
SUPPORT VECTOR 
MACHINES (SVM)



Support vector machines (SVM)
 Support Vector Machines (SVM) are supervised learning models used for

classification and regression analysis.

 SVMs are based on the idea of finding a hyperplane that best divides a dataset into
two classes



What is a hyperplane?



How do we find the right hyperplane?

The goal is to choose a hyperplane with the
greatest possible margin between the hyperplane



How can we identify the right hyper-plane?

“Select the hyper-plane which segregates the two 
classes better”.

The goal is to choose a hyperplane with the greatest 
possible margin between the hyperplane



Linear Classifiers
f x yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

How would you 
classify this data?

Estimation:

w: weight vector
x: data vector
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Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

Any of these 
would be fine..

..but which is 
best?



Classifier Margin
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

Define the margin
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
datapoint.



Maximum Margin
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin.

This is the 
simplest kind of 
SVM (Called an 
LSVM)

Linear SVM



Maximum Margin
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x + b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin.

This is the 
simplest kind of 
SVM (Called an 
LSVM)

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against

Linear SVM



Why Maximum Margin?

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the maximum 
margin.

This is the 
simplest kind of 
SVM (Called an 
LSVM)

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against



How to calculate the distance from a point to a line?

◼http://mathworld.wolfram.com/Point-LineDistance2-
Dimensional.html

◼ In our case, w1*x1+w2*x2+b=0, 

◼ thus, w=(w1,w2), x=(x1,x2)

denotes +1

denotes -1 x
wx +b = 0

X – Vector

W – Normal Vector

b  – Scale Value

W

http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html


Estimate the Margin

◼What is the distance expression for a point x to a line 
wx+b= 0?

denotes +1

denotes -1 x
wx +b = 0
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Large-margin Decision Boundary

◼The decision boundary should be as far away from the data of both classes 
as possible

◼ We should maximize the margin, m

◼ Distance between the origin and the line wtx=-b is b/||w||

Class 1

Class 2

m



Finding the Decision Boundary

◼Let {x1, ..., xn} be our data set and let yi  {1,-1} be the class label of xi

◼The decision boundary should classify all points correctly 

◼To see this: when y=-1, we wish (wx+b)<1, when y=1, we wish (wx+b)>1.  
For support vectors, we wish y(wx+b)=1.

◼The decision boundary can be found by solving the following constrained 
optimization problem



Allowing errors in our solutions

◼We allow “error” xi in classification; it is based on the output of the 
discriminant function wTx+b

◼ xi approximates the number of misclassified samples

Class 1

Class 2



Soft Margin Hyperplane

◼ If we minimize ixi, xi can be computed by

◼ xi are “slack variables” in optimization

◼ Note that xi=0 if there is no error for xi

◼ xi is an upper bound of the number of errors

◼We want to minimize

◼ C : tradeoff parameter between error and margin

◼The optimization problem becomes



1. When a misclassification occurs, it is because a given point is 
on the wrong side of the separating hyperplane, and that's 
called a classification error.

2. Whenever a point is inside the margin, that counts as a margin 
error.

The total error of a SVM, is the sum of the classification 
error and the margin error.







Support Vector machine (SVM)

Support Vector Machines:
When non-linear boundary is used for the classification
purpose, it is called Support Vector Machines (SVMs). It is an
extension of the Support Vector Classifier and done by
enlarging the feature space in a specific way, using kernels.



Find the hyperplane
In the scenario below, we can’t have linear hyperplane between the two classes, so how does 
SVM classify these two classes? Till now, we have only looked at the linear hyperplane.

SVM can solve this problem. It
solves this problem by introducing
additional feature. Here, we will
add a new feature z=x2+y2.



 Now, let’s plot the data points on axis x and z:

 In this plot, points to consider are:

 All values for z would be positive always because z is the 
squared sum of both x and y

 In the original plot, red circles appear close to the origin of x 
and y axes, leading to lower value of z and star relatively away 
from the origin result to higher value of z.

Find the hyperplane



 In SVM, it is easy to have a linear hyperplane between these two classes. 
But, another burning question which arises is, should we need to add this 
feature manually to have a hyperplane. 

 No, SVM has a technique called the kernel trick. These are functions which 
takes low dimensional input space and transform it to a higher dimensional 
space i.e. it converts non separable problem to separable problem, these 
functions are called kernels. 

 It is mostly useful in non-linear separation problem. Simply put, it does some 
extremely complex data transformations, then find out the process to 
separate the data based on the labels or outputs you’ve defined.

 When we look at the hyperplane in original input space it looks like a circle.

KERNEL TRICK



KERNEL FUNCTİONS



KERNEL FUNCTİONS



For example let x and y be defined as x = (x1, x2, x3) and y = (y1, y2, y3).

The mapping to 9 dimensions would be
f(x) = (x1x1, x1x2, x1x3, x2x1, x2x2, x2x3, x3x1, x3x2, x3x3)

We can define a kernel which would be equivalent to the above equation
K(x, y ) = dot(x, y) = x.y = (xTy)²

Let,
x = (1, 2, 3)
y = (4, 5, 6).

Then:
f(x) = (1, 2, 3, 2, 4, 6, 3, 6, 9)
f(y) = (16, 20, 24, 20, 25, 30, 24, 30, 36)

Calculating <f(x), f(y)> , gives us
16 + 40 + 72 + 40 + 100+ 180 + 72 + 180 + 324 = 1024

Instead of doing so many calculations, if we apply the kernel instead:
K(x, y) = (4 + 10 + 18 ) ^2 = 32² = 1024

EXAMPLES



Radial basis Function (RBF) kernel

Imagine if you had a point in the plane, and the plane was like a
blanket. Then you pinch the blanket at that point, and raise it. This is
how a radial basis function looks like.

We can raise the blanket at any point we like, and that gives us one 
different radial basis function. The radial basis function kernel (also 
called rbf kernel) is precisely the set of all radial basis functions for 

every point in the plane.



Radial basis Function (RBF) kernel

Lift the plane at every triangle, and push it down at every square. Then simply draw 
a plane at height 0, and intersect it with our surface. This is the same as looking at 

the curve formed by the points at height 0.

Imagine if there is a landscape with mountains and with the sea. The curve will 
correspond to the coastline, namely, where the water and the land meet. This gives 

us the curves (when we project everything back to the plane), and we obtain our 
desired classifier.



Radial Basis Function (RBF) kernel

1. One of the simplest radial basis function has the
formula: 𝑦 = 𝑒−𝑥2

2. Notice that this bump happens at 0. If we
wanted it at any different point, say p, we simply

translate the formula to 𝑦 = 𝑒−(𝑥−𝑝)2

3. Thus, if we want to obtain the radial basis

function centered at the point 5: 𝑦 = 𝑒−(𝑥−5)2



Thank You
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