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Correlation

A correlation is a relationship between two variables.  The 

data can be represented by the ordered pairs (x, y) where 

x is the independent (or explanatory) variable, and y is 

the dependent (or response) variable.  

A scatter plot can be used to 

determine whether a linear  

(straight line) correlation exists 

between two variables.
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Linear Correlation
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As x increases, 

y tends to 

decrease.
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y tends to 

increase.
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Correlation Coefficient

The correlation coefficient is a measure of the strength 

and the direction of a linear relationship between two 

variables.  The symbol r represents the sample correlation 

coefficient. The formula for r is  

( ) ( )

( ) ( )
2 22 2

.
n xy x y

r
n x x n y y

 −  
=

 −   − 

The range of the correlation coefficient is −1 to 1. If x and 

y have a strong positive linear correlation, r is close to 1. 

If x and y have a strong negative linear correlation, r is 

close to −1. If there is no linear correlation or a weak 

linear correlation, r is close to 0.
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Linear Correlation
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r = −0.91 r = 0.88

r = 0.42
r = 0.07
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Calculating a Correlation Coefficient

1. Find the sum of the x-values.

2. Find the sum of the y-values.

3. Multiply each x-value by its 

corresponding y-value and find the 

sum.

4. Square each x-value and find the sum.

5. Square each y-value and find the sum.

6. Use these five sums to calculate          

the correlation coefficient.

Calculating a Correlation Coefficient

In Words In Symbols
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Correlation Coefficient

Example:

Calculate the correlation coefficient r for the following data.

x y xy x2 y2

1 – 3 – 3 1 9

2 – 1 – 2 4 1

3 0 0 9 0

4 1 4 16 1

5 2 10 25 4

15x = 1y = − 9xy = 2
55x =

2
15y =

( ) ( )

( ) ( )
2 22 2

n xy x y
r

n x x n y y

 −  
=

 −   − 

( ) ( )

( )
22

5(9) 15 1

5(55) 15 5(15) 1  

− −
=

− − −

60

50 74 
= 0.986

There is a strong positive 

linear correlation between 

x and y.
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Correlation Coefficient

Hours, x 0 1 2 3 3 5 5 5 6 7 7 10

Test score, y 96 85 82 74 95 68 76 84 58 65 75 50

Example:

The following data represents the number of hours 12 

different students watched television during the 

weekend and the scores of each student who took a test 

the following Monday.

a.)  Display the scatter plot.

b.)  Calculate the correlation coefficient r.



Larson & Farber, Elementary Statistics: Picturing the World, 3e 10

Correlation Coefficient

Hours, x 0 1 2 3 3 5 5 5 6 7 7 10

Test score, y 96 85 82 74 95 68 76 84 58 65 75 50

Example continued:
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Correlation Coefficient

Hours, x 0 1 2 3 3 5 5 5 6 7 7 10

Test score, y 96 85 82 74 95 68 76 84 58 65 75 50

xy 0 85 164 222 285 340 380 420 348 455 525 500

x2 0 1 4 9 9 25 25 25 36 49 49 100

y2 9216 7225 6724 5476 9025 4624 5776 7056 3364 4225 5625 2500

Example continued:

( ) ( )

( ) ( )
2 22 2

n xy x y
r

n x x n y y

 −  
=

 −   − 

( ) ( )

( )
22

12(3724) 54 908

12(332) 54 12(70836) 908  

−
=

− −

0.831 −

There is a strong negative linear correlation.

As the number of hours spent watching TV increases, 

the test scores tend to decrease.

54x = 908y = 3724xy = 2
332x =

2
70836y =



Linear Regression
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Residuals

After verifying that the linear correlation between two 

variables is significant, next we determine the equation of 

the line that can be used to predict the value of y for a 

given value of x.  

Each data point di represents the difference between the 

observed y-value and the predicted y-value for a given x-

value on the line.  These differences are called residuals.

x

y

d1

d2

d3

For a given x-value,

d = (observed y-value) – (predicted y-value)

Observed 

y-value

Predicted 

y-value
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Regression Line

A regression line, also called a line of best fit, is the line 

for which the sum of the squares of the residuals is a 

minimum.  

The Equation of a Regression Line

The equation of a regression line for an independent variable 

x and a dependent variable y is

ŷ = mx + b

where ŷ is the predicted y-value for a given x-value.  The 

slope m and y-intercept b are given by

( ) ( )

( )

-

-

22
            and 

where  is the mean of the y values and  is the mean of the 

values.  The regression line always passes through ( , ). 

n xy x y y x
m b y mx m

n nn x x

y x

x x y

 −    
= = − = −

 − 
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Regression Line

Example:

Find the equation of the regression line.  

x y xy x2 y2

1 – 3 – 3 1 9

2 – 1 – 2 4 1

3 0 0 9 0

4 1 4 16 1

5 2 10 25 4

15x = 1y = − 9xy = 2
55x =

2
15y =

( ) ( )

( )
22

n xy x y
m

n x x

 −  
=

 − 

( ) ( )

( )
2

5(9) 15 1

5(55) 15

− −
=

−

60

50
= 1.2=



Larson & Farber, Elementary Statistics: Picturing the World, 3e 16

Regression Line

Example continued:

b y mx= −
1 15

(1.2)
5 5

−
= − 3.8= −

The equation of the regression line is

ŷ = 1.2x – 3.8.

2

x

y

1
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−2

−3

1 2 3 4 5

( )1
( , ) 3,

5
x y

−
=
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Regression Line

Example:
The following data represents the number of hours 12 
different students watched television during the 
weekend and the scores of each student who took a test 
the following Monday.

Hours, x 0 1 2 3 3 5 5 5 6 7 7 10

Test score, y 96 85 82 74 95 68 76 84 58 65 75 50

xy 0 85 164 222 285 340 380 420 348 455 525 500

x2 0 1 4 9 9 25 25 25 36 49 49 100

y2 9216 7225 6724 5476 9025 4624 5776 7056 3364 4225 5625 2500

54x = 908y = 3724xy = 2
332x =

2
70836y =

a.)  Find the equation of the regression line.

b.)  Use the equation to find the expected test score 
for a student who watches 9 hours of TV.
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Regression Line

Example continued:

( ) ( )

( )
22

n xy x y
m

n x x

 −  
=

 − 

( ) ( )

( )
2

12(3724) 54 908

12(332) 54

−
=

−
4.067 −

b y mx= −

908 54
( 4.067)

12 12
= − −

93.97

ŷ = –4.07x + 93.97
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Regression Line

Example continued:

Using the equation ŷ = –4.07x + 93.97, we can predict 

the test score for a student who watches 9 hours of TV.

= –4.07(9) + 93.97

ŷ = –4.07x + 93.97

= 57.34

A student who watches 9 hours of TV over the weekend 

can expect to receive about a 57.34 on Monday’s test.
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Multiple Regression Equation

In many instances, a better prediction can be found for a 

dependent (response) variable by using more than one 

independent (explanatory) variable.  

For example, a more accurate prediction of Monday’s test grade 

from the previous section might be made by considering the 

number of other classes a student is taking as well as the 

student’s previous knowledge of the test material.

A multiple regression equation has the form

ŷ = b + m1x1 + m2x2 + m3x3 + … + mkxk

where x1, x2, x3,…, xk are independent variables, b is the 

y-intercept, and y is the dependent variable.

* Because the mathematics associated with this concept is 

complicated, technology is generally used to calculate the multiple 

regression equation.
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Predicting y-Values

After finding the equation of the multiple regression line, you 

can use the equation to predict y-values over the range of the data.

Example:

The following multiple regression equation can be used to predict 

the annual U.S. rice yield (in pounds).   

ŷ = 859 + 5.76x1 + 3.82x2 

where x1 is the number of acres planted (in thousands), and x2 is 

the number of acres harvested (in thousands).          

(Source: U.S. National Agricultural Statistics Service)

a.)  Predict the annual rice yield when x1 = 2758, and x2 = 2714.

b.)  Predict the annual rice yield when x1 = 3581, and x2 = 3021.
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Predicting y-Values

Example continued:

= 859 + 5.76(2758) + 3.82(2714)

= 27,112.56

a.)   ŷ = 859 + 5.76x1 + 3.82x2

The predicted annual rice yield is 27,1125.56 pounds.

= 859 + 5.76(3581) + 3.82(3021)

= 33,025.78

b.)   ŷ = 859 + 5.76x1 + 3.82x2

The predicted annual rice yield is 33,025.78 pounds.
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