
Software Engineering Design: Theory and Practice
by Carlos E. Otero

Slides copyright © 2012 by Carlos E. Otero

For non-profit educational use only

May be reproduced only for student use when used in conjunction with Software Engineering Design:
Theory and Practice. Any other reproduction or use is prohibited without the express written
permission of the author.

All copyright information must appear if these slides are posted on a website for student use.

CHAPTER 2: SOFTWARE DESIGN WITH THE
UNIFIED MODELING LANGUAGE

SESSION I: UML FUNDAMENTALS

9/17/16 1 Software Engineering Design: Theory and Practice

SESSION’S AGENDA

Ø  UML Fundamentals
ü  History, goals, etc.
ü  Classifiers
ü  Relationships
ü  Enhancing features

Ø  UML Diagrams
ü  Structural diagrams
ü  Behavioral diagrams

Ø  UML Summary
ü  What’s next…

9/17/16 Software Engineering Design: Theory and Practice 2

UNIFIED MODELING LANGUAGE FUNDAMENTALS

Ø  Communication is an essential, critical skill for engineers.
ü  Throughout a project’s life-cycle, designers spent a great deal of time and effort

communicating with other members of the project.
§  Oral
§  Written

ü  In previous sessions, we discussed the importance of managing design
influences.
§  Imagine, if stakeholders used different

languages for communication.

ü  Different languages of
communication would
decrease efficiency and
effectiveness.

9/17/16 Software Engineering Design: Theory and Practice 3 3

A	wants	…	
B	wants	…	

我想表現！	

I	want	Security!	

Quiero	facilidad	
de	uso!	

UNIFIED MODELING LANGUAGE FUNDAMENTALS

Ø  The UML is the result of years of collaborative work spent in devising a unified approach
for modeling systems.
ü  The first efforts focused on unifying three popular modeling methods:

§  The Booch method, by Grady Booch
§  The object-oriented software engineering method (OOSE), by Ivar Jacobson
§  The object modeling technique (OMT) by James Rumbaugh

Ø  The goals of the unification project were specified by Booch, Rumbaugh, and Jacobson as
follows:

1.  To model systems, from concept to executable artifact, using object-oriented techniques.
2.  To address the issues of scale inherent in complex, mission-critical systems.
3.  To create a modeling language usable by both humans and machines.

Ø  The development of early UML versions generated interest among numerous influential
organizations.
ü  Microsoft, Oracle, IBM, Rational, etc. This collaborative effort resulted in UML 1.0.
ü  After revisions, it was accepted by the OMG as UML 1.1.
ü  Since then, UML has evolved and accepted heavily in industry.

9/17/16 Software Engineering Design: Theory and Practice 4

UNIFIED MODELING LANGUAGE FUNDAMENTALS

Ø  Formally, UML can be defined as a visual language for specifying,
analyzing, and documenting design elements essential for modeling the
dynamic and static aspects of software systems before construction.

Ø  UML 2.3 provides 14 types of diagrams that can
be used for modeling both
ü  Structural
ü  Behavioral

Ø  Because projects vary drastically, not
all diagrams are used in every project.
ü  Designers select the ones that can help

them effectively model the system.

9/17/16 Software Engineering Design: Theory and Practice

5

I	see…												
We	all	agree…	

我想表現！	

I	want	Security!	

Quiero	facilidad	
de	uso!	

UNIFIED MODELING LANGUAGE FUNDAMENTALS

Ø  Officially, UML Structural Diagrams
ü  Concerned with capturing and specifying static elements and their

interrelationships required for supporting the solution to a given problem,
within a given context.

Ø  Behavioral Diagrams
ü  Concerned with capturing and specifying the dynamic behavior and the

inherent complexities present in the behavioral aspects of software systems.

9/17/16 Software Engineering Design: Theory and Practice 6

UNIFIED MODELING LANGUAGE FUNDAMENTALS

Ø  To model almost any aspect of today’s modern system, UML was developed
with flexibility and extensibility in mind.
ü  However, the fundamental building blocks are well defined and must be understood

before applying UML effectively.

Ø  UML’s building blocks are grouped into:
ü  Classifiers

§  Structural things that represent conceptual or physical elements of a model.
§  They are typically the main elements in UML diagrams.
§  Each type of UML diagram, uses specific type of classifiers, so that not all classifiers are

relevant to all UML diagrams.
ü  Relationships

§  Defines and provides visualization of the interconnections that exists among classifiers.
ü  Enhancing features

§  Provides flexibility that allow designers to enhance and evolve modeling capabilities so
that they become appropriate for particular systems.

Ø  Let’s cover the building blocks in more detail…

9/17/16 Software Engineering Design: Theory and Practice 7

UML 2.3 CLASSIFIERS

Ø  UML 2.3 classifiers include:
ü  Use Case

§  Classifier used to model a single required system behavior; represented with icons of
elliptical shape.

ü  Component
§  Classifier used to represent a modular and replaceable part of the system; modeled using a

box with the keyword <<component>> and optional component icon on the top right
corner.

ü  Class
§  Classifier used to model a type in terms of operations, attributes, relationships, and other

semantics; modeled using a rectangular box. Typically, a class is split into compartments
for attributes and operations.

9/17/16 Software Engineering Design: Theory and Practice 8

Search Product

ClientManager
<<component>>

IntegerInteger

UML 2.3 CLASSIFIERS

Ø  UML 2.3 common classifiers include (continued):
ü  Active Class

§  Classifier used to model a class that owns an independent flow of execution and can initiate control activity;
modeled as a class with double lines on each side.

ü  Interface
§  Classifier that models the set of operations that specify the services provided by a class or component;

represented as stereotyped classes or using the ball-and-socket notation.

ü  Node
§  Classifier used to model a physical element (e.g., a computer), its processing capabilities, and other

characteristics; modeled using a cube.

ü  Artifact
§  Classifier that models a physical deployable information element (e.g., .dll, .exe, .jar, .script, etc.); modeled

using a rectangle with the keyword <<artifact>>,

9/17/16 Software Engineering Design: Theory and Practice 9

InterfaceB
InterfaceB
<<interface>>

InterfaceB
<<interface>>

Processor Processor

ApplicationServer

Notepad.exe
<<artifact>>

graphics.jar
<<artifact>>

snmpapi.dll
<<artifact>>

UML 2.3 RELATIONSHIPS

Ø  Relationships apply to all UML Classifiers. UML relationships include:
ü  Dependency

§  Dashed line (typically directed with a stick arrow) used to model the relationship between
two UML classifiers indicating that changes to one element affect the other.

ü  Association
§  Line used to model the relationship between two UML classifiers indicating that a

connection exists between them; associations can be directed using a stick arrow.

ü  Generalization
§  Line with a hollow arrowhead used to model the relationship between two UML

classifiers indicating that one (child) inherits from another (parent).

ü  Realization
§  Relationship between two UML classifiers indicating that one element realizes a specified

interface; modeled using a dashed line with hollow arrowhead.

9/17/16 Software Engineering Design: Theory and Practice 10

UML 2.3 ENHANCING FEATURES

Ø  Common UML mechanisms for enhancement:
ü  Notes

§  Mechanism for adding descriptive information to UML elements (both classifiers
and relationships) and diagrams; modeled using a rectangle with a dog-eared corner
and can be connected using a dashed line.

ü  Stereotypes
§  Mechanism for extending UML by adding information that gives existing UML

elements (both classifiers and relationships) a different meaning, therefore creating a
semantically different element for modeling application-specific concepts; modeled
as existing UML elements with the <<stereotype>> mechanism.

9/17/16 Software Engineering Design: Theory and Practice 11

FileUtility
<<utility>>

SensorManager
<<subsystem>>

CollectionSystem
<<client>>

DataProcessor
<<server>>

Analytics
<<component>>

Contains algorithms
for clustering, classification,
and numeric prediction.

UML Note

Stereotyped Components Stereotyped Class

UML 2.3 ENHANCING FEATURES

Ø  Common UML mechanisms for enhancement (continued):
ü  Tagged values

§  Mechanism for adding new properties to a stereotype; modeled by adding the tagged
value in the form of property = value to existing stereotyped UML elements.

ü  Constraints
§  Mechanism for specifying constraints to design elements (both classifiers and

relationships); associated with specific design elements in the form of
{constraint description}

9/17/16 Software Engineering Design: Theory and Practice 12

CollectionManager
<<process>>

location = client laptop

TaskMonitor
{monitor time == 1 sec.}

ServerClient

{secure line}

Constraint Constraint

Tagged value to specify location

UML 2.3 DIAGRAMS - STRUCTURAL

Ø  Together, UML classifiers, relationships, and enhancement features can be used together
in 14 diagrams to model systems from different perspectives and different concerns.

Ø  The most common UML structural diagrams are presented below.

Ø  Other structural diagrams include:
ü  Composite structure diagram
ü  Profile diagram

9/17/16 Software Engineering Design: Theory and Practice 13

Structural	Diagram	 Descrip0on	

Component	Diagram	 Used	to	model	so?ware	as	group	of	components	connected	to	each	other	through	well-defined	interfaces.		

Class	Diagram	 Used	to	model	so?ware	as	a	set	of	classes,	including	their	operaEons,	aFributes,	and	relaEonships.	

Object	Diagram	 Used	to	model	an	instant	snapshot	of	the	life	of	an	object	during	execuEon,	including	its	state	and	aFribute	
values.	

Deployment	Diagram	 Used	to	model	the	physical	realizaEon	of	so?ware	systems,	including	physical	nodes	where	so?ware	is	
deployed,	interfaces	between	nodes,	executable	so?ware	arEfacts,	and	the	manifestaEon	of	so?ware	
components.	

Package	Diagram	 Used	to	model	the	decomposiEon	of	so?ware	as	a	set	of	packages,	including	relaEonships	between	
packages.	

UML 2.3 DIAGRAMS - BEHAVIORAL

Ø  The most common UML behavioral diagrams are presented below.

Ø  Other behavioral diagrams include:
ü  Timing diagram
ü  Interaction overview diagram

9/17/16 Software Engineering Design: Theory and Practice 14

Behavioral	Diagram	 Descrip0on	

Use	Case	Diagram	 Used	to	capture,	specify,	and	visualize	required	system	behavior	.	

Sequence	Diagram	 Used	to	capture,	specify,	and	visualize	system	interacEons	with	emphasis	on	the	Eme-order	sequence	of	
messages	exchanged.	

CommunicaEon	
Diagram	

Used	to	capture,	specify,	and	visualize	system	interacEons	with	emphasis	on	the	structural	order	of	enEEes	
parEcipaEng	in	the	message	exchange.	

State	Machine	Diagram	 Used	to	capture,	specify,	and	visualize	system	behavior	as	a	set	of	discrete	states	and	the	transiEons	
between	them.	

AcEvity	Diagram	 Used	to	capture,	specify,	and	visualize	system	behavior;	provide	mechanisms	for	modeling	that	includes	
condiEonal	statements,	repeEEon,	concurrency,	and	parallel	execuEon	and	thus	can	be	used	at	many	
different	levels	of	abstracEon,	from	modeling	business	work	flows	to	code.	

UML SUMMARY

Ø  UML is essential to enhancing system analysis, specification, and
communication among a project’s stakeholders. Specifically, UML
ü  Provides a common language for analyzing, evaluating, and specifying

systems.
ü  Models can be created at higher levels and transferred downstream, for

subsequent, finer-grained analysis, evaluation, and specification.
ü  Models serve as the main tool for transferring knowledge and enhancing

communication among stakeholders, including customers, managers, and
programmers.

ü  Enables visualization of complex systems and enables more efficient reasoning
about the problem, therefore enhancing the problem-solving process.

ü  Enhances design documents and enables reusability of solutions, which can be
applied in future projects.

9/17/16 Software Engineering Design: Theory and Practice 15

WHAT’S NEXT…

Ø  In the next session we will discuss how UML classifiers, relationships, and
enhancement features can be used to create structural diagrams.
Specifically, we will focus on:
ü  UML structural modeling

§  What is structural modeling?
§  Why is it important?

ü  Component diagrams
§  Interfaces
§  Assembly connectors
§  Other common relationships

ü  Class diagrams
§  Details of UML classes
§  Common relationships
§  The meaning (in code) of class diagrams

ü  Deployment diagrams

9/17/16 Software Engineering Design: Theory and Practice 16

Software Engineering Design: Theory and Practice
by Carlos E. Otero

Slides copyright © 2012 by Carlos E. Otero

For non-profit educational use only

May be reproduced only for student use when used in conjunction with Software Engineering Design:
Theory and Practice. Any other reproduction or use is prohibited without the express written
permission of the author.

All copyright information must appear if these slides are posted on a website for student use.

CHAPTER 2: SOFTWARE DESIGN WITH THE
UNIFIED MODELING LANGUAGE

SESSION II: UML STRUCTURAL MODELING

9/17/16 17 Software Engineering Design: Theory and Practice

SESSION’S AGENDA

Ø  UML structural modeling
ü  What is structural modeling?
ü  Why is it important?

Ø  Component diagrams
ü  Interfaces
ü  Assembly connectors
ü  Other common relationships

Ø  Class diagrams
ü  Details of UML classes
ü  Common relationships
ü  The meaning (in code) of class diagrams

Ø  Deployment diagrams

9/17/16 Software Engineering Design: Theory and Practice 18

FUNDAMENTALS OF UML STRUCTURAL MODELING

Ø  What do we mean by structural? What is structure?
ü  When we talk about structure, we talk about:

§  Parts arranged together in some way to compose some product.
§  In this conversation, the process for composition of the parts is important as well as the specification of relationships that

glue these parts together.
ü  From the software profession’s point of view, what does this mean?

§  Stop and think about this!
§  Structure of code? Structure of computers in the system?

Ø  Let’s assume that structure refers to the structure of code. Consider the following conceptual structure of
the same software application.

Ø  Consider what would happen if we needed to reuse the communication function in some other project.
ü  What can you say about the reusability of these systems?
ü  What can you say about the maintainability of these systems?

Ø  We have not talk about the concept of Quality yet, but we will… For now, assume that quality is a function
of reusability and maintainability. What can you say about the quality of these systems?
ü  Under these assumptions structure drives quality AND quality drives structure.

9/17/16 Software Engineering Design: Theory and Practice 19

Remember modularization
From previous sessions?

CommunicaEon	

x	

y	
z	

r	

c	

b	

m		

x	

y	

c	

b	

CommunicaEon	
z	 r	
m		

Is there any structure in these applications?

Sure, there is structure here. Different parts
are arranged together to compose some
product!

How can this be true?

FUNDAMENTALS OF UML STRUCTURAL MODELING

Ø  In the previous slide, under the established assumptions, we mentioned that structure drives
quality AND quality drives structure. What do we mean by that? Consider again the two
structures for the same software application.
ü  Assume that these are structures for a message processing application, where messages are sent and

processed by the software.
ü  Furthermore, assume the following:

§  Messages need to be processed and executed in less than .5 seconds.
–  Assume that ONLY Structure A leads to a system that meets this requirement.

§  Based on the customer, quality is a function of performance and NOT reusability and maintainability.

9/17/16 Software Engineering Design: Theory and Practice 20

What can you say about the quality of these systems?
x	

y	

c	

b	

CommunicaEon	
z	 r	
m		

Structure A

CommunicaEon	

x	

y	
z	

r	

c	

b	

m		

Structure B

Reusability

Maintainability

Performance

Quality

Reusability

Maintainability

Performance

Quality

Structure drives quality in the sense that
Quality goes up or down depending on the
Structure.

Quality drives structure in the sense that
structures are designed to meet quality
goals.

FUNDAMENTALS OF UML STRUCTURAL MODELING

Ø  Quality is one of the most important topics for software designers.
ü  Since structural designs affect quality, it is important that we have tools that can help us

efficiently and effectively model structural aspects of software systems!
ü  We will cover quality in more depth during the software architecture portion of the course and

we will see these concepts throughout the rest of the course.

Ø  In previous slides, we stated the assumption that structure referred to the structure of
code.
ü  It turns out that structure applies also to design units that exists at higher levels of abstractions

than code. That is, units used to encapsulate functions, algorithms, classes, etc.
§  This structure is relevant to the software architecture and has significant impact on quality.

ü  It also applies to other important aspects of software systems, e.g., the structure of the system
as a whole (hardware, software, and interfaces)
§  This structure also drives quality!

Ø  UML structural diagrams provide efficient tools that allows designers to create, evaluate,
and analyze all of these structures.
ü  They help us design for certain quality goals!

9/17/16 Software Engineering Design: Theory and Practice 21

UML COMPONENT DIAGRAMS

Ø  A component represents a modular part of a system that encapsulates its contents and whose
manifestation is replaceable within its environment.

Ø  Component diagrams are used to model software as group of components connected to each
other through well-defined interfaces. They help decompose systems and represent their
structural architecture from a logical perspective.

Ø  Components can be modeled using an external black-box or internal white-box approach.
ü  Black-box approach hides the component’s internal structure.

§  Components interact with each other only through identified interfaces.
ü  White-box approach shows the component’s internal structure (e.g., realizing classifiers).

Ø  Component interfaces are classified as provided or required interfaces.
ü  Required interfaces are those the components need to carry out their functions.
ü  Provided interfaces are used by other external components to interact with the component providing

the services.

Ø  Let’s formally see how the UML relationships defined in previous sessions apply to the
component classifier…

9/17/16 Software Engineering Design: Theory and Practice 22

I need a
schedule to

operate!

CmoponentA
<<component>>

ISchedule

CmoponentB
<<component>>

ISchedule

I provide
a

schedule

Black-box
Approach

UML COMPONENT DIAGRAM

Ø  UML relationships applied to the component classifier.

9/17/16 Software Engineering Design: Theory and Practice 23

Dependency between required
and provided interfaces is
equivalent to the assembly

connector.

UML Dependency
ComponentA

<<component>> Provided Interface

Required Interface

Dependency

Realization

ComponentA
<<component>>

ComponentA
<<component>>

ComponentA
<<component>>

ComponentA
<<component>>

ComponentB
<<component>>

<<assembly>>

InterfaceB
<<interface>>

InterfaceB
<<interface>>

ClassA
ComponentA

<<component>> Realization

ComponentA
<<component>>

ComponentB
<<component>>Dependency

Notice
this is a

class

Notice these
are interfaces

Dependency
without

specifying
interfaces!

ComponentA	
InterfaceB	

These are
equivalent!

ComponentA	
InterfaceB	

UML COMPONENT DIAGRAM

Ø  Two more important concepts used in component diagrams are:
ü  Ports

§  Abstraction used to model access points for allowing the external environment to access
the component’s services and for allowing components to interact with their external
environment.

§  Modeled using a small square at the boundary of a classifier, in this case, a component.
§  Ports can be named, e.g., port names below are Port 1 and Port 2.

ü  Delegation connectors
§  Used to model the link between the external provided interfaces of a component to the

realization of those interfaces internally within the component.
§  Similarly, delegation connectors model the link between internally required interfaces to

ports requiring the interface from external components.
§  Modeled using a directed arrow with the stereotype <<delegate>>

9/17/16 Software Engineering Design: Theory and Practice 24

ComponentA
<<component>>ComponentB

<<component>>
SubComponent
<<component>>

ComponentA
<<component>>

Port 2Port 1 Port 2Port 1

IProvidedIProvidedIRequiredIRequired

ComponentB
<<component>>

<<delegate>> <<delegate>>

Port Port Delegate connector

White-box view of
ComponentA shows
how the external
behavior is realized
internally

Black-box
view of

ComponentB

UML COMPONENT DIAGRAM

Ø  Consider a system with the following desired properties:
ü  A data collection system equipped with:

§  Sensors
§  Video capture capabilities

ü  Automatic collection at specific times of the day.
§  Collection schedules need to be provided to the system.

ü  It is expected that the technology used for collection can improve, therefore:
§  Different sensors technology can be incorporated.
§  Different video capture capabilities can be incorporated.
§  This is important to the customers!

ü  The system must make available the data collected.
§  Both sensor and video data.
§  Also, health data about the system

–  Events, problems, etc.

9/17/16 Software Engineering Design: Theory and Practice 25

Before moving on, can you model this system using the
component notation discussed so far? Give it a try using
paper and pencil!

Warning:
There is not enough
information
to actually build this system. Stop! 	

9/17/16 Software Engineering Design: Theory and Practice 26

<<component>>
<<component>>

ClientCollectionSystem
<<component>>

Port2Port1 Port2Port1
ClientManager
<<component>> ISchedule IScheduleIClientDataIClientData

ISensorControl

SensorManager
<<component>>

IVideoControl

VideoManager
<<component>>

<<delegate>> <<delegate>>

Component = a modular part of a system that
encapsulates its contents and whose manifestation
is replaceable within its environment.

Remember this

Definition?

Abstraction Principle:
Focuses on essential
characteristics of entities—in their
active context—while deferring
unnecessary details

Therefore, we really can’t say at this point what the
SensorManager will be! It could end up being one
class, a bunch of classes, one function, etc.

The same applies to all
other components!

Sensor
functions

Video capture
functions

Requires collection
schedule

Provides
collection and
health data

Everything that you see in the component
diagram
is an abstraction!

Although a good start, too many
details are still missing to be able to
build this system!

UML COMPONENT DIAGRAMS

Ø  A few last comments on UML components:
ü  In previous versions of UML (i.e., 1.x), components were reserved exclusively for modeling

deployable physical entities.
§  So, if you read an older book covering UML 1.x, discussions about components will differ from

what we’ve presented so far.
ü  A clear distinction between physical and logical components can be made by identifying the

context in which they are relevant.
ü  Both physical and logical components are modular parts of a system that encapsulate their

contents and whose manifestation are replaceable within their environment.

ü  To eliminate confusion, UML 2.x supports the specification of these physical components as
artifacts.

ü  This new paradigm allows designers to model physical deployment aspects of components
using artifacts classifier deployed on a node.

9/17/16 Software Engineering Design: Theory and Practice 27

Older Component

This is how UML 1.x
components look like

A major difference is that physical components exist in a run-time environment ,
whereas logical components exist in a design-time environment!

This can be confusing because the design of a physical component may include
one or more logical components!!!

UML CLASS DIAGRAM

Ø  Class diagrams exist at a lower level of abstraction than component diagrams.
ü  Models consisting of classes and relationships between them necessary to achieve a system’s

functionality.
ü  Weather a class diagram is created or not, the code of an object-oriented systems will always

reflect some class design.
ü  Therefore, there is two-way relationship between class diagrams and object-oriented code.

§  Class diagrams can be transformed to code (i.e., forward engineering)
§  Code can be transformed into class diagrams (i.e., reverse engineering)

ü  This makes class diagrams the most powerful tool for designers to model the characteristics of
object-oriented software before the construction phase.

Ø  To become an effective designer, it is essential to understand the direct mapping between
class diagrams and code. Let’s take a closer look at the fundamental unit of the UML
class diagram: the class.

9/17/16 Software Engineering Design: Theory and Practice 28

ClassName
<<Class Stereotype>>

+publicAttribute: int

-privateMethod(param: int): void
#protectedMethod(): int
+abstractMethod(): void
+publicStaticMethod(): void

Name
compartment

 Attribute
compartment

Operation

compartment

UML CLASS DIAGRAM

Ø  Name compartment
ü  Reserved for the class name and its stereotype
ü  Class names can be qualified to show the package that they belong to in the form of

Owner::ClassName.
ü  Commonly used stereotypes include:

§  <<interface>>
–  Used to model interfaces.

§  <<utility>>
–  Used to model static classes.

Ø  Attribute compartment
ü  Reserved for the class’ attribute specification.

§  Including name, type, visibility, etc.

Ø  Operation compartment
ü  Reserved for the class’ operations specification.

§  Including name, return type, parameters, visibility, etc.

Ø  Everything specified in the UML class can be directly translated to code… let’s
see an example in the next slide…

9/17/16 Software Engineering Design: Theory and Practice 29

ClassName
<<Class Stereotype>>

+publicAttribute: int

-privateMethod(param: int): void
#protectedMethod(): int
+abstractMethod(): void
+publicStaticMethod(): void

UML CLASS DIAGRAM

Ø  Example of the forward engineering of a UML class to C++ and Java.

9/17/16 Software Engineering Design: Theory and Practice 30

SampleClass

-attribute: int

+operation1(): void
-operation2(): void

Code generated by free
open source Star UML

tool.

Important:
Notice how the modeled visibility {-, +}
next to attribute and operations
translate to code!

Attribute name, type, and visibility

UML CLASS DIAGRAM

Ø  In the previous slide, we presented two different types of UML visibility
specification.
ü  Visibility types specify policies on how attributes and operations are accessed

by clients.
ü  Common types of visibility are presented below.

9/17/16 Software Engineering Design: Theory and Practice 31

Visibility	 Symbol	 Descrip0on	

Public	 +	 Allows	access	to	external	clients.	

Private	 -	 Prevents	access	to	external	clients.		Accessible	only	internally	within	the	class.	

Protected	 #	 Allows	access	internally	within	the	class	and	to	derived	classes.	

Package	 ~	 Allows	access	to	enEEes	within	the	same	package.	

Important:
Visibility allows us to apply the
Encapsulation principle in our
designs!

UML CLASS DIAGRAM

Ø  UML relationships applied to the class classifier

9/17/16 Software Engineering Design: Theory and Practice 32

Important:
All of these relationships
mean something in code, so
that when you define these
relationships, you’re actually
beginning to structure your
code!

This is how a
sample class

diagram
would look

like

ClassA ClassBDirected Association

ClassA ClassBAggregation

ClassA ClassBAssociation

ClassA ClassBComposition

ClassA ClassBGeneralization

ClassA ClassBRealization

ClassA ClassBDependency

UML CLASS DIAGRAM – CODE GENERATION

9/17/16 Software Engineering Design: Theory and Practice 33

Notice that dependency
on Class6 is not

generated!

Model and Code generated by
commercial Enterprise Architect

UML tool.

Important:
Code generation varies from tool-to-
tool. Some need to be configured
appropriately to be useful in
production environments!

+	

+	
-	

C++ code generation of
model

 Java code generation of same model

UML DEPLOYMENT DIAGRAMS

Ø  Deployment diagrams are structural diagrams used to model the physical realization of
software systems.
ü  They provide the means to visualize and evaluate the environment in which software executes.
ü  They model nodes and the interfaces between them.

§  A Node is a computational resource that host software artifacts for execution.
§  As seen before, in UML, a Node is a named classifier modeled as a cube.

Ø  Deployment diagrams also include artifact and components and depicts how all of these work
together from a system deployment perspective.

Ø  UML relationships applied to the these classifier is presented below.

9/17/16 Software Engineering Design: Theory and Practice 34

NodeA

ArtifactA
<<artifact>>

NodeB
Association

ArtifactB
<<artifact>>

<<deploy>>
NodeB

ComponentA
<<component>><<manifest>>

ArtifactA
<<artifact>>

ArtifactA
<<artifact>> Dependency

Important:
A UML Artifact is a classifier used to
model physical units of information
that form part of the software
system, such as binary executable
files, configuration files, scripts, .jar
files, .dll, etc.

ArtifactA is
deployed on
NodeB

There is a
communication path
between Nodes A and B

ArtifactA embodies
ComponentA

 ArtifactA depends on ArtifactB

UML DEPLOYMENT DIAGRAMS

Ø  Example of UML Deployment Diagram.

9/17/16 Software Engineering Design: Theory and Practice 35

EmbeddedClientComputer

ClientCollectionSystem.exe
<<artifact>>

ClientCollectionSystem
<<component>>

<<manifest>>

ApplicationServer

SensorNode VideoNode

<<ZigBee>>
1

1..*
<<TCP/IP>>

1

1

MobilePhone

<<USB>>

11

<<TCP/IP>>
1..*

1

<<TCP/IP>>

10..*

<<TCP/IP>>

1 1

ServerMonitorSystem
<<component>>

<<deploy>>

MonitorSystem.exe
<<artifact>>

<<manifest>>

Wireless 3G Card

DatabaseServer

WHAT’S NEXT…

Ø  In the next session we will discuss how UML classifiers, relationships, and
enhancement features can be used to create behavioral diagrams.
Specifically, we will focus on:
ü  UML behavioral modeling

§  What is behavioral modeling?
§  Why is it important?

ü  Use case diagrams
§  Actors
§  System boundary
§  Common relationships

ü  Interaction diagrams
§  Communication diagrams
§  Sequence diagrams
§  Concurrency modeling

ü  Summary and conclusion of UML coverage

9/17/16 Software Engineering Design: Theory and Practice 36

Software Engineering Design: Theory and Practice
by Carlos E. Otero

Slides copyright © 2012 by Carlos E. Otero

For non-profit educational use only

May be reproduced only for student use when used in conjunction with Software Engineering Design:
Theory and Practice. Any other reproduction or use is prohibited without the express written
permission of the author.

All copyright information must appear if these slides are posted on a website for student use.

CHAPTER 2: SOFTWARE DESIGN WITH THE
UNIFIED MODELING LANGUAGE

SESSION III: UML BEHAVIORAL MODELING

9/17/16 37 Software Engineering Design: Theory and Practice

SESSION’S AGENDA

Ø  UML behavioral modeling
ü  What is behavioral modeling?
ü  Why is it important?

Ø  Use case diagrams
ü  Actors
ü  System boundary
ü  Common relationships

Ø  Interaction diagrams
ü  Communication diagrams
ü  Sequence diagrams
ü  Concurrency modeling

Ø  Summary and conclusion of UML coverage

9/17/16 Software Engineering Design: Theory and Practice 38

UML BEHAVIORAL MODELING

Ø  In the previous session, we presented structural modeling and made a case for how it is
essential to evaluate, characterize, and visualize the structural design of software systems
from various perspective. Specifically, we presented:
ü  Logical structural designs

§  At different levels of abstraction
ü  Physical structural designs

Ø  We also presented (very vaguely) the concept of Quality and discussed how structural
modeling can be used to evaluate and access quality in terms of some quality goals, such
as reusability and maintainability.

Ø  Although structural designs work well for evaluating some quality attributes of systems,
they are inadequate for others, such as performance.
ü  Structural designs also provide poor techniques for evaluating the dynamic aspects and

interactions of systems.

Ø  UML provides several diagrams to model and reason about the dynamic aspects and of
systems.
ü  These can be used to model almost any behavioral aspect of modern software systems
ü  They are used in many practical development projects.

9/17/16 Software Engineering Design: Theory and Practice 39

UML BEHAVIORAL MODELING

Ø  From previous sessions, we learned that the most common UML behavioral diagrams
include:

Ø  Other behavioral diagrams include:
ü  Timing diagram
ü  Interaction overview diagram

9/17/16 Software Engineering Design: Theory and Practice 40

Behavioral	Diagram	 Descrip0on	

Use	Case	Diagram	 Used	to	capture,	specify,	and	visualize	required	system	behavior	.	

Sequence	Diagram	 Used	to	capture,	specify,	and	visualize	system	interacEons	with	emphasis	on	the	Eme-order	sequence	of	
messages	exchanged.	

CommunicaEon	
Diagram	

Used	to	capture,	specify,	and	visualize	system	interacEons	with	emphasis	on	the	structural	order	of	enEEes	
parEcipaEng	in	the	message	exchange.	

State	Machine	Diagram	 Used	to	capture,	specify,	and	visualize	system	behavior	as	a	set	of	discrete	states	and	the	transiEons	
between	them.	

AcEvity	Diagram	 Used	to	capture,	specify,	and	visualize	system	behavior;	provide	mechanisms	for	modeling	that	includes	
condiEonal	statements,	repeEEon,	concurrency,	and	parallel	execuEon	and	thus	can	be	used	at	many	
different	levels	of	abstracEon,	from	modeling	business	work	flows	to	code.	

UML BEHAVIORAL MODELING – USE CASE DIAGRAM

Ø  Use case diagram
ü  Behavioral diagram used to capture, specify, and visualize required system behavior.

§  Required system behavior are just requirements!
ü  The main elements of use case diagrams are actors, use cases, and the relationships

connecting them together.

Ø  Actors are entities used to model users or other systems that interact with the
system being modeled (i.e., the subject). Examples include:
ü  Operators
ü  Sensors
ü  Client computers

Ø  Use cases are entities used in use case diagrams to specify the required
behavior of a system.
ü  They provide the means to capture, model, and visualize the systems’ required

behavior.
ü  They do this without any knowledge of programming technology, so that different

stakeholders with different backgrounds can reason about the system.

9/17/16 Software Engineering Design: Theory and Practice 41

UML BEHAVIORAL MODELING – USE CASE DIAGRAM

Ø  Common UML relationships applied in use case diagrams.

9/17/16 Software Engineering Design: Theory and Practice 42

Actor

Use Case A Use Case B
Generalization

Use Case A Use Case B
<<extend>>

Use Case A Use Case B
<<include>>

Use Case B
Association

Named actor
Actor and use case communicate, for
example, actor executes use case.

Use case A requires the
behavior from use case

B

Use case A extends the
behavior of use case B. Use

case B may be executed when
use case A is executed, but it

is not mandatory.

Use case A is a
specialization of use

case B

Use case B MUST be
executed when use case A

is executed!

Important:
include relationship specifies a mandatory inclusion
Extend relationship specifies an optional inclusion

UML BEHAVIORAL MODELING – USE CASE DIAGRAM

9/17/16 Software Engineering Design: Theory and Practice 43

Search Product

Update Product

Update Software

Display Location

Receive Notification

Operator Server

Client System

Optional System
Boundary to model the

Subject
The Operator interacts

with the Client System to
search for products,

update products, update
software, display

location, and receive
notifications.

The Server also interacts
with the Client System

This models the behavior of a client system. An Operator and Server
both interact with the Client System, denoted by the System

Boundary.

UML BEHAVIORAL MODELING – USE CASE DIAGRAM

9/17/16 Software Engineering Design: Theory and Practice 44

User

Registers

Drop Course

Search Courses

Cancel Course

Administrator

Authenticate User

<<extend>>

<<include>>

Course Management System

Actor interacts with the
system.

Optional System
Boundary to model the

Subject

A specialized user

You cannot cancel a course
unless your identity has been

authenticated!

To cancel a course, you
may want to search for the

course

Alternatively, you may
want to enter the
course number
directly without
searching for it.

UML BEHAVIORAL MODELING – INTERACTION DIAGRAMS

Ø  Interaction diagrams can be used to model complex interactions between design units
together with the messages exchanges and the type of the exchange.

Ø  Interaction diagrams can be used at the architectural level.
ü  For example, they allow us to model interaction among software components.

Ø  Interaction diagrams can be used at the detailed design level.
ü  For example, they allow us to model interactions among objects at run-time

Ø  Interaction diagrams can be used at the construction design level.
ü  For example, they allow us to model conditional and repetition structures.

Ø  In many situations, interaction diagrams reveal many important issues related to the
quality of the system.

Ø  Two types of interaction diagrams are:
ü  Communication diagrams
ü  Sequence diagrams

9/17/16 Software Engineering Design: Theory and Practice 45

UML BEHAVIORAL MODELING – COMMUNICATION DIAGRAM

Ø  Communication diagrams
ü  Behavioral diagrams used to capture, specify, evaluate, and visualize system

interactions with emphasis on the structural order of entities participating in the
message exchange.

Ø  When using communication diagrams, entities can be modeled as
ü  Objects, representing instances of classes and components.
ü  Roles, representing a prototypical instance

Ø  Both objects and roles can be connected to model the exchange of messages
using:
ü  Links to connect objects
ü  Connectors to connect roles
ü  Both links and connectors look exactly alike, as a solid line. They only differ

semantically.

Ø  The type of message exchanges include:
ü  Asynchronous
ü  Synchronous

9/17/16 Software Engineering Design: Theory and Practice 46

UML BEHAVIORAL MODELING – COMMUNICATION DIAGRAM

9/17/16 Software Engineering Design: Theory and Practice 47

Important:
Synchronous and Asynchronous
messaging are are important
when reasoning about
concurrency issues!

FileSystemMgr Role.

EventLogger
Object.

In synchronous
messaging, sender and
receiver work in lock-

step to achieve an
operation.

In asynchronous messaging,
sender continues execution

while receiver completes
operation independent from

the sender

Asynchronous
messaging

between two run-
time object
instances

UML BEHAVIORAL MODELING – COMMUNICATION DIAGRAM

9/17/16 Software Engineering Design: Theory and Practice 48

Communication diagram of
objects at run-time using
synchronous messaging 1. The “cm” object of type CommMgr

sends a message to another object of
type AppMgr.

2. The “am” object decodes the
message. If finds out that the

message commands a file system
format operation

3. The “am” object sends a message to the
“el” object to log an event indicating the

receipt of the message

4. The “am” object sends a
message to the “fs” object to
begin erasing the data from

the file system 5. Once complete, the “fs” object sends a
message to the “el” object to log an event

indicating success

Given this model, can “cm” begin other
operations before the file system format is

complete?

UML BEHAVIORAL MODELING – SEQUENCE DIAGRAM

Ø  Sequence diagrams
Ø  Similar to Communication diagrams, but, they put emphasis on the time-order sequence

of messages exchanged.

9/17/16 Software Engineering Design: Theory and Practice 49

Objects

Lifeline

Activation
Bar

Optional modeling of return
message

UML BEHAVIORAL MODELING

9/17/16 Software Engineering Design: Theory and Practice 50

manager : SiteManager
<<process>>

location = client laptop

nodeOne : SensorNode
<<process>>

location = sensor node

serverMgr : ServerManager
<<process>>

location = server

nodeTwo : SensorNode
<<process>>

location = sensor node

systemMgr : SystemManager
<<process>>

location = client PC

1 : systemOn

2 : forwardCommand

3 : powerOn() 4 : powerOn()

5 : forwardStatus

6 : postResults

Interprocess Communication

activeObject : ActiveClass
<<stereotype>>

taggedValue = value

Active Object

()	

()	

()	

()	

Ø  Finally, a word about concurrency…
We use Active Objects to model

independent flows of control, e.g.,
processes.

We use Tagged Values to specify the
location of the running processes.

Asynchronous
messaging

We use stereotype <<process>> to
specify these are actual run-time

processes.

Synchronous
messaging

SiteManager works in lock-
step with nodeOne. Once

nodeOn is powered on, then
SiteManager initiates power

on sequence of nodeTwo

SystemManager process,
located on client PC does not

have to wait until Sensor
Nodes are powered on to
begin doing other work

WHAT’S NEXT…

Ø  Now that we are equipped with the necessary UML tools, we can now
explore how to used them to design a software architecture.

Ø  In the next session, we will present Software Architecture in more detail,
including :
ü  Understanding the role of software architecture within the design phase.
ü  Explore in more detail the architectural tasks and problem-solving during

architecture.

9/17/16 Software Engineering Design: Theory and Practice 51

