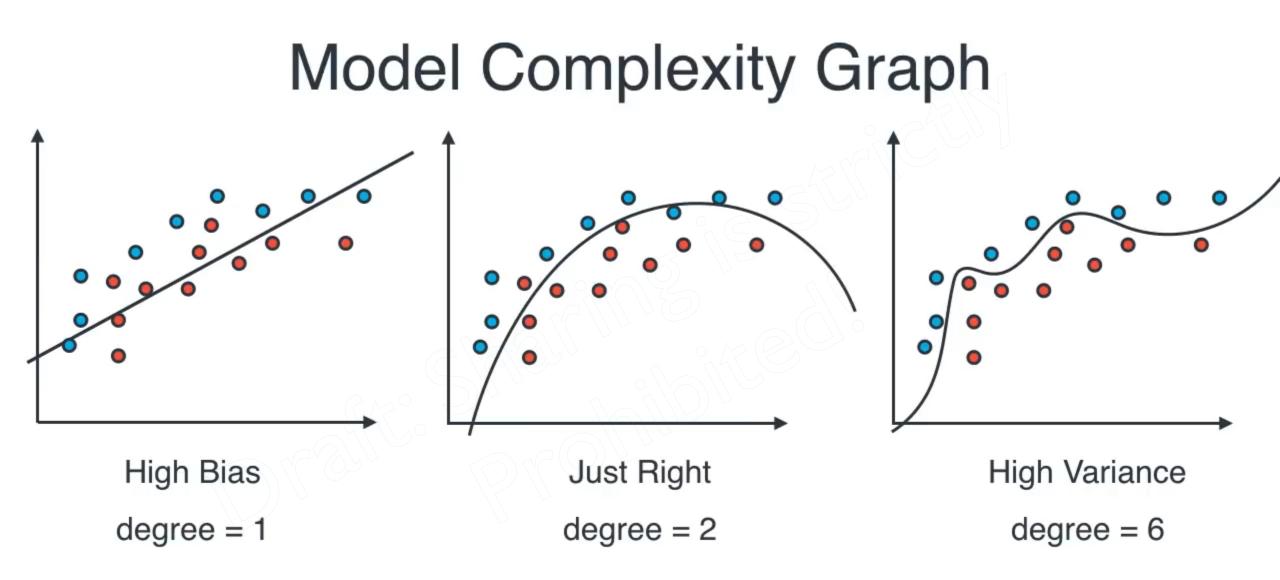
Error due to variance (overfitting) \bigcirc

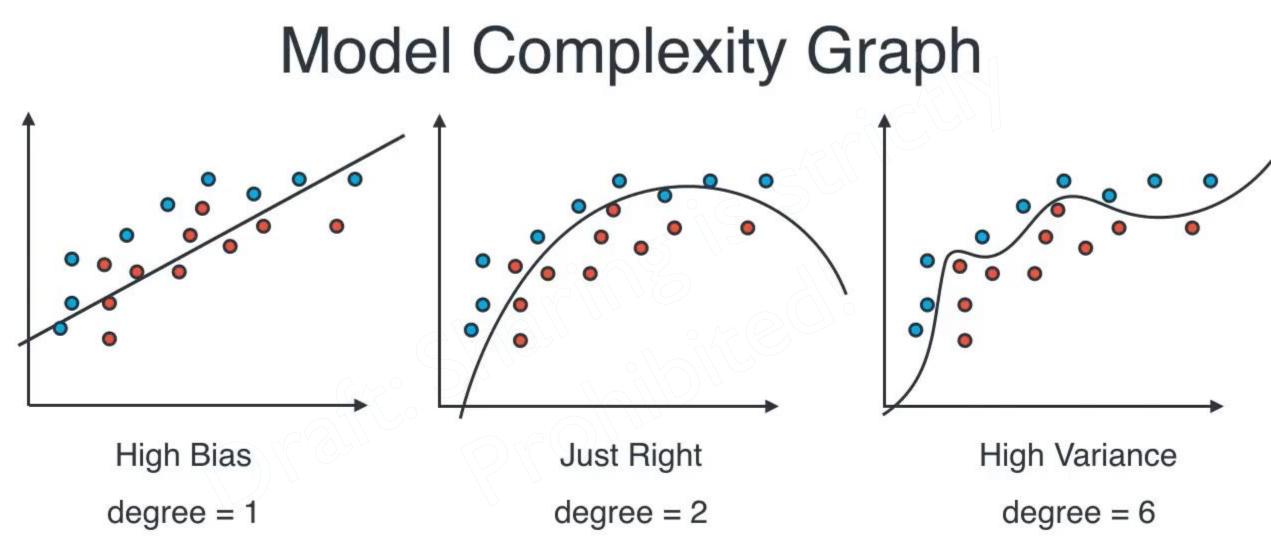


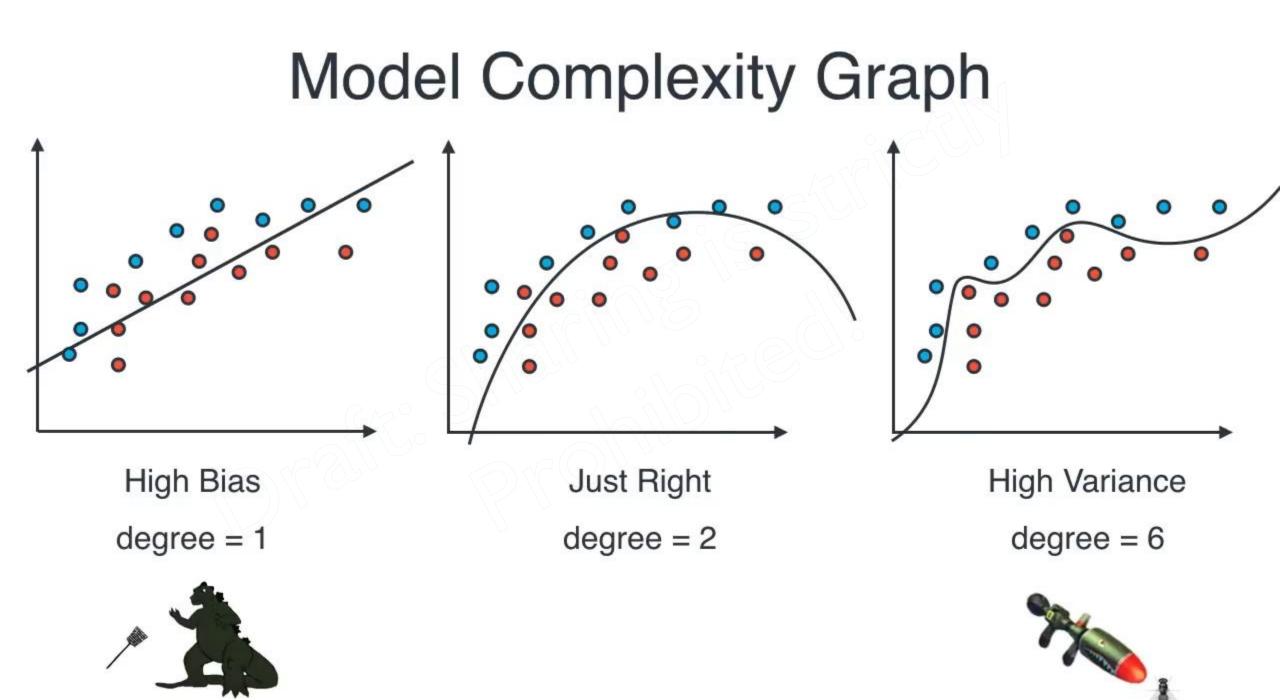


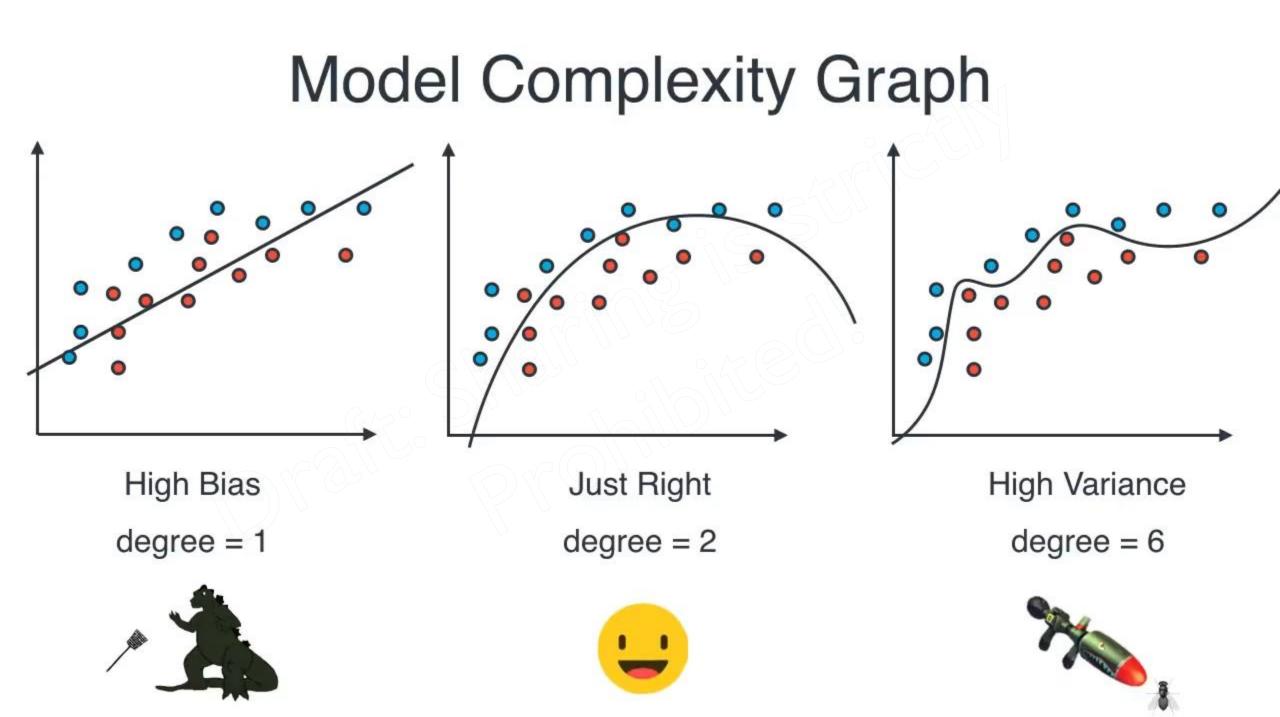


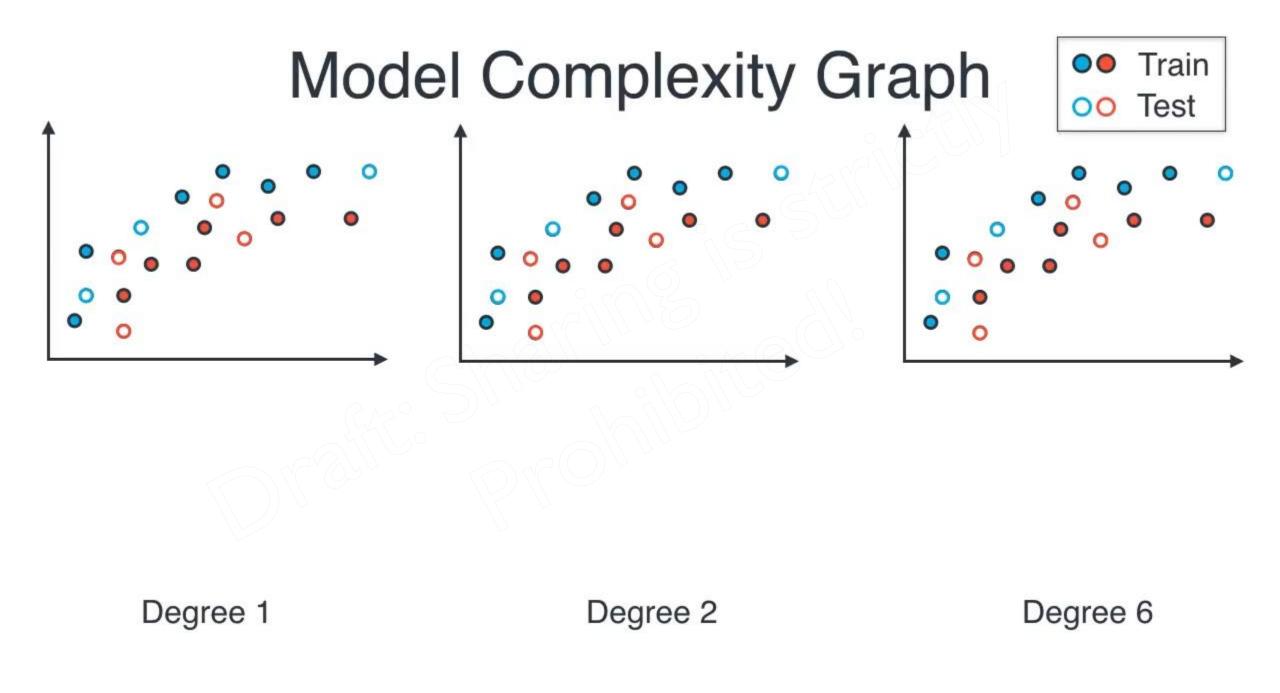


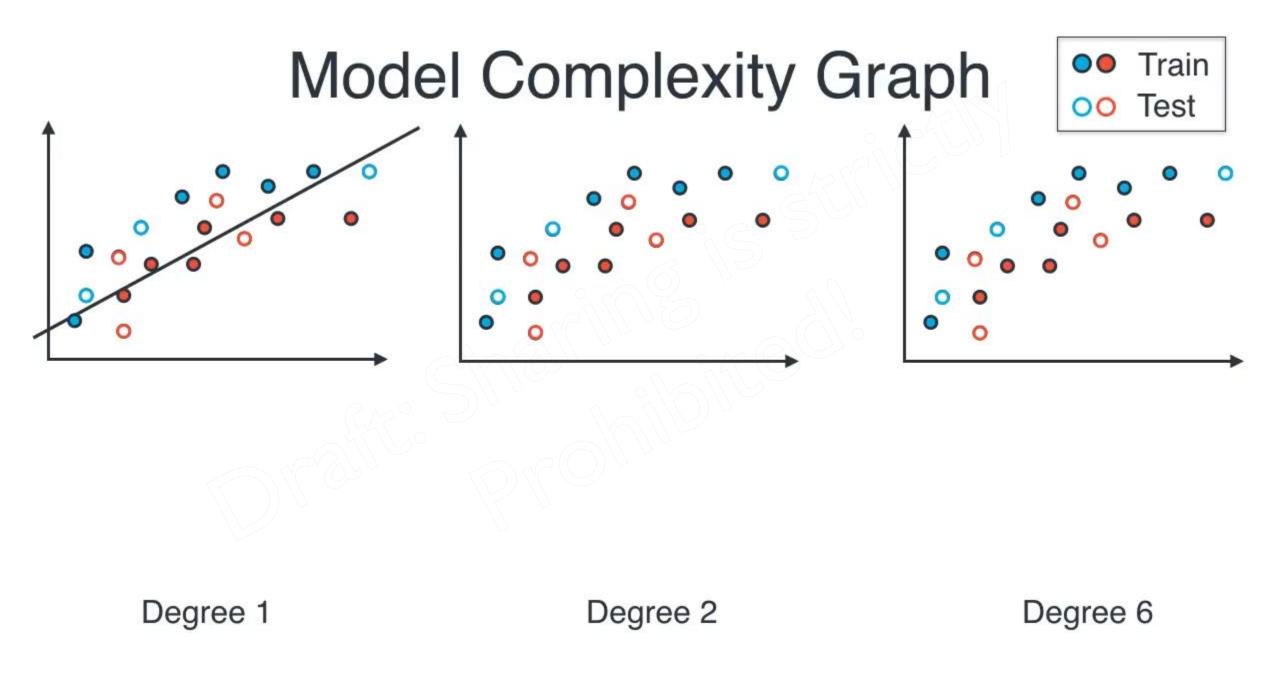


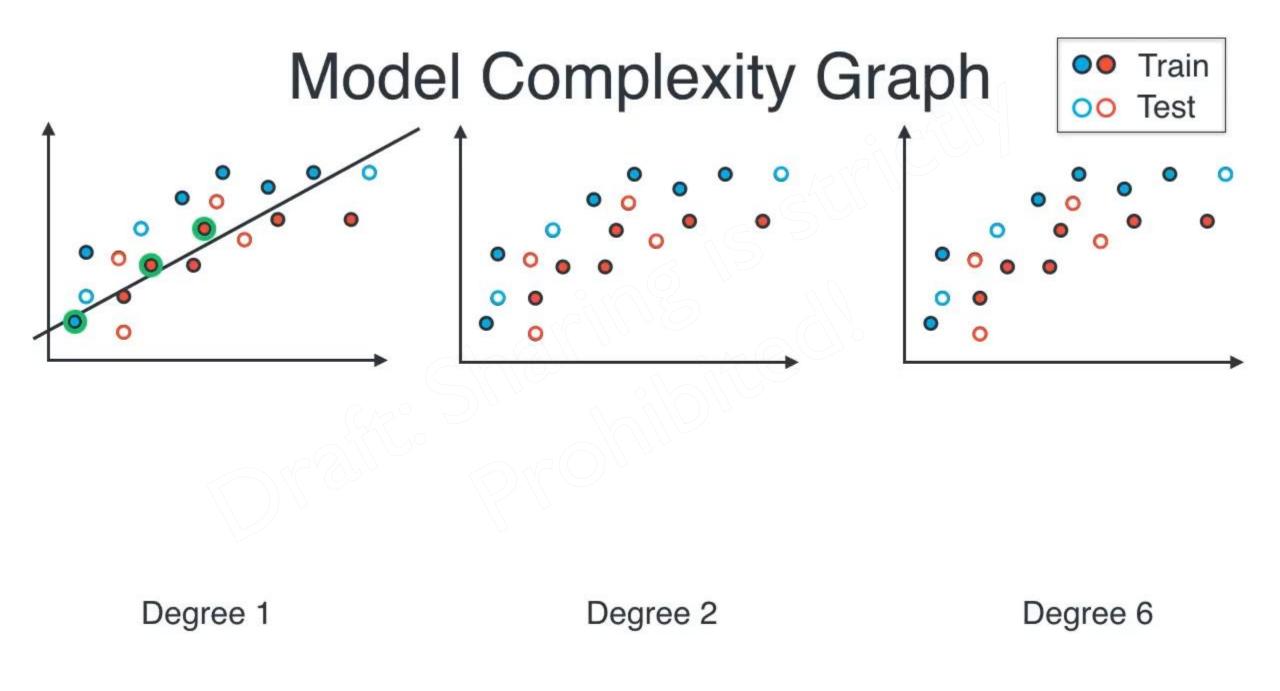


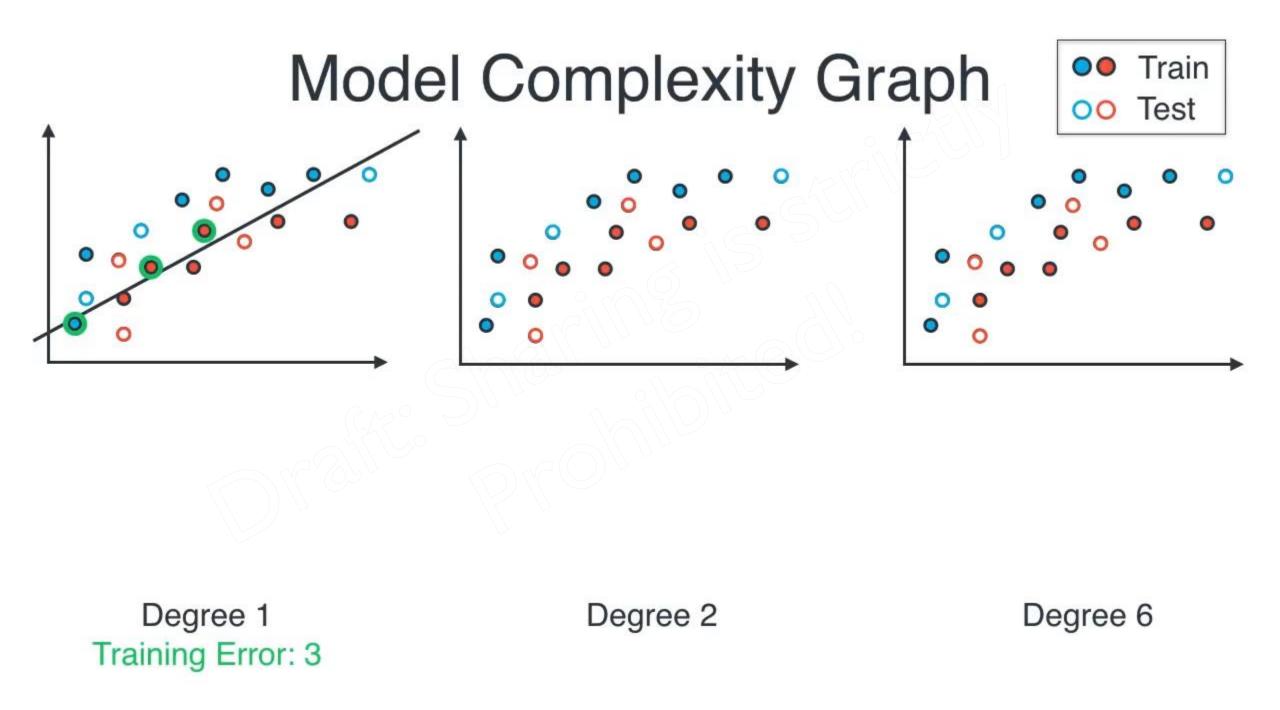


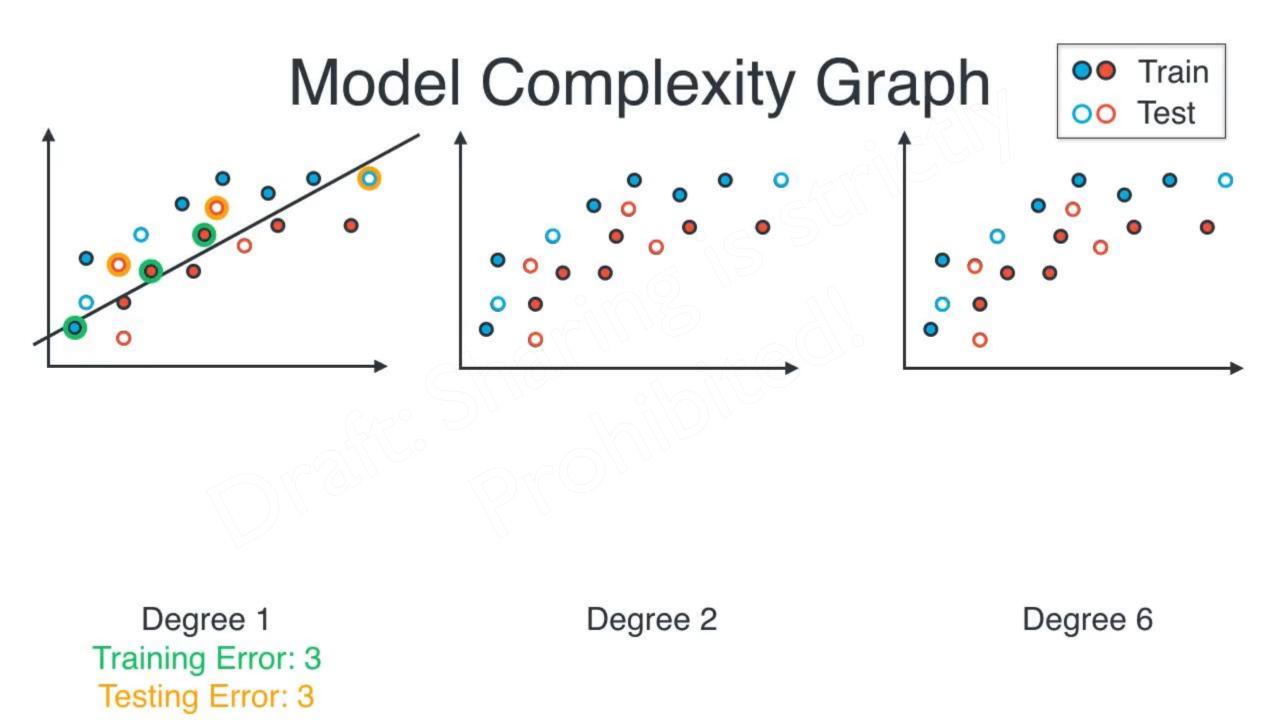


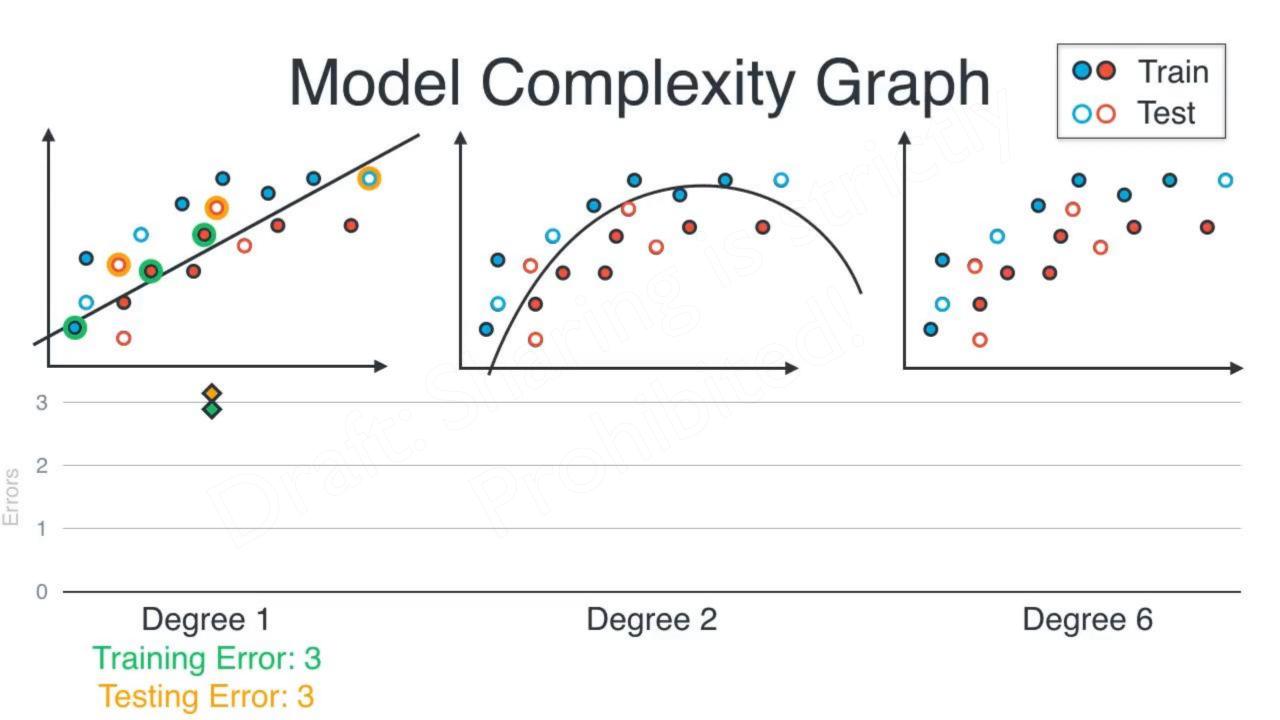


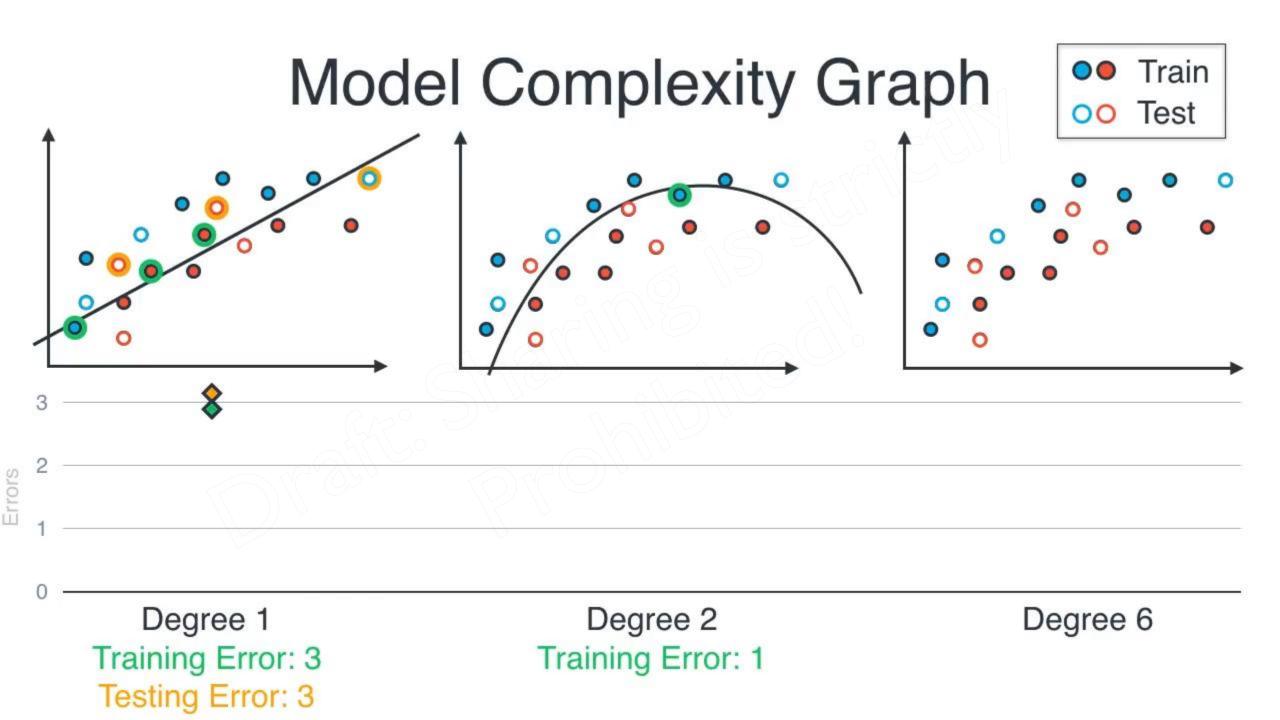


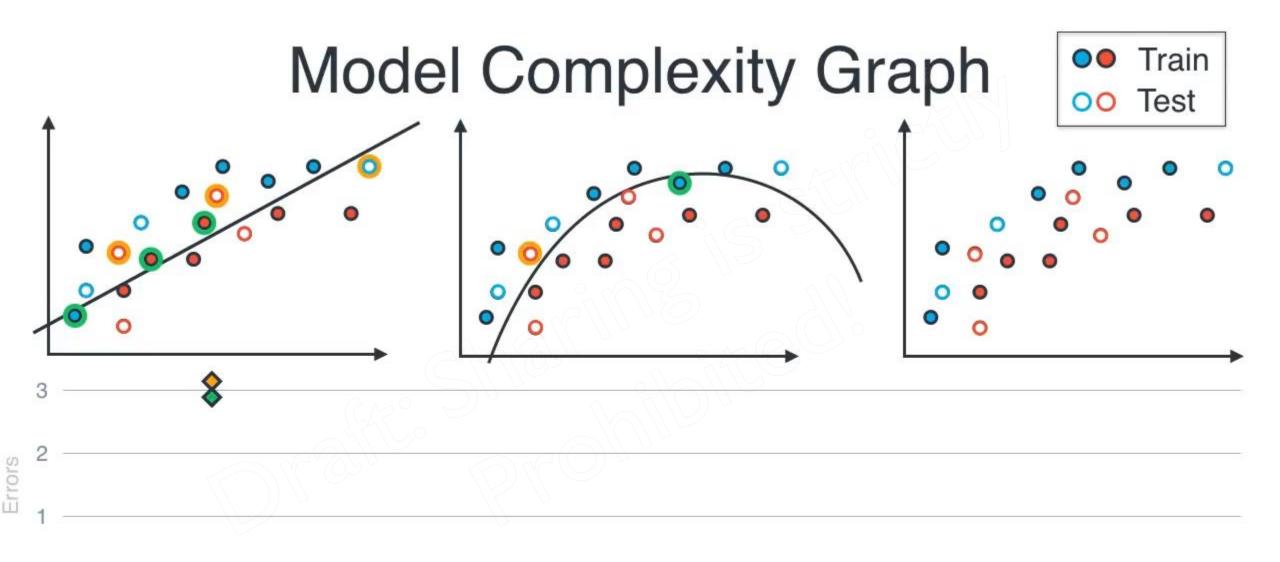






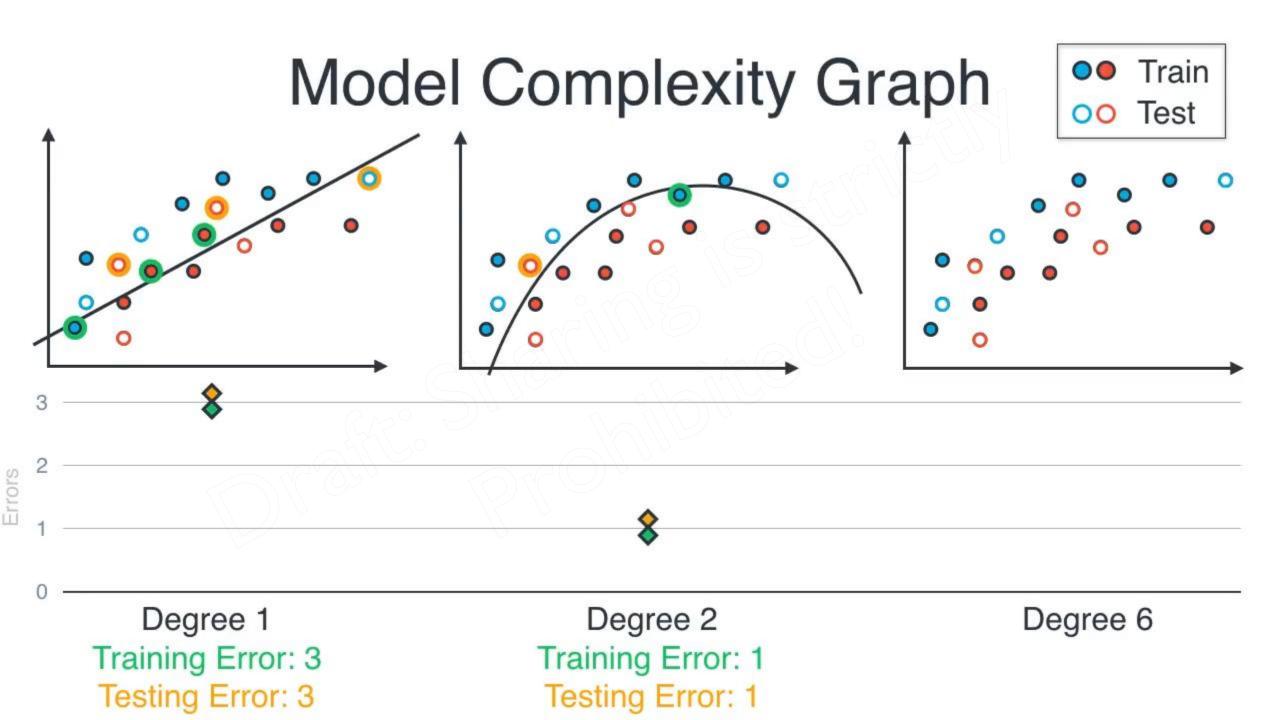


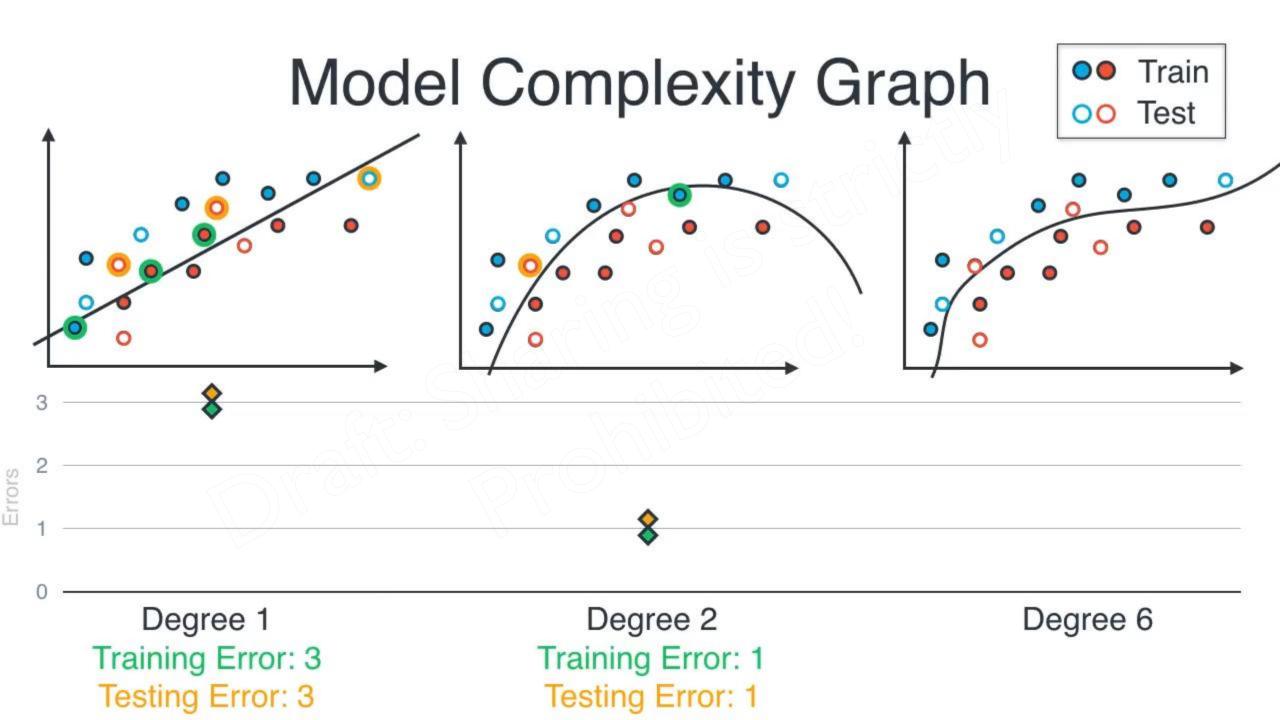


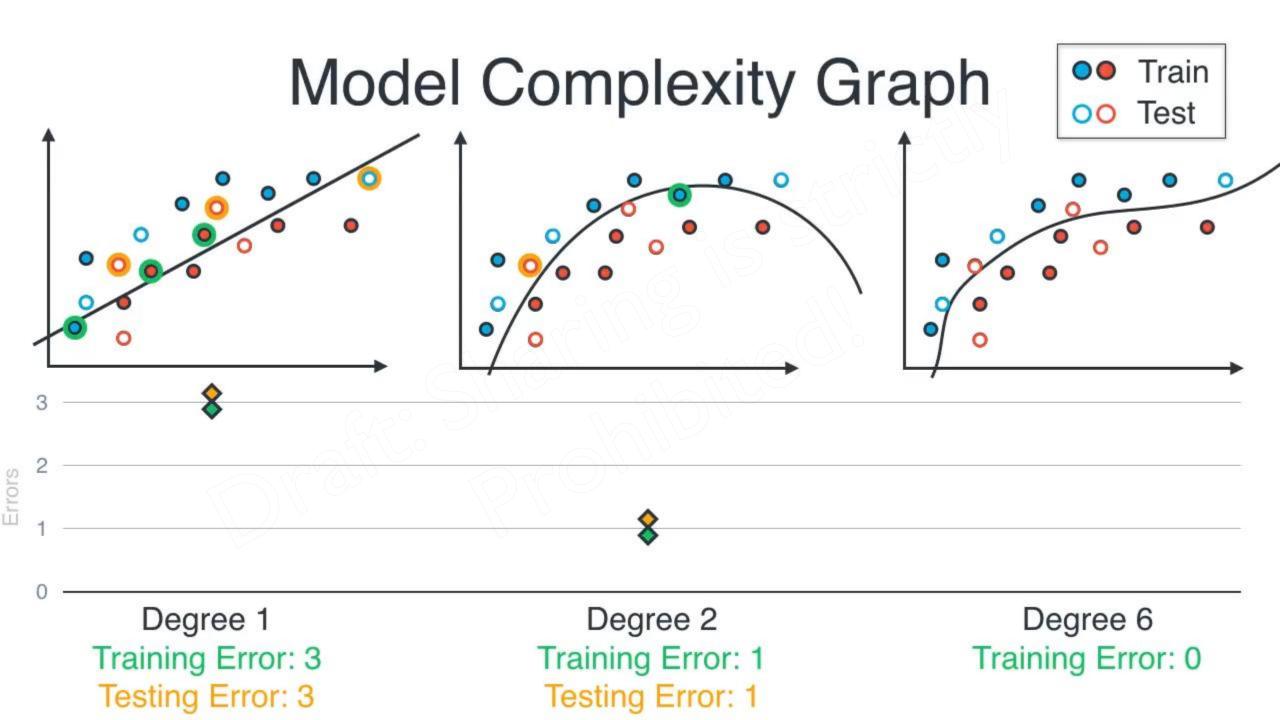


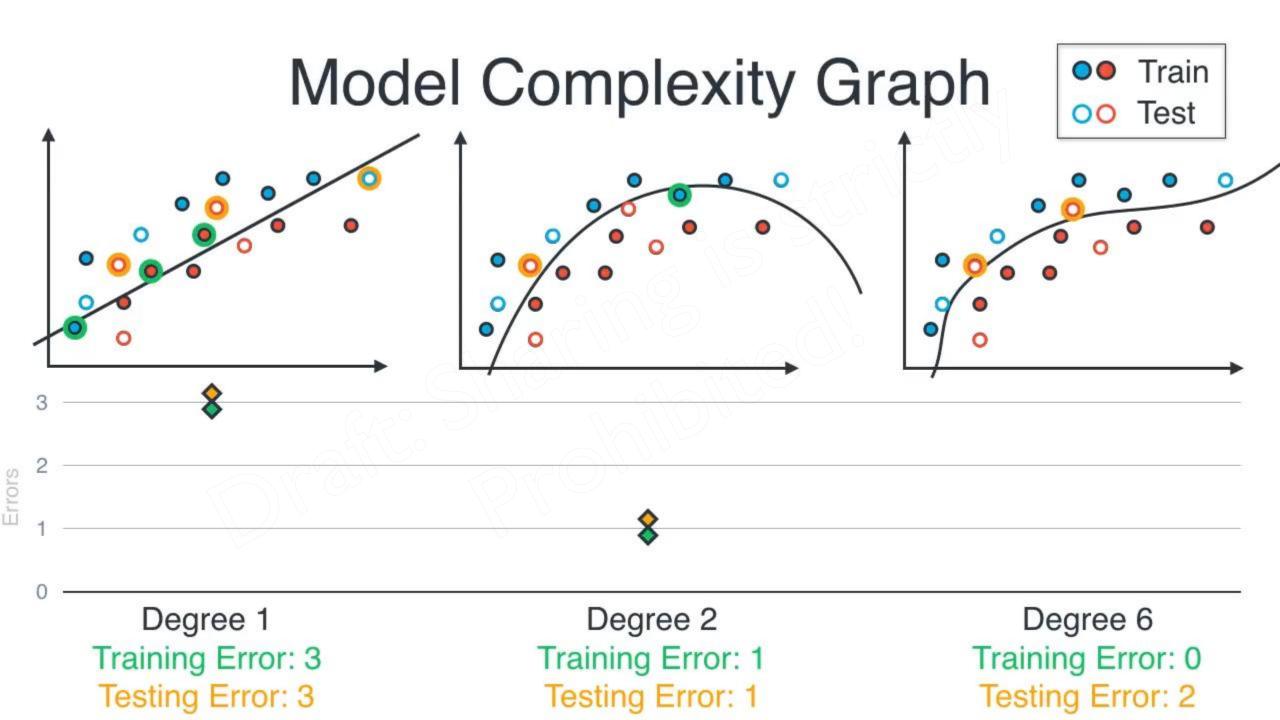
Degree 1 Training Error: 3 Testing Error: 3 Degree 2 Training Error: 1 Testing Error: 1

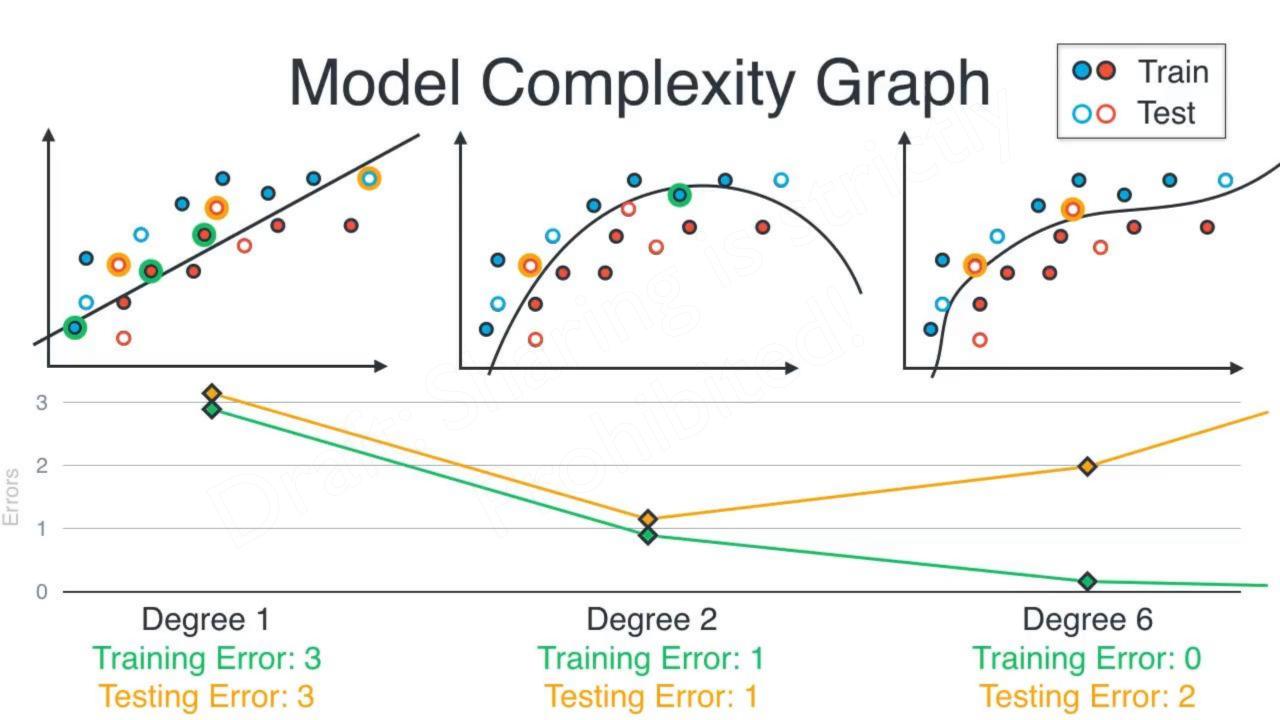
Degree 6

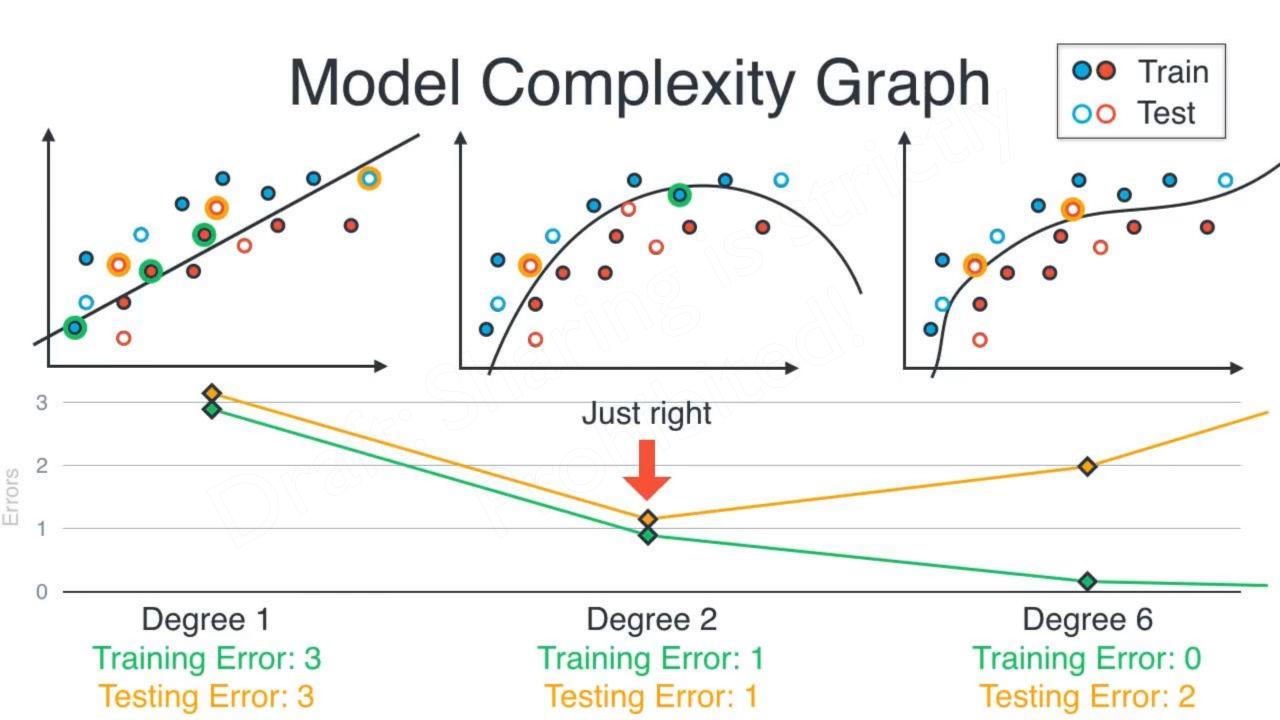




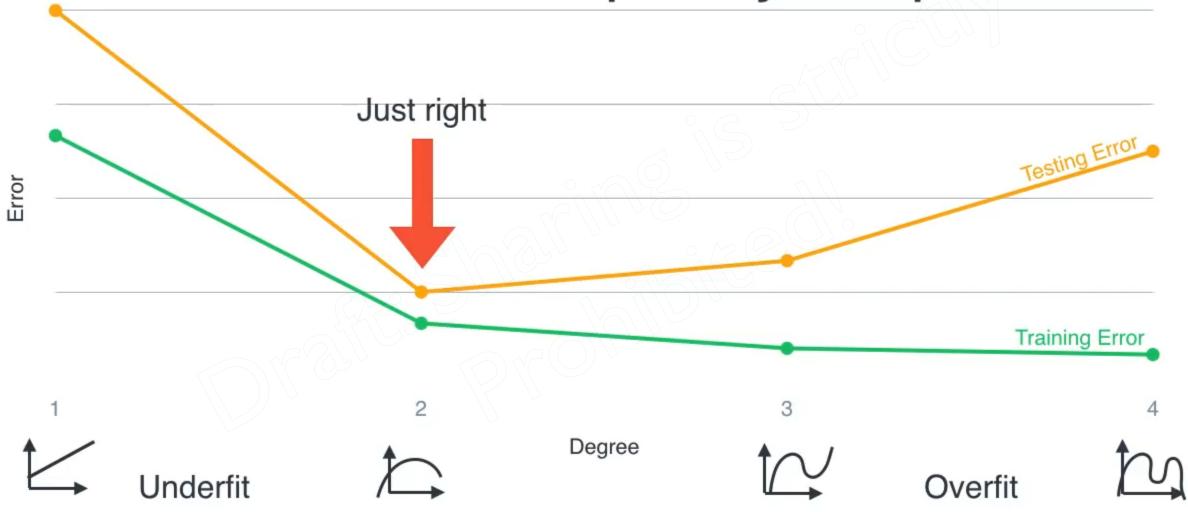




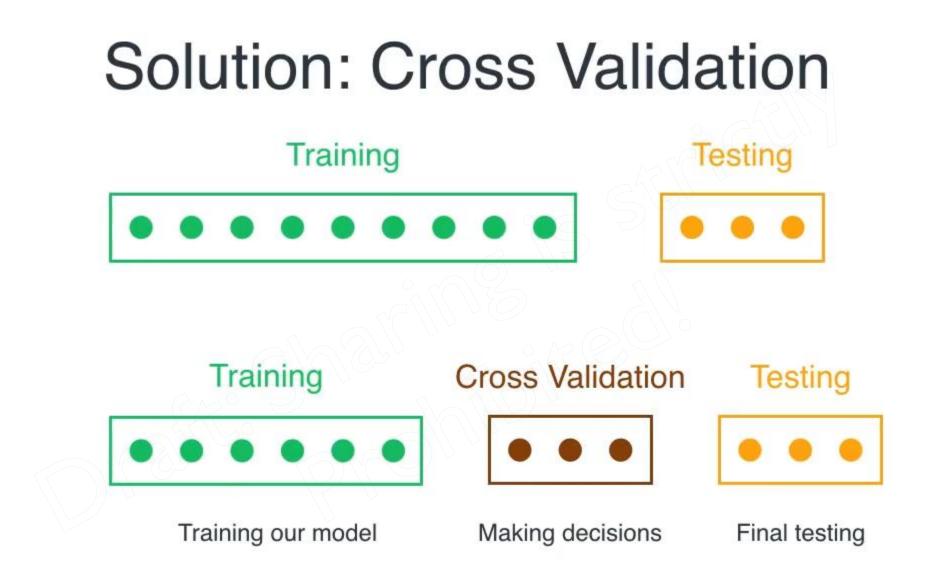




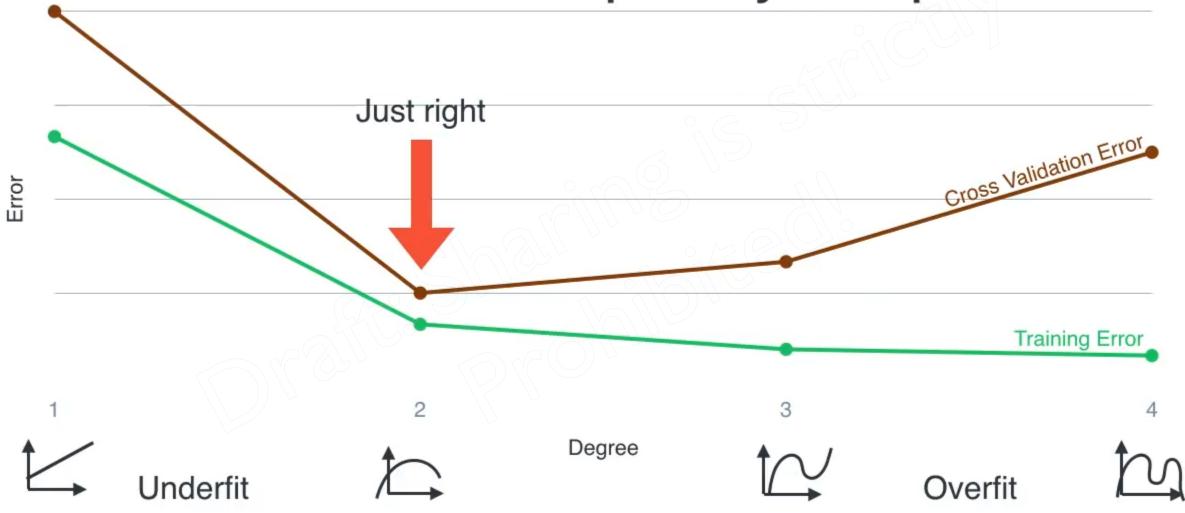
Model Complexity Graph

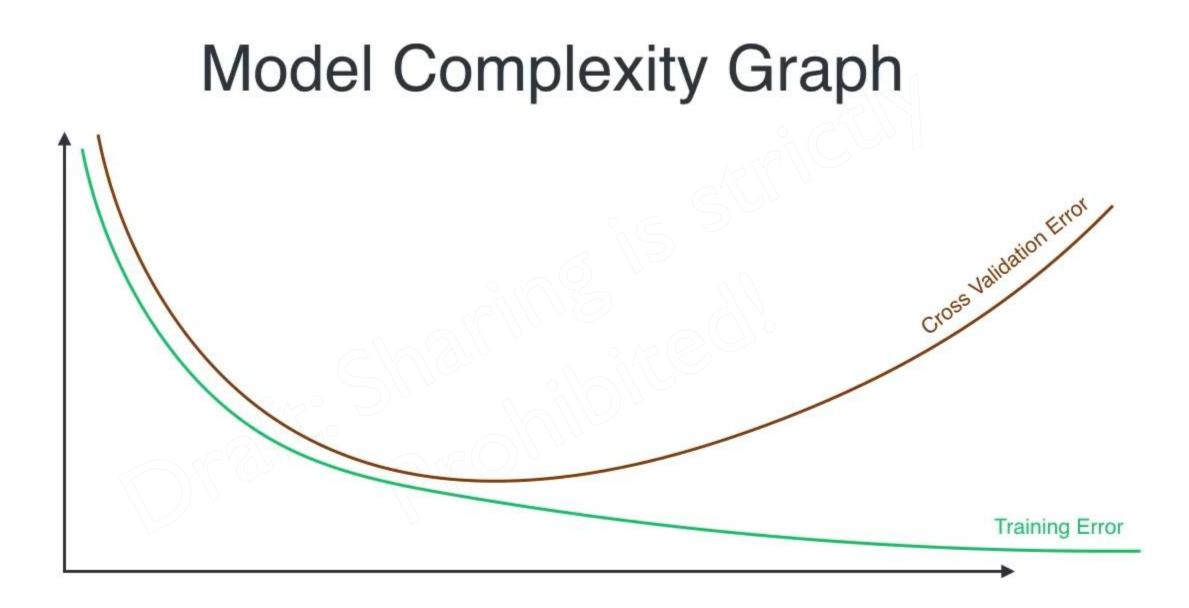


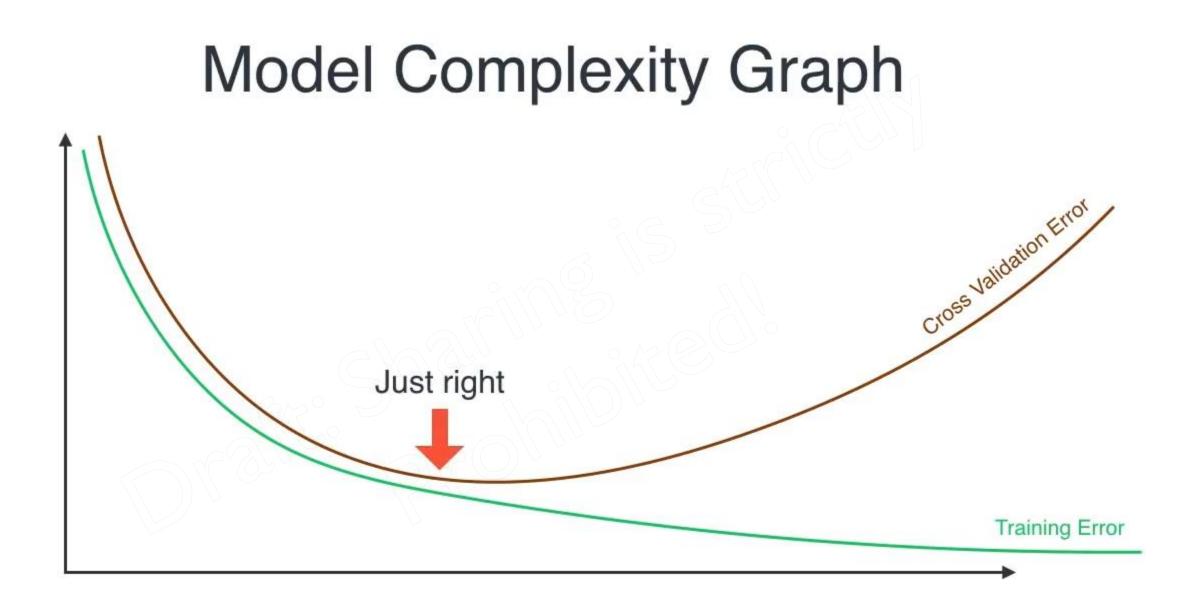
Error

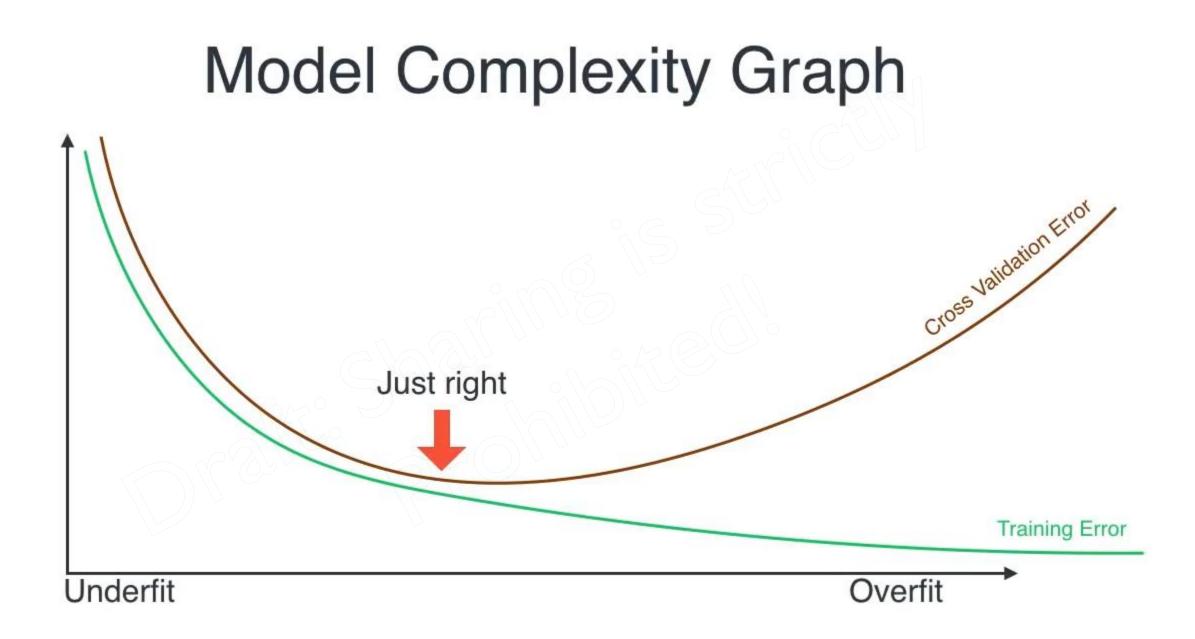


Model Complexity Graph









Summary

Training data: Train a bunch of models

Summary

Training data: Train a bunch of models

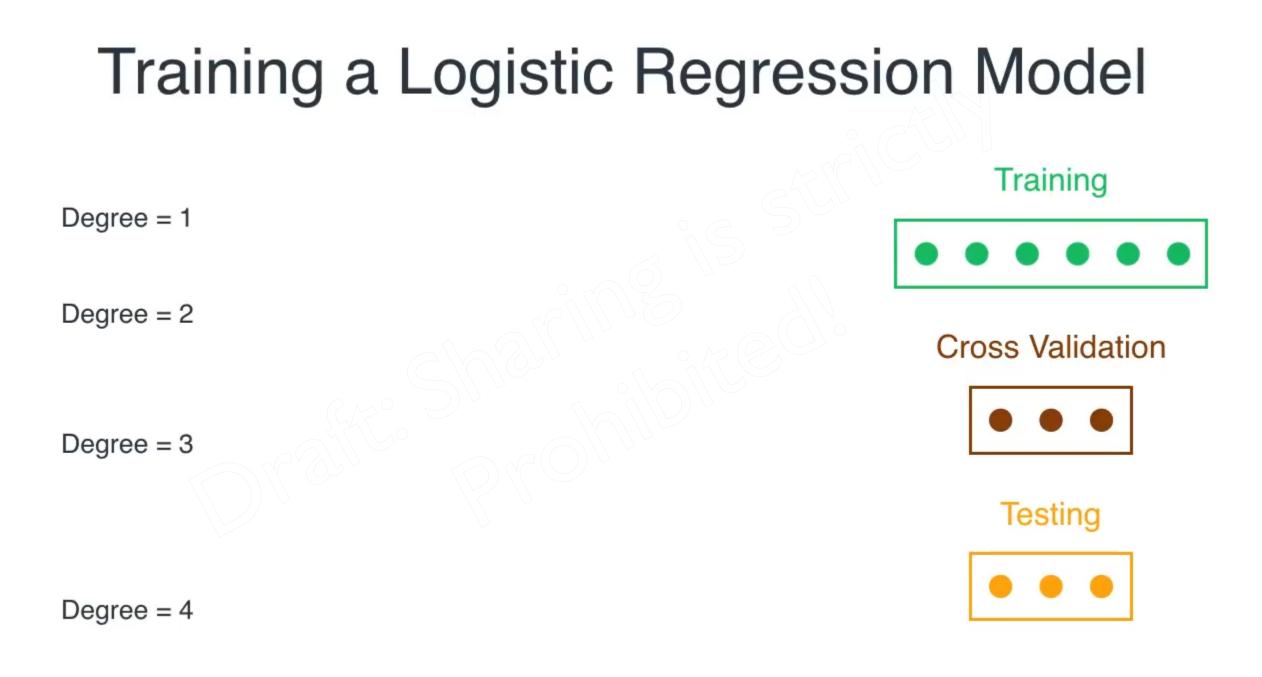
Cross validation data: Pick the best one of the models

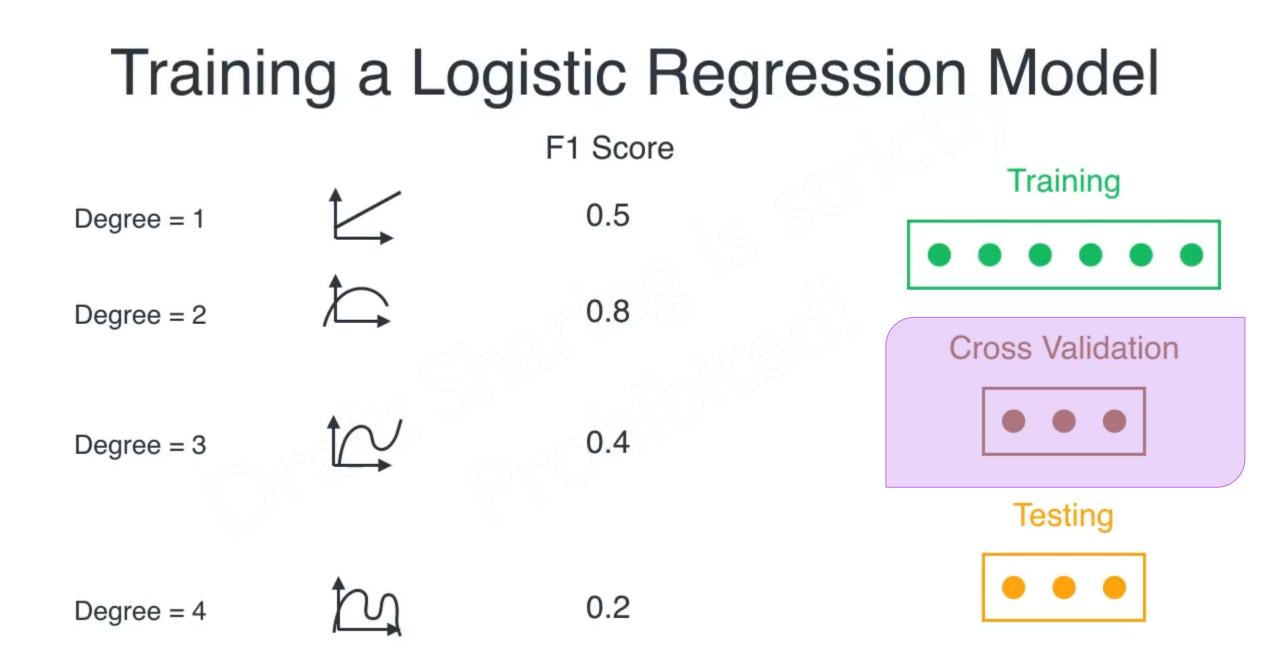
Training a Logistic Regression Model

Training

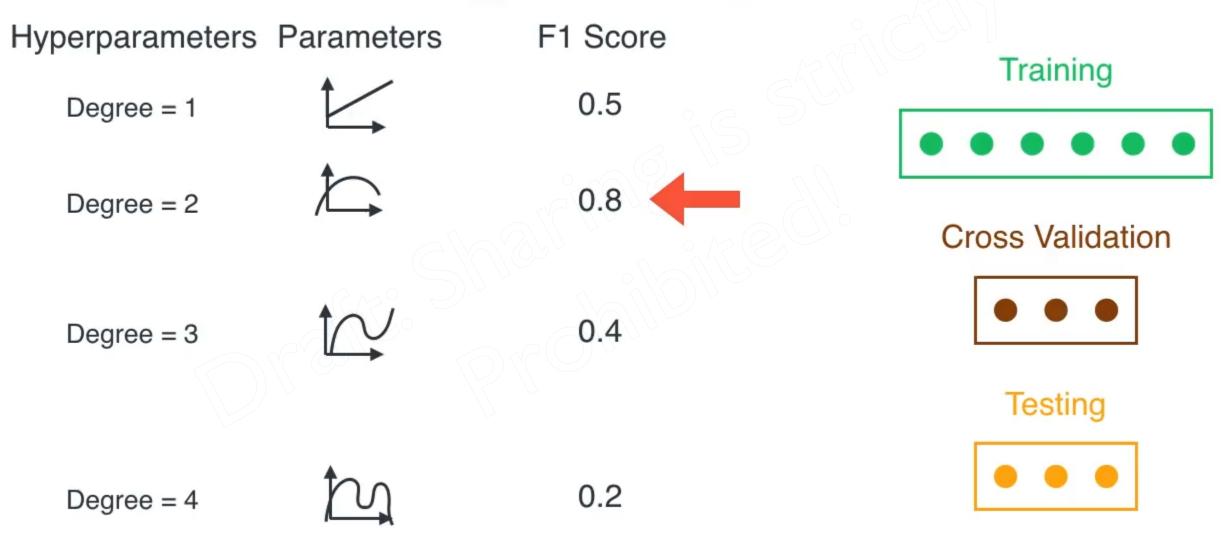
Cross Validation

Testing





Training a Logistic Regression Model



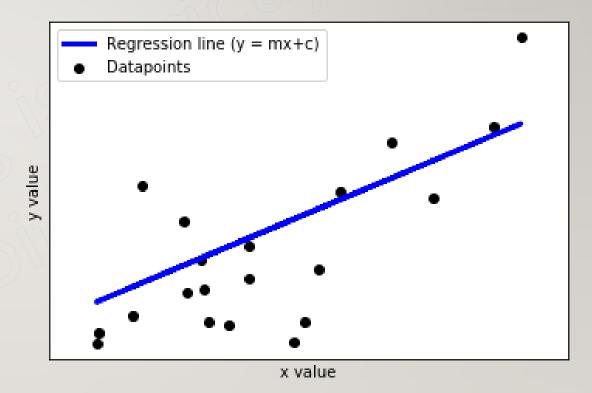
Parameter vs Hyperparameter

What is Model Parameter?

A model parameter is a variable whose value is estimated from the dataset. Parameters are the values learned during training from the historical data sets.

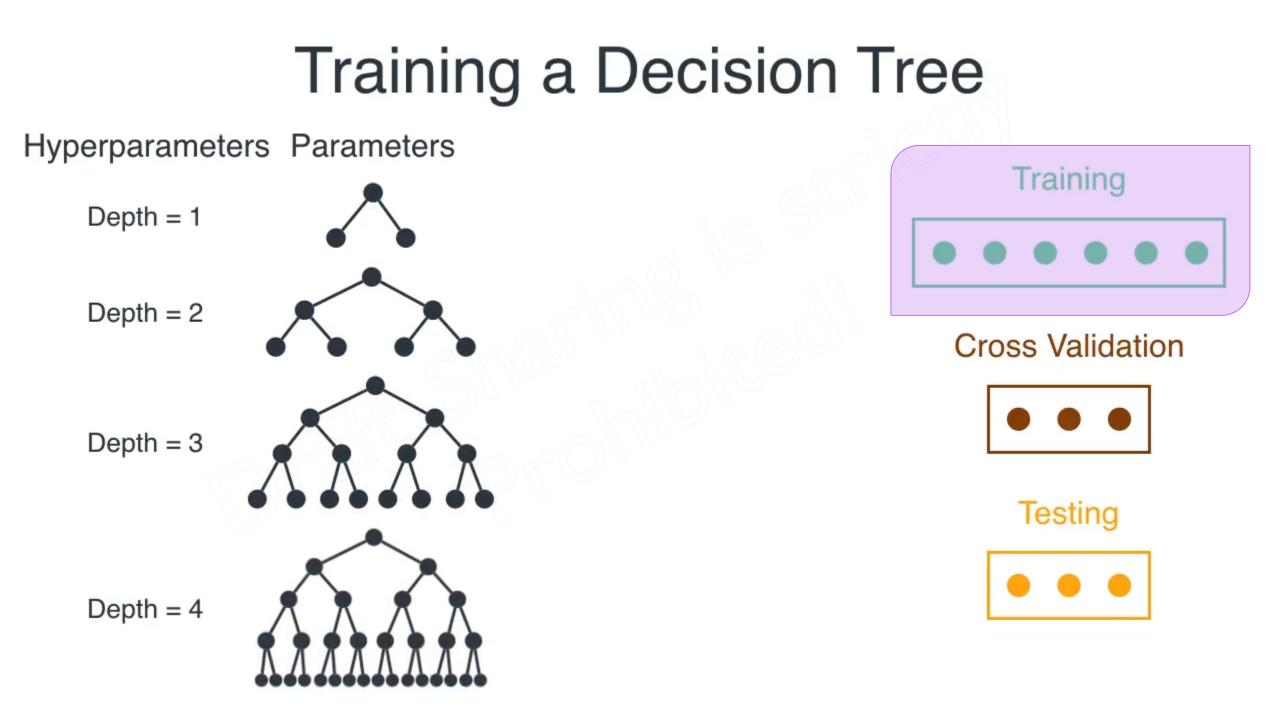
What is Hyperparameter?

A hyperparameter is a configuration variable that is external to the model. It is defined manually before the training of the model with the historical dataset. Its value cannot be evaluated from the datasets.

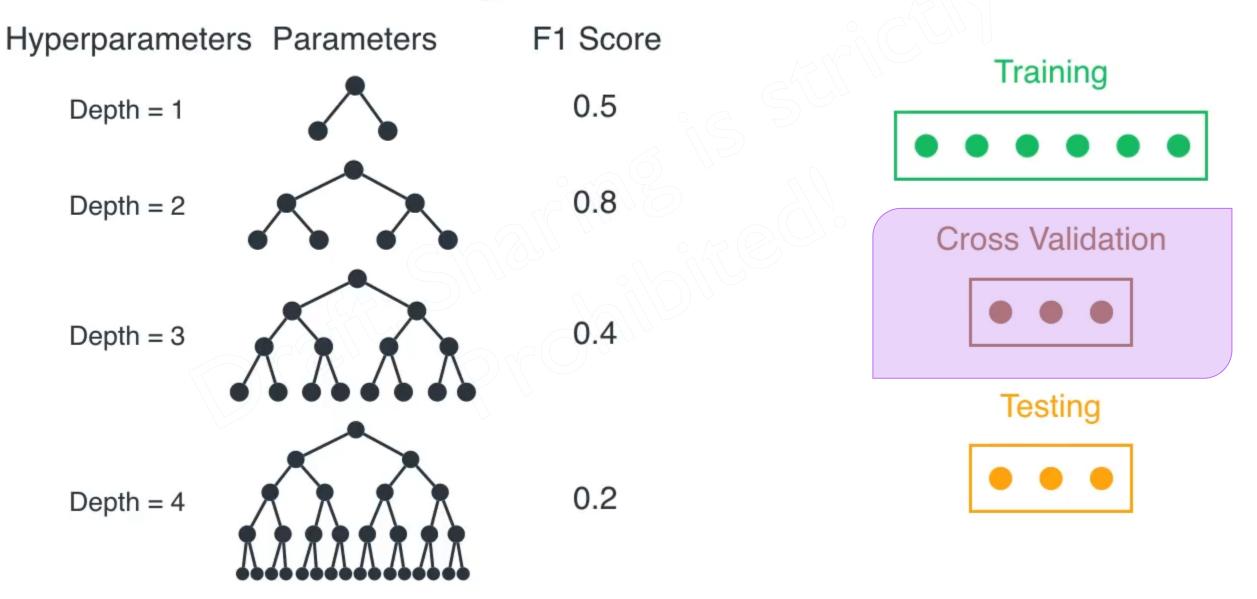


Parameter: m and c

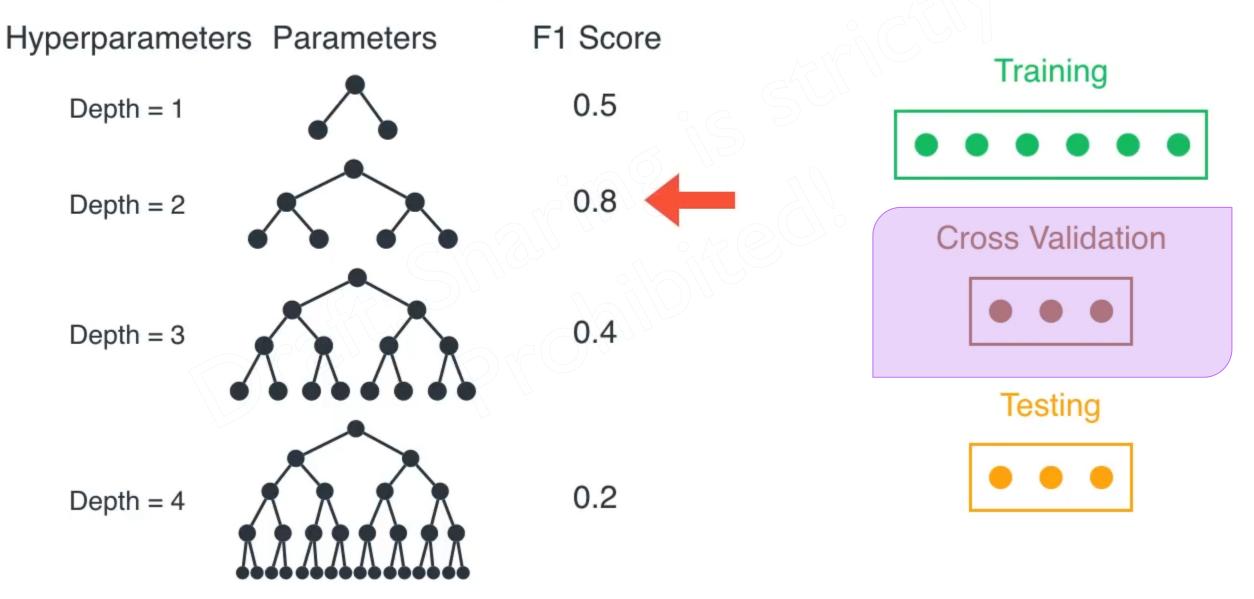
Hyperparameter: Degree of polynomials, number of iterations, acceptable error thresholds, etc.

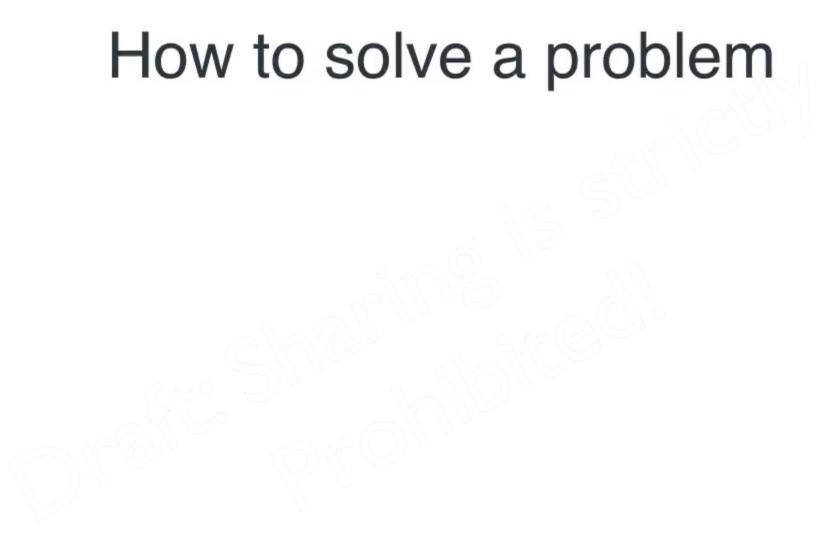


Training a Decision Tree



Training a Decision Tree







Problem

Problem

Tools

Problem

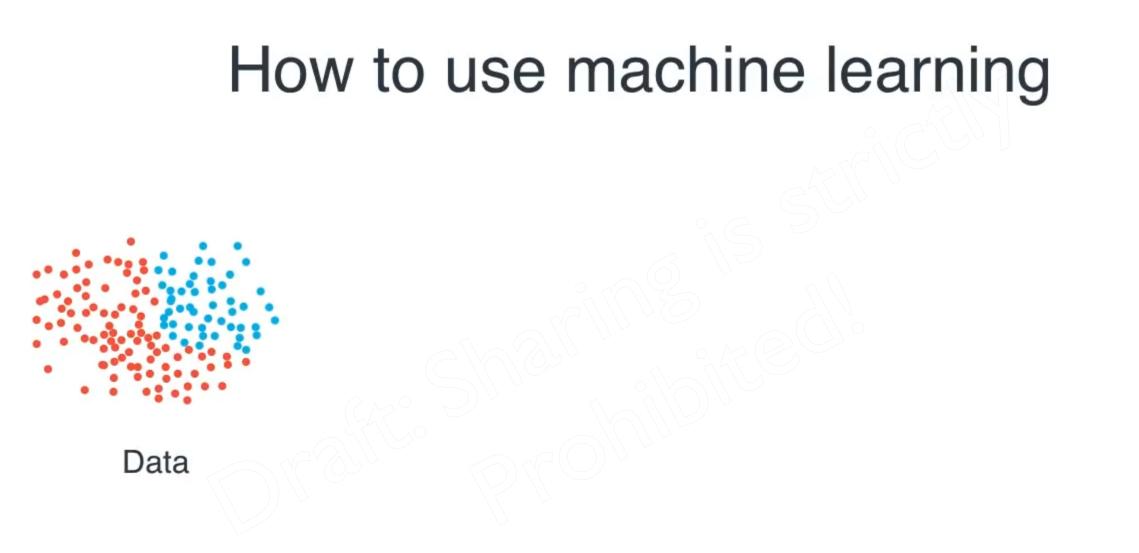
Tools

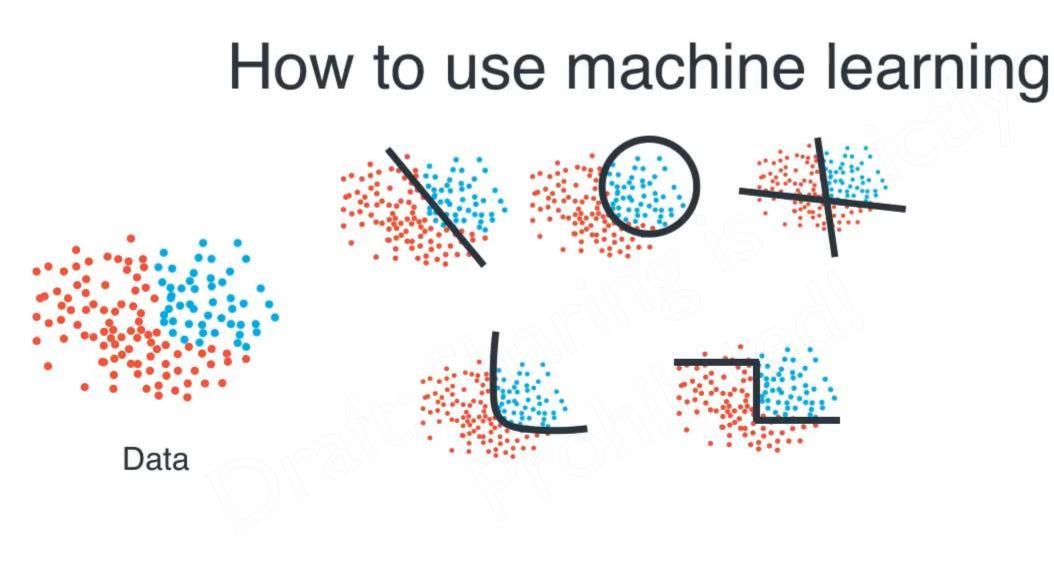
Measurement Tools

Tools Measure each tool's performance Pick the best tool

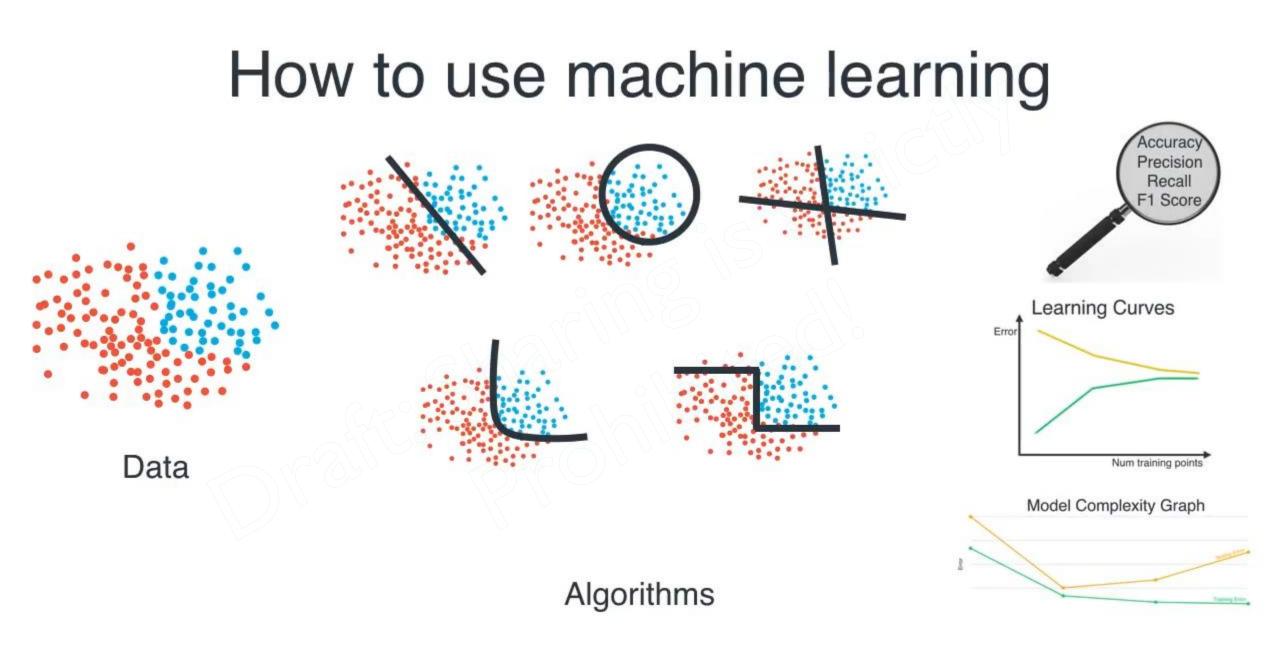
Measure each tool's performance

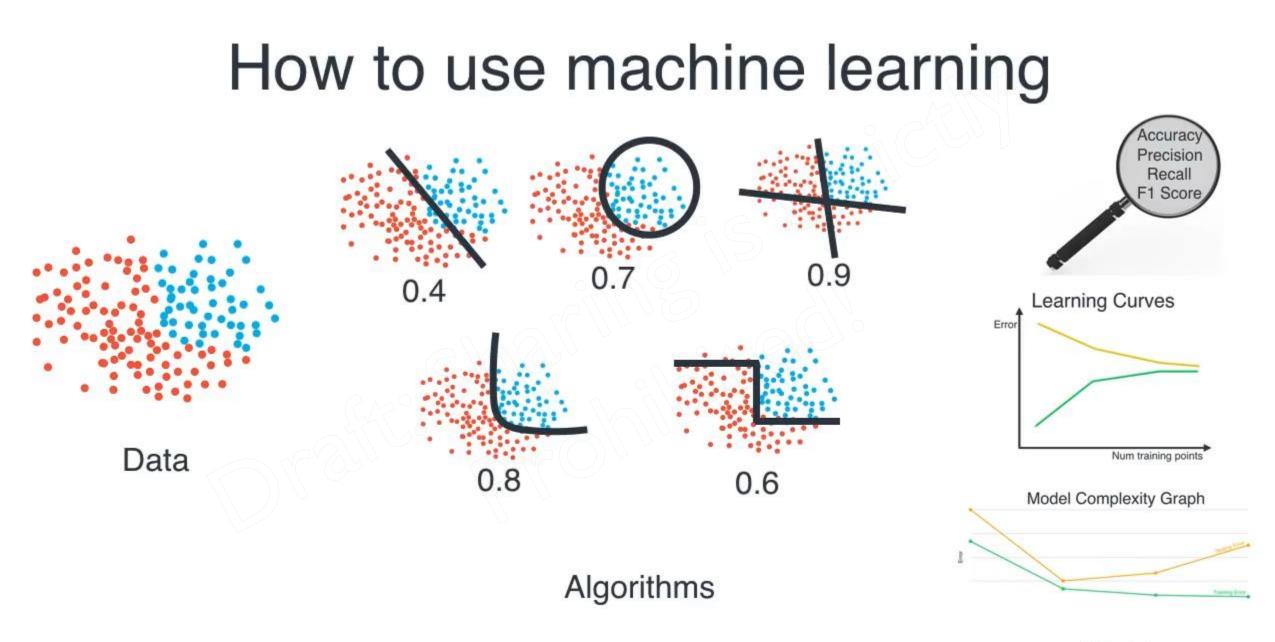
Pick the best tool

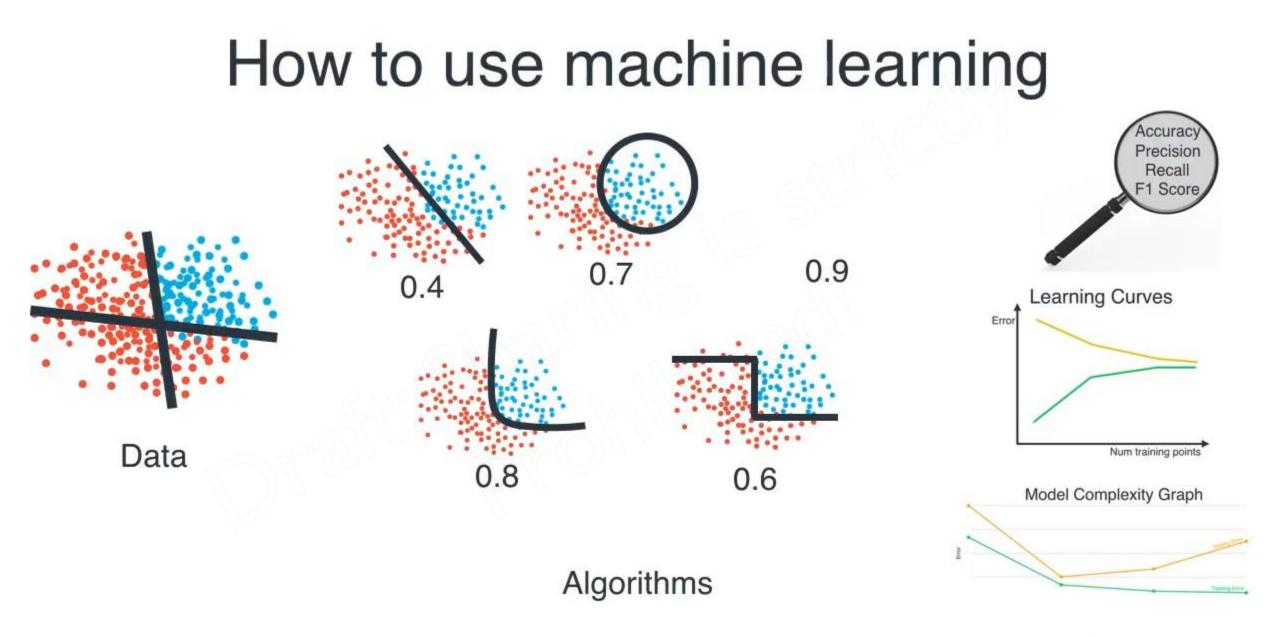


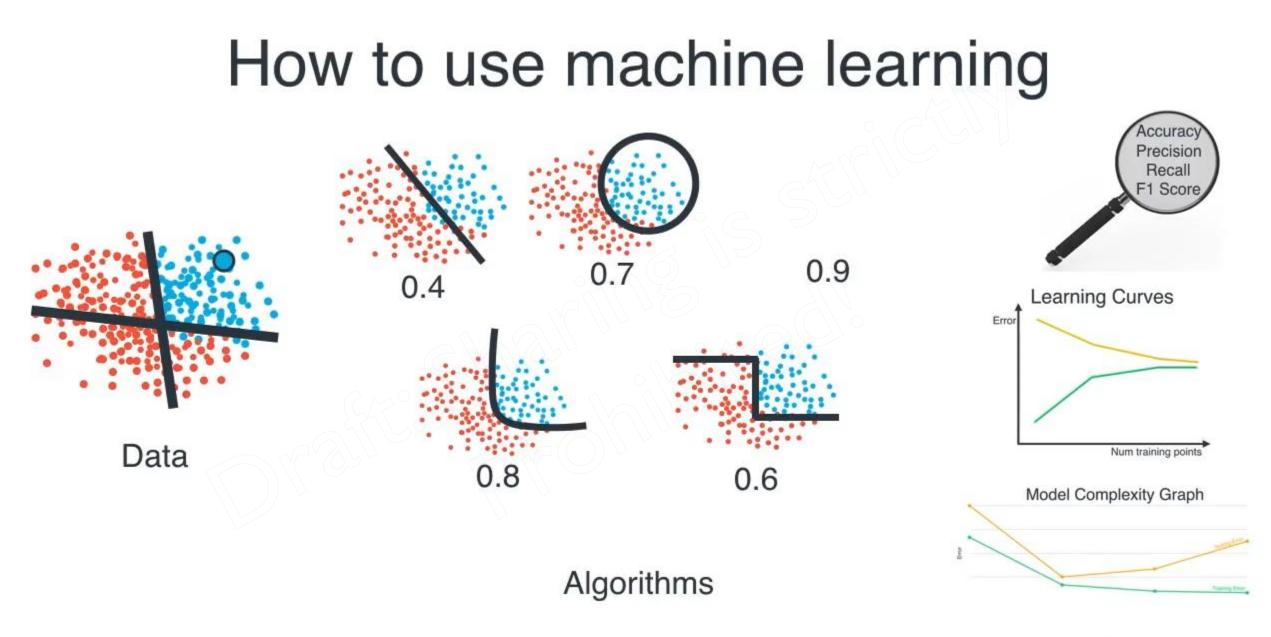


Algorithms









THANK YOU!