
J. Scott Hawker/R. Kuehl p. 1 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Chapter 13: Architecture Patterns

SAiP Chapter 13

J. Scott Hawker/R. Kuehl p. 2 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Topics

 What is a Pattern?

 Pattern Catalog

 Module patterns

 Component and Connector Patterns

 Allocation Patterns

J. Scott Hawker/R. Kuehl p. 3 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Architectural Styles (Patterns)

J. Scott Hawker/R. Kuehl p. 4 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Patterns – a Review

 Work on software patterns stemmed from work
on patterns for building architecture carried out
by Christopher Alexander (A Pattern Language: Towns,

Buildings, Construction (1977))

 All well-structured software systems are full of
patterns

 Architectural patterns – system level structural
organization

 Design patterns – component level design

 Programming idioms – reoccurring constructs
expressed in different languages (programming
tasks, algorithms, data structures; e.g., increment
counter)

http://en.wikipedia.org/wiki/A_Pattern_Language

J. Scott Hawker/R. Kuehl p. 5 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

What is a Software Architectural Pattern?

 A pattern is a solution to a problem in a context

 Context. A recurring, common situation in the world
that gives rise to a problem.

 Problem. The problem, appropriately generalized, that
arises in the given context.

 A solution. A successful architectural resolution to the
problem, appropriately abstracted

 An architectural pattern expresses a fundamental
structural organization abstraction for software
systems

 A set of structural elements

 Their relationships

 Rules and guidelines for organizing the relationships
between them

J. Scott Hawker/R. Kuehl p. 6 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Software Architecture Patterns

 Versus software design patterns – higher level
system wide in scope ; some overlap

 Recall the distinction between architecture and design
work

 Most software systems cannot be structured
according to a single architectural pattern

 Example: Design a system for flexibility of
component distribution in a heterogeneous computer
network and for adaptability of their user interfaces

 How do you think about software design?
Essentially the same cognitive process for
architecture design …

 Requirements driven, separation of concerns, top-down,
apply patterns

J. Scott Hawker/R. Kuehl p. 7 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Describing a Pattern Solution

 A pattern solution is determined and described
by:

 A set of element types (for example, data
repositories, processes, and objects)

 A set of interaction mechanisms or connectors
(for example, method calls, events, or message
bus)

 A topological layout of the components

 A set of semantic constraints covering topology,
element behavior, and interaction mechanisms

 I.e., views

 Organize patterns by predominant structure –
module, connector, allocation

J. Scott Hawker/R. Kuehl p. 8 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

A Pattern Catalog

Module Component & Connector Allocation

Layered* Broker* Map-Reduce*

Domain

decomposition

Model-View-Controller* Multi-tier functional

mapping*

Pipe-and-Filter* Platform

Client-Server* Team work allocation

Peer-to-Peer*

Service-Oriented Architecture*

Microservices*

Publish-Subscribe (Observer)*

Shared-Data*

Black Board*

Event Driven*

* Detailed below

J. Scott Hawker/R. Kuehl p. 9 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Class Activity

 Each team will prepare a short ~five minute
presentation of an architectural pattern

 Context, problem, solution, constraints/weaknesses

 Example view (not from the text)

 Candidate for your project?

Team 1 – Broker

Team 2 – Event Driven

Team 3 – Publish-Subscribe

Team 4 – Pipe-and-Filter

Team 5 – Map-Reduce

Team 6 – Microservices

J. Scott Hawker/R. Kuehl p. 10 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Layer Pattern

 Context: Complex systems need to develop and evolve portions of
the system independently. Developers need well-documented
separation of concerns, so system modules may be independently
developed and maintained.

 Problem: The software needs to be segmented in such a way that
the modules can be developed and evolved separately with little
interaction among the parts, supporting portability, modifiability,
and reuse.

 Solution: To achieve this separation of concerns, the layered pattern
divides the software into units called layers. Each layer is a
grouping of modules that offers a cohesive set of services. The
usage must be unidirectional. Layers completely partition a set of
software, and each partition is exposed through a public interface.

J. Scott Hawker/R. Kuehl p. 11 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Layer Pattern Example

J. Scott Hawker/R. Kuehl p. 12 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

UML Package Notation

for Layer Diagrams
A

B

C

<<uses>>

<<uses>>

Note: The textbook uses various

informal architecture notations.

That is OK if you use legends

(keys) to explain the components,

connectors, and structures.

J. Scott Hawker/R. Kuehl p. 13 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Business IT Example

Software Architecture Patterns, Mark Richards

J. Scott Hawker/R. Kuehl p. 14 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Layer Pattern Solution

 Overview: The layered pattern defines layers (groupings of
modules that offer a cohesive set of services) and a unidirectional
allowed-to-use relation among the layers.

 Elements: Layer, a kind of module. The description of a layer
should define what modules the layer contains.

 Relations: Allowed to use. The design should define what the
layer usage rules are and any allowable exceptions.

 Constraints:

 Every piece of software is allocated to exactly one layer.

 There are at least two layers (but usually there are three or
more).

 The allowed-to-use relations should not be circular (i.e., a
lower layer cannot use a layer above).

 Weaknesses:

 The addition of layers adds up-front cost and complexity to a
system.

 Layers contribute a performance penalty.

J. Scott Hawker/R. Kuehl p. 15 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Broker Pattern

 Context: Many systems are constructed from a collection of
services distributed across multiple servers. Implementing
these systems is complex because you need to worry about
how the systems will interoperate—how they will connect to
each other and how they will exchange information—as well
as the availability of the component services.

 Problem: How do we structure distributed software so that
service users do not need to know the nature and location
of service providers, making it easy to dynamically change
the bindings between users and providers?

 Solution: The broker pattern separates users of services
(clients) from providers of services (servers) by inserting an
intermediary, called a broker. When a client needs a
service, it queries a broker via a service interface. The
broker then forwards the client’s service request to a
server, which processes the request.

J. Scott Hawker/R. Kuehl p. 16 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Broker Example

J. Scott Hawker/R. Kuehl p. 17 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Broker Example

J. Scott Hawker/R. Kuehl p. 18 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Broker Solution – 1

 Overview: The broker pattern defines a runtime
component, called a broker, that mediates the
communication between a number of clients and servers.

 Elements:

 Client, a requester of services

 Server, a provider of services

 Broker, an intermediary that locates an appropriate
server to fulfill a client’s request, forwards the request
to the server, and returns the results to the client

 Client-side proxy, an intermediary that manages the
actual communication with the broker, including
marshaling, sending, and unmarshaling of messages

 Server-side proxy, an intermediary that manages the
actual communication with the broker, including
marshaling, sending, and unmarshaling of messages

J. Scott Hawker/R. Kuehl p. 19 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Broker Solution - 2

 Relations: The attachment relation associates clients
(and, optionally, client-side proxies) and servers (and,
optionally, server-side proxies) with brokers.

 Constraints: The client can only attach to a broker
(potentially via a client-side proxy). The server can only
attach to a broker (potentially via a server-side proxy).

 Weaknesses:

 Brokers add a layer of indirection, and hence latency,
between clients and servers, and that layer may be a
communication bottleneck.

 The broker can be a single point of failure.

 A broker adds up-front complexity.

 A broker may be a target for security attacks.

 A broker may be difficult to test.

J. Scott Hawker/R. Kuehl p. 20 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Model-View-Controller Pattern
 Context: User interface software is typically the most frequently

modified portion of an interactive application. Users often wish to
look at data from different perspectives, such as a bar graph or a
pie chart. These representations should both reflect the current
state of the data.

 Problem: How can user interface functionality be kept separate
from application functionality and yet still be responsive to user
input, or to changes in the underlying application’s data? And how
can multiple views of the user interface be created, maintained,
and coordinated when the underlying application data changes?

 Solution: The model-view-controller (MVC) pattern separates
application functionality into three kinds of components:
 A model, which contains the application’s data
 A view, which displays some portion of the underlying data

and interacts with the user
 A controller, which mediates between the model and the

view and manages the notifications of state changes

J. Scott Hawker/R. Kuehl p. 21 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

MVC Example

Manage user requests

Initiates model behavior

Select view response

Encapsulates application

functions and data

Receives model data

Requests model data

Presents view

State ChangeView selection

State query

Change notification

User events

Invocations

Events

J. Scott Hawker/R. Kuehl p. 22 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

MVC Solution - 1

 Overview: The MVC pattern breaks system
functionality into three components: a model, a view,
and a controller that mediates between the model
and the view.

 Elements:

 The model is a representation of the application data
or state, and it contains (or provides an interface to)
application logic.

 The view is a user interface component that either
produces a representation of the model for the user
or allows for some form of user input, or both.

 The controller manages the interaction between the
model and the view, translating user actions into
changes to the model or changes to the view.

J. Scott Hawker/R. Kuehl p. 23 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

MVC Solution - 2

 Relations: The notifies relation connects instances of
model, view, and controller, notifying elements of
relevant state changes.

 Constraints:

 There must be at least one instance each of model,
view, and controller.

 The model component should not interact directly
with the controller.

 Weaknesses:

 The complexity may not be worth it for simple user
interfaces.

 The model, view, and controller abstractions may not
be good fits for some user interface toolkits.

J. Scott Hawker/R. Kuehl p. 24 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Pipe and Filter Pattern

 Context: Many systems are required to transform streams of
discrete data items, from input to output. Many types of
transformations occur repeatedly in practice, and so it is
desirable to create these as independent, reusable parts.

 Problem: Such systems need to be divided into reusable,
loosely coupled components with simple, generic interaction
mechanisms. In this way they can be flexibly combined with
each other. The components, being generic and loosely
coupled, are easily reused. The components, being
independent, can execute in parallel.

 Solution: The pattern of interaction in the pipe-and-filter pattern
is characterized by successive transformations of streams of
data. Data arrives at a filter’s input port(s), is transformed,
and then is passed via its output port(s) through a pipe to the
next filter. A single filter can consume data from, or produce data
to, one or more ports.

J. Scott Hawker/R. Kuehl p. 25 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Pipe and Filter Example

J. Scott Hawker/R. Kuehl p. 26 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Pipe and Filter Example

J. Scott Hawker/R. Kuehl p. 27 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Pipe and Filter Solution

 Overview: Data is transformed from a system’s external inputs to its
external outputs through a series of transformations performed by
its filters connected by pipes.

 Elements:

 Filter, which is a component that transforms data read on its
input port(s) to data written on its output port(s).

 Pipe, which is a connector that conveys data from a filter’s
output port(s) to another filter’s input port(s). A pipe has a
single source for its input and a single target for its output. A
pipe preserves the sequence of data items, and it does not
alter the data passing through.

 Relations: The attachment relation associates the output of filters
with the input of pipes and vice versa.

 Constraints:

 Pipes connect filter output ports to filter input ports.

 Connected filters must agree on the type of data being passed
along the connecting pipe.

J. Scott Hawker/R. Kuehl p. 28 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Client-Server Pattern

 Context: There are shared resources and services that
large numbers of distributed clients wish to access,
and for which we wish to control access or quality of
service.

 Problem: By managing a set of shared resources and
services, we can promote modifiability and reuse, by
factoring out common services and having to modify
these in a single location, or a small number of locations.
We want to improve scalability and availability by
centralizing the control of these resources and services,
while distributing the resources themselves across
multiple physical servers.

 Solution: Clients interact by requesting services of
servers, which provide a set of services. Some
components may act as both clients and servers. There
may be one central server or multiple distributed ones.

J. Scott Hawker/R. Kuehl p. 29 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Client-Server Example
ATM Banking System

J. Scott Hawker/R. Kuehl p. 30 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Client-Server Solution - 1

 Overview: Clients initiate interactions with servers,
invoking services as needed from those servers and
waiting for the results of those requests.

 Elements:

 Client, a component that invokes services of a server
component. Clients have ports that describe the
services they require.

 Server: a component that provides services to clients.
Servers have ports that describe the services they
provide.

 Request/reply connector: a data connector
employing a request/reply protocol, used by a client
to invoke services on a server. Important
characteristics include whether the calls are local or
remote, and whether data is encrypted.

J. Scott Hawker/R. Kuehl p. 31 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Client-Server Solution- 2

 Relations: The attachment relation associates
clients with servers.

 Constraints:

 Clients are connected to servers through
request/reply connectors.

 Server components can be clients to other servers.

 Weaknesses:

 Server can be a performance bottleneck.

 Server can be a single point of failure.

 Decisions about where to locate functionality (in
the client or in the server) are often complex and
costly to change after a system has been built.

J. Scott Hawker/R. Kuehl p. 32 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Peer-to-Peer Pattern

 Context: Distributed computational entities—each of
which is considered equally important in terms of
initiating an interaction and each of which provides its
own resources—need to cooperate and collaborate to
provide a service to a distributed community of users.

 Problem: How can a set of “equal” distributed
computational entities be connected to each other via
a common protocol so that they can organize and share
their services with high availability and scalability?

 Solution: In the peer-to-peer (P2P) pattern, components
directly interact as peers. All peers are “equal” and no
peer or group of peers can be critical for the health of
the system. Peer-to-peer communication is typically a
request/reply interaction without the asymmetry found
in the client-server pattern.

J. Scott Hawker/R. Kuehl p. 33 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Peer-to-Peer Example
Gnutella Network

J. Scott Hawker/R. Kuehl p. 34 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Peer-to-Peer Solution - 1

 Overview: Computation is achieved by cooperating
peers that request service from and provide services
to one another across a network.

 Elements:

 Peer, which is an independent component running on
a network node. Special peer components can
provide routing, indexing, and peer search capability.

 Request/reply connector, which is used to connect to
the peer network, search for other peers, and invoke
services from other peers. In some cases, the need
for a reply is done away with.

 Relations: The relation associates peers with their
connectors. Attachments may change at runtime.

J. Scott Hawker/R. Kuehl p. 35 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Peer-to-Peer Solution - 2

 Constraints: Restrictions may be placed on the
following:
 The number of allowable attachments to any given peer

 The number of hops used for searching for a peer

 Which peers know about which other peers

 Some P2P networks are organized with star topologies, in which peers
only connect to supernodes.

 Weaknesses:

 Managing security, data consistency, data/service
availability, backup, and recovery are all more
complex.

 Small peer-to-peer systems may not be able to
consistently achieve quality goals such as
performance and availability.

J. Scott Hawker/R. Kuehl p. 36 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Service Oriented Architecture Pattern

• Context: A number of services are offered (and
described) by service providers and consumed by
service consumers. Service consumers need to be
able to understand and use these services without
any detailed knowledge of their implementation.

 Problem: How can we support interoperability of
distributed components running on different
platforms and written in different implementation
languages, provided by different organizations, and
distributed across the Internet?

 Solution: The service-oriented architecture (SOA)
pattern describes a collection of distributed
components that provide and/or consume services.

J. Scott Hawker/R. Kuehl p. 37 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Service Oriented Architecture Example
“Adventure Builder”

OPC – Order Processing Center

J. Scott Hawker/R. Kuehl p. 38 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Service Oriented Architecture Solution - 1

 Overview: Computation is achieved by a set of cooperating
components that provide and/or consume services over a network.

 Elements:
 Components:

 Service providers, which provide one or more services
through published interfaces.

 Service consumers, which invoke services directly or
through an intermediary.

 Service providers may also be service consumers.
 Enterprise Service Bus (ESB), which is an intermediary element

that can route and transform messages between service
providers and consumers.

 Registry of services, which may be used by providers to
register their services and by consumers to discover services at
runtime.

 Orchestration server, which coordinates the interactions
between service consumers and providers based on languages
for business processes and workflows.

J. Scott Hawker/R. Kuehl p. 39 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Service Oriented Architecture Solution - 2

 Connectors:

 SOAP connector, which uses the SOAP
protocol for synchronous communication
between web services, typically over HTTP.

 REST connector, which relies on the
basic request/reply operations of the HTTP
protocol.

 Asynchronous messaging connector,
which uses a messaging system to offer
point-to-point or publish-subscribe
asynchronous message exchanges.

J. Scott Hawker/R. Kuehl p. 40 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Service Oriented Architecture Solution - 3

 Relations: Attachment of the different kinds of
components available to the respective connectors

 Constraints: Service consumers are connected to service
providers, but intermediary components (e.g., ESB,
registry, orchestration server) may be used.

 Weaknesses:

 SOA-based systems are typically complex to build.

 You don’t control the evolution of independent
services.

 There is a performance overhead associated with the
middleware, and services may be performance
bottlenecks, and typically do not provide performance
guarantees.

J. Scott Hawker/R. Kuehl p. 41 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Microservices Architecture Pattern

 Context - deploy server based enterprise applications
that support a variety of browser and native mobile
clients. The application handles client requests by
executing business logic, accessing a database,
exchanging messages with other systems, and returning
responses. The application might expose a 3rd party API.

 Problem – Monolithic applications can become too large
and complex for efficient support, and deployment for
optimal distributed resource utilization such as in cloud
environments

 Solution - build applications as suites of services. Each
service is independently deployable and scalable, and
has its own API boundary. Different services can be
written in different programming languages, manage their
own database, and developed by different teams

http://martinfowler.com/articles/microservices.html

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

J. Scott Hawker/R. Kuehl p. 42 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Microservices Architecture Pattern Example

Used by Amazon and Netflix

J. Scott Hawker/R. Kuehl p. 43 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Microservices Architecture Pattern Solution

 Overview – decompose business logic into a series of
independently developed and deployable services

 Elements – services are packaged as out-of-process
components with well defined service boundaries (APIs).
They can be implemented in any programming language.
They may manage their own database as part of the service
boundary.

 Relationships – clients invoke services via simple remote
procedure calls/web services using for example HTTP
RESTful interfaces, or using a lightweight message bus.

 Constraints – complexity of distributed systems.
Decentralized data management is harder to manage such
as support for cross service transactions. Development team
experience to make good service decomposition decisions,
testing and deployment know how

 Weaknesses – systems must be designed to tolerate service
failures which requires more system monitoring. Service
choreography and event collaboration overhead. More
memory

J. Scott Hawker/R. Kuehl p. 44 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Event Driven Architecture

 Context – computational and information resources
need to be provided to handle incoming
independent asynchronous application
generated events in a manner that can scale up as
demand increases.

 Problem – construct distributed systems that can
service asynchronous arriving messages
associate with an event, and that can scale from
small and simple to large and complex.

 Solution – deploy independent event
processes/processors for event handling. Arriving
events are queued. A scheduler pulls events from
the queue and distributes them to the appropriate
event handler based on a scheduling policy.

Software Architecture Patterns, Mark Richards

J. Scott Hawker/R. Kuehl p. 45 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Event Driven Architecture Example

Mediator topology – orchestrate
multiple steps to handle an event
according to some application
policy

Broker topology – distribute
messages in a simple chained
message flow

Software Architecture Patterns, Mark Richards

J. Scott Hawker/R. Kuehl p. 46 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Event Driven Architecture Pattern Solution

 Overview – arriving client generated requests for service
arrive as events. They are queued, and then directed to
an appropriate event handler according to some
application policy. This pattern can be used in a wide
range of applications.

 Elements – the event queue, the scheduler, and the
collection of pertinent event handlers. Event handlers may
be deployed as independent processes and/or
processors.

 Relationships – clients and event handlers are usually
distributed on a network but do not have to be. Message
communication protocols and message formats should be
consistent and standards based

 Constraints – there is no built-in transactional support.
The inherent complexity of deploying distributed systems.

 Weaknesses – performance and error recovery may be
issues. On the plus side, with low coupling the resulting
systems are highly scalable.

Software Architecture Patterns, Mark Richards

J. Scott Hawker/R. Kuehl p. 47 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Publish-Subscribe Pattern

 Context: There are a number of independent producers and
consumers of data that must interact. The precise number and
nature of the data producers and consumers are not
predetermined or fixed, nor is the data that they share.

 Problem: How can we create integration mechanisms that support
the ability to transmit messages among the producers and
consumers so they are unaware of each other’s identity, or
potentially even their existence?

 Solution: In the publish-subscribe pattern, components interact
via announced messages, or events. Components may
subscribe to a set of events. Publisher components place events
on the bus by announcing them; the connector then delivers
those events to the subscriber components that have registered
an interest in those events.

J. Scott Hawker/R. Kuehl p. 48 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Publish-Subscribe Example

J. Scott Hawker/R. Kuehl p. 49 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Publish-Subscribe Example

http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html

J. Scott Hawker/R. Kuehl p. 50 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Publish-Subscribe Solution – 1

 Overview: Components publish and subscribe to
events. When an event is announced by a
component, the connector infrastructure dispatches
the event to all registered subscribers.

 Elements:

 Any C&C component with at least one publish or
subscribe port.

 The publish-subscribe connector, which will have
announce and listen roles for components that
wish to publish and subscribe to events.

 Relations: The attachment relation associates
components with the publish-subscribe connector by
prescribing which components announce events and
which components are registered to receive events.

J. Scott Hawker/R. Kuehl p. 51 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Publish-Subscribe Solution - 2

 Constraints: All components are connected to
an event distributor that may be viewed as
either a bus—connector—or a component.
Publish ports are attached to announce roles
and subscribe ports are attached to listen roles.

 Weaknesses:

 Typically increases latency and has a negative
effect on scalability and predictability of message
delivery time.

 Less control over ordering of messages, and
delivery of messages is not guaranteed.

J. Scott Hawker/R. Kuehl p. 52 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Shared-Data Pattern

 Context: Various computational components
need to share and manipulate large amounts of
data. This data does not belong solely to any one of
those components.

 Problem: How can systems store and manipulate
persistent data that is accessed by multiple
independent components?

 Solution: In the shared-data pattern, interaction is
dominated by the exchange of persistent data
between multiple data accessors and at least one
shared-data store. Exchange may be initiated by
the accessors or the data store. The connector type
is data reading and writing.

J. Scott Hawker/R. Kuehl p. 53 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Shared Data Example

J. Scott Hawker/R. Kuehl p. 54 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Shared Data Example
Enterprise Access Management System

J. Scott Hawker/R. Kuehl p. 55 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Data Warehouse Example

Oracle – Introduction to Data Warehousing Concepts

J. Scott Hawker/R. Kuehl p. 56 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Shared Data Solution - 1

 Overview: Communication between data
accessors is mediated by a shared data store.
Control may be initiated by the data accessors
or the data store. Data is made persistent by the
data store.

 Elements:

 Shared-data store. Concerns include types of data
stored, data performance-oriented properties, data
distribution, and number of accessors permitted.

 Data accessor component.

 Data reading and writing connector.

J. Scott Hawker/R. Kuehl p. 57 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Shared Data Solution - 2

 Relations: Attachment relation determines
which data accessors are connected to which
data stores.

 Constraints: Data accessors interact only with
the data store(s).

 Weaknesses:

 The shared-data store may be a performance
bottleneck.

 The shared-data store may be a single point of
failure.

 Producers and consumers of data may be tightly
coupled.

J. Scott Hawker/R. Kuehl p. 58 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Blackboard Pattern

 Context - An immature or poorly specified domain with
no deterministic or optimal solution known for the
problem. Hence, software systems that need to integrate
large and diverse specialized modules, and implement
complex, nondeterministic control strategies. E.g.,
speech recognition, other AI “expert” applications.
Metaphor of humans collaborating with a blackboard.

 Problem –The problem spans several fields of expertise
that require a sequence of independent algorithmic
transformations. Intermediate solutions require different
representations. Algorithm experimentation may be
required. The control strategy is complex and cannot be
determined statically.

 Solution - a collection of independent specialized
programs work cooperatively utilizing a common data
structure. A central controller coordinates the knowledge
sources based on the state of the solution.

J. Scott Hawker/R. Kuehl p. 59 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Blackboard Example

J. Scott Hawker/R. Kuehl p. 60 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Blackboard Solution - 1

 Overview - Problem solvers work independently (and
opportunistically) on parts of the problem. They share a
common data structure (the blackboard). A central
controller manages access to the blackboard. The
blackboard may be structured (e.g. into levels of
abstraction) so problem solvers may work at different
levels. Blackboard contains original input and/or partial
solutions

 Elements

 Knowledge source - separate, independent subsystems
that solve specific aspects of the overall problem

 Blackboard - the central data store for solution space and
control data It provides an interface to enable knowledge
source access

 Control – uses data in the blackboard to coordinate the
sequence interaction between knowledge sources

J. Scott Hawker/R. Kuehl p. 61 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Blackboard Solution – 2

 Relations – knowledge sources are completely
independent. They are coordinated by the state
of data in the blackboard and control directed
actuation.

 Constraints – computationally expensive, low
support for parallelism, no good solution is
guaranteed, control solution may be heuristic

 Weaknesses - Difficulty of testing, may be hard
to develop

J. Scott Hawker/R. Kuehl p. 62 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Map-Reduce Pattern

 Context: Businesses have a pressing need to quickly analyze
enormous volumes of data they generate or access, at
petabyte scale.

 Problem: For many applications with ultra-large data sets,
sorting the data and then analyzing the grouped data is
sufficient. The problem the map-reduce pattern solves is to
efficiently perform a distributed and parallel sort of a large
data set and provide a simple means for the programmer to
specify the analysis to be done.

 Solution: The map-reduce pattern requires three parts:

 A specialized infrastructure takes care of allocating
software to the hardware nodes in a massively parallel
computing environment and handles sorting the data as
needed.

 A programmer specified component called the map which
filters the data to retrieve those items to be combined.

 A programmer specified component called reduce which
combines the results of the map

J. Scott Hawker/R. Kuehl p. 63 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Map-Reduce Example

J. Scott Hawker/R. Kuehl p. 64 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Another Map-Reduce View

J. Scott Hawker/R. Kuehl p. 65 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Map-Reduce Solution - 1

 Overview: The map-reduce pattern provides a framework
for analyzing a large distributed set of data that will
execute in parallel, on a set of processors. This
parallelization allows for low latency and high availability.
The map performs the extract and transform portions of
the analysis and the reduce performs the loading of the
results.

 Elements:

 Map is a function with multiple instances deployed across
multiple processors that performs the extract and
transformation portions of the analysis.

 Reduce is a function that may be deployed as a single
instance or as multiple instances across processors to
perform the load portion of extract-transform-load.

 The infrastructure is the framework responsible for
deploying map and reduce instances, shepherding the data
between them, and detecting and recovering from failure.

J. Scott Hawker/R. Kuehl p. 66 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Map-Reduce Solution - 2

 Relations:
 Deploy on is the relation between an instance of a map or

reduce function and the processor onto which it is installed.
 Instantiate, monitor, and control is the relation between the

infrastructure and the instances of map and reduce.
 Constraints:

 The data to be analyzed must exist as a set of files.
 Map functions are stateless and do not communicate with each

other.
 The only communication between map reduce instances is the

data emitted from the map instances as <key, value> pairs.
 Weaknesses:

 If you do not have large data sets, the overhead of map-reduce
is not justified.

 If you cannot divide your data set into similar sized subsets, the
advantages of parallelism are lost.

 Operations that require multiple reduces are complex to
orchestrate.

J. Scott Hawker/R. Kuehl p. 67 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Multi-Tier Pattern

 Context: In a distributed deployment, there is
often a need to distribute a system’s
infrastructure into distinct subsets.

 Problem: How can we split the system into a
number of computationally independent
execution structures—groups of software and
hardware—connected by some communications
media?

 Solution: The execution structures of many
systems are organized as a set of logical
groupings of components. Each grouping is
termed a tier.

J. Scott Hawker/R. Kuehl p. 68 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Multi-Tier Example
Consumer Web Site Java EE

J. Scott Hawker/R. Kuehl p. 69 © Len Bass, Paul Clements, Rick Kazman,

distributed under Creative Commons Attribution License
R I T

Software Engineering

Multi-Tier Solution

 Overview: The execution structures of many systems are
organized as a set of logical groupings of components.
Each grouping is termed a tier.

 Elements:

 Tier, which is a logical grouping of software components.

 Relations:

 Is part of, to group components into tiers.

 Communicates with, to show how tiers and the components
they contain interact with each other.

 Allocated to, in the case that tiers map to computing
platforms.

 Constraints: A software component belongs to exactly
one tier.

 Weaknesses: Substantial up-front cost and complexity.

