
Software Design

"You can use an eraser on the
drafting table or a sledgehammer
on the construction site.“

--Frank Lloyd Wright

Organization of Topics
• Introduction

– Opportunities for Design
– What is Software Design?
– The Importance of Managing Complexity

• What makes design challenging
– Designs are Abstractions of the Anticipated

Implementation
– Design is a Wicked Problem

• Design Concepts
– Design is a Universal Activity
– Design Occurs at Different Levels
– Characteristics of Software Design
– The Benefits of Good Design

• A Generic Design Process
• Design Methods
• Design Techniques and Tactics

– Step-Wise Refinement
– Look for Real-World Objects
– Noun-Verb Analysis
– CRC Cards
– Test-Driven Development

• Core Design Principles and Heuristics
• Modularity
• Information hiding
• Encapsulation
• Abstraction
• Coupling and Cohesion

• Supporting Design Principles and
Heuristics

• Don’t Repeat Yourself (DRY)
• Principle of Least Astonishment/Surprise

(POLA)
• Single Responsibility Principle (SRP)
• Open-Closed Principle (OCP)
• Interface segregation principle (ISP)
• Dependency Inversion Principle (DIP)
• Separation of Concerns
• Consider Brute Force

• Object-Oriented Design Principles and
Heuristics

• Generalization and Specialization
• Principle of Substitution (aka Liskov

substitution principle)
• Favor Composition Over Inheritance
• Law of Demeter

Opportunities for Design

What is Software Design?

• Design bridges
that gap between
knowing what is
needed (software
requirements
specification) to
entering the code
that makes it work
(the construction
phase).

• Design is both a
verb and a noun.

What is Software Design? [cont]

• During the design phase, software engineers
apply their knowledge of the problem domain
and implementation technologies in order to
translate system specifications into plans for
the technical implementation of the software.

• The resulting design expresses the overall
structure and organization of the planned
implementation. It captures the essence of the
solution independent of any implementation
language.

There is a famous cartoon showing
two professors at a chalkboard
examining a proof that includes the
step “then a miracle occurs”.

 At times it seems like this is the most
that can be hoped for during software
design.

Relying on miracles or exceptional ingenuity isn’t a reliable (predictable
or repeatable) way of arriving at a design.

The design process can be made more systematic and predictable
through the application of methods, techniques and patterns, all applied
according to principles and heuristics.

Importance of Managing Complexity

• Poorly designed programs are difficult to understand and
modify.

• The larger the program, the more pronounced are the
consequences of poor design.

Cost of adding the ith feature to a well-designed and poorly designed program

Two Types of Complexity in Software

• To better understand how good design can
minimize technical complexity, it’s helpful to
distinguish between two major types of complexity
in software:
o Essential complexities – complexities that are inherent

in the problem.
o Accidental/incidental complexities – complexities that

are artifacts of the solution.
• The total amount of complexity in a software solution is:

Essential Complexities + Accidental complexities

Design: An Antidote to Complexity

• Design is the primary tool for managing essential
and accidental complexities in software.

• Good design doesn’t reduce the total amount of
essential complexity in a solution but it will
reduce the amount of complexity that a
programmer has to deal with at any one time.

• A good design will manage essential complexities
inherent in the problem without adding to
accidental complexities consequential to the
solution.

Design Techniques for Dealing
with Software Complexity

• Modularity – subdivide the solution into smaller
easier to manage components. (divide and conquer)

• Information Hiding – hide details and complexity
behind simple interfaces

Additional Techniques for Dealing
with Complexity

• Abstraction – use abstractions to suppress details
in places where they are unnecessary.

• Hierarchical Organization – larger components
may be composed of smaller components.
Examples: a complex UI control such as tree
control is a hierarchical organization of more
primitive UI controls. A book outline represents
the hierarchical organization of ideas.

Why Design is Hard

• Design is difficult because design is an
abstraction of the solution which has yet to
be created

Design is a wicked problem

• The term wicked problem was first used to describe
problems in social planning but engineers have recognized
it aptly describes some of the problems they face as well.

• A wicked problem is one that can only be clearly defined
by solving it.

• Need two solutions. The first to define the problem, and
the second to solve it in the most efficient way.

• Fred Brooks could have been talking about wicked
problems when he advised: “Plan to throw one away; you
will anyhow.”

Design is a Universal Activity

• Any product that is an aggregate of more
primitive elements, can benefit from the
activity of design.

Design Occurs at Different Levels

Standard Levels of Design

Characteristics of Software Design

• Non-deterministic – A deterministic process is one
that produces the same output given the same
inputs. Design is non-deterministic. No two
designers or design processes are likely to produce
the same output.

• Heuristic – because design is non-deterministic
design techniques tend to rely on heuristics and
rules-of-thumb rather than repeatable processes.

• Emergent – the final design evolves from
experience and feedback. Design is an iterative
and incremental process where a complex system
arises out of relatively simple interactions.

The Evolution of Designs

• Design as a single step in the software life
cycle is somewhat idealized.

• More often the design process is iterative
and incremental.

• Designs tend to evolve over time based on
experience with their implementation.

Elaboration and Transformation

The Benefits of Good Design

• Good design reduces software complexity which makes the
software easier to understand and modify. This facilitates
rapid development during a project and provides the
foundation for future maintenance and continued system
evolution.

• It enables reuse. Good design makes it easier to reuse code.
• It improves software quality. Good design exposes defects

and makes it easier to test the software.
• Complexity is the root cause of other problems such as

security. A program that is difficult to understand is more
likely to be vulnerable to exploits than one that is simpler.

A Generic Design Process
1. Understand the problem (software requirements).
2. Construct a “black-box” model of solution (system specification). System

specifications are typically represented with use cases (especially when
doing OOD).

3. Look for existing solutions (e.g. architecture and design patterns) that cover
some or all of the software design problems identified.

4. Design not complete? Consider using one or more design techniques to
discover missing design elements

– Noun-verb analysis, CRC Cards, step-wise refinement, etc.
– Take final analysis model and pronounce a first-draft design (solution)

model
5. Consider building prototypes
6. Document and review design
7. Iterate over solution (Refactor) (Evolve the design until it meets functional

requirements and maximizes non-functional requirements)

Inputs to the design process

• User requirements and system specification
(including any constraints on design and
implementation options)

• Domain knowledge (For example, if it’s a
healthcare application the designer will need some
knowledge of healthcare terms and concepts.)

• Implementation knowledge (capabilities and
limitations of eventual execution environment)

Desirable Internal Design Characteristics
• Minimal complexity – Keep it simple. Maybe you don’t need high

levels of generality.
• Loose coupling – minimize dependencies between modules
• Ease of maintenance – Your code will be read more often then it is

written.
• Extensibility – Design for today but with an eye toward the future.

Note, this characteristic can be in conflict with “minimize complexity”.
Engineering is about balancing conflicting objectives.

• Reusability – reuse is a hallmark of a mature engineering discipline
• Portability – works or can easily be made to work in other

environments
• High fan-in on a few utility-type modules and low-to-medium fan-out

on all modules. High fan-out is typically associated with high
complexity.

• Leanness – when in doubt, leave it out. The cost of adding another line
of code is much more than the few minutes it takes to type.

• Stratification – Layered. Even if the whole system doesn’t follow the
layered architecture style, individual components can.

• Standard techniques – sometimes it’s good to be a conformist! Boring
is good. Production code is not the place to try out experimental
techniques.

That’s not the way I would have done it is
not a criteria for evaluating a design

• When evaluating a design some designers have a tendency
to dismiss a design simply because it’s not what they
would have done.

• The feeling could be a sign that some underlying design
principle was violated or it could simply be a difference in
personal preference.

• If a design is not what you would have done, look for
principles of good design that have been violated. If you
can’t find any, that suggests the design is OK (or you have
discovered a new principle of good design), just not what
you would have done. You can still offer an alternate
design for consideration, but any criticism would be
inappropriate.

Attributes of a design

• Static structure of system (components and
their relationships)

• Interactions between components
• System data and its structure (database

scheme)
• Physical packaging and distribution of

components
• Algorithms

Design Methods

• Design methods provide a procedural description
for obtaining a design solution

• Most methods include:
– A representation part or notation for representing

problem and intermediate forms of the design solution
(usually from different view points). Examples: UML,
pseudocode.

– Process part or procedures to following in developing
the solution

– Heuristics – guidelines and best practices for making
decisions and assessing intermediate and final results.
Remember, design isn’t deterministic.

Design – Representational Forms

• Class diagrams for static structure
• Sequence diagrams for dynamic behavior
• Textual and visual form of use cases are used to

create and validate analysis and design
representational forms

• Other UML models are also useful for
understanding the problem and conceptualizing a
solution (state machine diagram, activity diagram,
etc.)

Design Representational Forms

• Offers particular abstractions of the system from a
certain perspective (viewpoint)

• Types of representational forms
– Visual models
– Text
– Pseudocode

• Design representations: Functional, static
structural, dynamic behavioral, data modeling
(database schema)

Evolution of Design Methods

• Patterns play an important role in the design
methods of today

Methods and Patterns

• Methods and patterns are the principle
techniques for dealing with the challenges
of design

• They are useful for:
– Creating a design
– Documenting and communicating a design
– Transferring design knowledge and experience

between practitioners

Patterns
• A design pattern is a reusable solution to a

commonly occurring design problem
• Design patterns are adapted for the unique

characteristics of the particular problem
• Just as there are levels of design, there are levels

of design patterns:
– Architecture Styles/Patterns
– Design Patterns
– Programming Idioms

Design Methods

• Generic
– Structured System Analysis and Structured

Design
– Object-Oriented Analysis and Design

• Specific
– Jackson System Development (JSD)
– DSDM

Structured Analysis and Design
• General representational forms: data flow diagram (DFD)

and structure chart
• General design process: (1) model the system processes

and information flow with a DFD, (2) transform the DFD
into a hierarchical set of subprograms

• General heuristics: (1) use concepts of coupling and
cohesion when deciding how to apportion responsibility
among subprograms, (2) try to identify a central transform
in the DFD (or create your own) such that all other
processes can be subordinate to this transform in the
resulting structure chart.

Design Strategies, Techniques
and Tactics

Design Strategies

• Look for real-world objects
• Top-Down Decomposition
• Bottom-Up Aggregation/Composition - start with

what you know the system needs to do. The API
you are using might dictate portions of the design.
If you aren’t completely familiar with the API,
bottom-up design might be the best place to start.

• Round-Trip Gestalt
• Organizational Influences on Design (More often

limited to architecture, Conway’s Law)

Top-Down vs Bottom-up Design

• Which approach is better (top-down or
bottom up) if the implementation
technologies are new (i.e. you have minimal
experience with the programming language
and/or environment)?

Look for Real World Objects
• Start with an object decomposition based on real-world

objects. You can start the design phase by promoting
analysis models to design models and evolve them as
solution models.

• The objects’ role in the real world will suggest certain
attributes and behaviors (operations).

• The “real-world” doesn’t necessarily imply tangibility. It
might be the virtual world of a game. For example, a
zombie qualifies as a “real world” object in a game.

Stepwise Refinement

• A problem is approached in stages. Similar
steps are followed during each stage, with
the only difference being the level of detail
involved.

• Variations on stepwise refinement:
– Top-down
– Bottom up
– Functional decomposition

Noun/Verb Analysis

• Classes and their associated behavior can be
discovered in the narration in the
requirements document that describes the
requirements of the system.

• A very general guideline is that nouns
indicate classes and verbs the operations on
classes.

CRC Cards

• CRC stands for
Class-Responsibility-Collaboration.

• CRC cards are a very effective low tech way
of identifying classes, responsibilities, and
collaborations between classes.

Core Design Principles and
Heuristics

The Importance of Managing Complexity

• Humans have a very limited capacity for dealing with
complexity directly.

• Findings from George Miller’s famous paper: “The
Magical Number Seven, Plus or Minus Two”
– Expose the average person to the same stimuli at different levels

(pitch, loudness, brightness, etc.) and he or she will be able to
discriminate between about 7 different values.

– The capacity of short-term memory is about 7 items. When given a
list of unrelated items, humans are about to recall about 7 of them.

• We can compensate for our limited cognitive abilities by
employing techniques such as chunking (modularity),
abstraction, information hiding, etc.

Modularity

• The goal of design is to partition the system into modules
and assign responsibility among the components in a way
that:
– High cohesion within modules, and
– Loose coupling between modules

• Modularity reduces the total complexity a programmer has
to deal with at any one time assuming:
1. Functions are assigned to modules in away that groups similar

functions together (Separation of Concerns), and
2. There are small, simple, well-defined interfaces between modules

(information hiding)
• The principles of cohesion and coupling are probably the

most important design principles for evaluating the
effectiveness of a design.

Coupling

• Coupling is the measure of dependency
between modules. A dependency exists
between two modules if a change in one
could require a change in the other.

• The degree of coupling between modules is
determined by:
– The number of interfaces between modules

(quantity), and
– Complexity of each interface (determined by

the type of communication) (quality)

Types of Coupling

• Content coupling (also known as Pathological
coupling)

• Common coupling
• Control coupling
• Stamp coupling
• Data coupling

Content Coupling

• One module directly references the contents
of another
1. One module modifies the local data or

instructions of another
2. One module refers to local data in another
3. One branches to a local label of another

Common Coupling

• Two or more modules connected via global
data.
1. One module writes/updates global data that

another module reads

Control Coupling

• One module determines the control flow
path of another. Example:

print(milesTraveled, displayMetricValues)
. . .
public void print(int miles, bool displayMetric) {
 if (displayMetric) {
 System.out.println(. . .);
 . . .
 else { . . .}
}

Stamp Coupling

• Passing a composite data structure to a
module that uses only part of it. Example:
passing a record with three fields to a
module that only needs the first two fields.

Data Coupling

• Modules that share data through parameters.

Coupling between CSS and JavaScript

• A well-designed web app modularizes
around:
– HTML files which specify data and semantics
– CSS rules which specify the look and

formatting of HTML data
– JavaScript which defines behavior/interactivity

of page
• Assume you have the following HTML and

CSS definitions.

• HTML:

• CSS:

• Output:

<!doctype html>
<html>
<head>
 <script type="text/javascript" src="base.js"></script>
 <link rel="stylesheet" href="default.css">
</head>
<body>
 <button onclick="highlight2()">Highlight</button>
 <button onclick="normal2()">Normal</button>
 <h1 id="title" class="NormalClass">CSS <--> JavaScript Coupling</h1>
</body>
</html>

.NormalClass {
 color:inherit;
 font-style:normal;
}

coupling-example.html

default.css

• Suppose you want to change the style of the
title in response to user action (clicking on a
button).

• This is behavior or action so it must be
handled with JavaScript.

• Evaluate the coupling of the following two
implementation options. Both have the same
behavior.

Option A

• JavaScript code modifies the style attribute
of HTML element.

function highlight() {
 document.getElementById("title").style.color="red";
 document.getElementById("title").style.fontStyle="italic";
}

function normal() {
 document.getElementById("title").style.color="inherit";
 document.getElementById("title").style.fontStyle="normal";
}

base.js

Option B
• JavaScript code modifies the class attribute

of HTML element.
function highlight() {
 document.getElementById("title").className = "HighlightClass";
}

function normal() {
 document.getElementById("title").className = "NormalClass";
}

base.js

.NormalClass {
 color:inherit;
 font-style:normal;
}

.HighlightClass {
 color:red;
 font-style:italic;
}

default.css

Cohesion

• Cohesion is a measure of how strongly
related the functions or responsibilities of a
module are.

• A module has high cohesion if all of its
elements are working towards the same
goal.

Cohesion and Coupling

• The best designs have high cohesion (also
called strong cohesion) within a module and
low coupling (also called weak coupling)
between modules.

Benefits of high cohesion and
low coupling

1. Modules are easier to read and understand.
2. Modules are easier to modify.
3. There is an increased potential for reuse
4. Modules are easier to develop and test.

Coupling and Cohesion Tend to
be Inversely Correlated

When Coupling is high, cohesion tends to be
low and vise versa.

Relationship between Coupling
and Cohesion

Abstraction
• Abstraction is a concept used to manage complexity
• An abstraction is a generalization of something too

complex to be dealt with in its entirety
• Abstraction is for humans not computers
• Abstraction is a technique we use to compensate for

the relatively puny capacity of our brains (when
compared to the enormous complexity in the world
around us)

• There aren’t enough neurons (or connections) in our
brain to process the rich detail around us during a
single moment in time

• Successful designers develop abstractions and
hierarchies of abstractions for complex entities and
move up and down this hierarchy with splendid ease

New York City Street

New York City Street

Form Consistent Abstractions

• “Abstraction is the ability to engage with a
concept while safely ignoring some of its details.”

• Base classes and interfaces are abstractions. i.e
UIComponent (any GUI toolkit), Mammal (classic
superclass when discussing OO design)

• The interface defined by a class is an abstraction
of what the class represents

• A procedure defines an abstraction of some
operation.

• “The principle benefit of abstraction is that it
allow you to ignore irrelevant details.”

This method is
more abstract

InputStream is an abstract class with several
concrete subclasses.

Information Hiding

• Information hiding is a design principle
• The information hidden can be data, data formats,

behavior, and more generally, design decisions
• When information is hidden there is an implied

separation between interface and implementation.
The information is hidden behind the interface

• Parnas encourages programmers to hide “difficult
design decisions or design decisions which are
likely to change”

• The clients of a module only need to be aware of
its interface. Implementation details should be
hidden

Information Hiding [Cont]

• Want to hide design and implementation
decisions—especially those likely/subject to
change.

• Information hiding implies encapsulation
and abstraction. You are hiding details
which creates an abstraction.

• When skillfully applied, information hiding
has the effect of hiding complexity.

Example 1: Evaluate the following
design in terms of information hiding

class PersistentData {
 public ResultSet read(string sql);
 // write returns the number of rows effected
 public int write(string sql);
}

Sample Client Code

PersistentData db = new PersistentData();
db.write(“UPDATE Employees SET Dependents = 2
 WHERE EmployeeID = 47”);

Example 1: Evaluate the following
design in terms of information hiding

class EmployeeGateway {
 public static EmployeeGateway find(int ID);
 public void setName(string name);
 public string getName();
 public void setDependents(int dependents);
 public int getDependents();
 // insert() returns ID of employee
 public int insert();
 public void update();
 public void delete();
}

Sample Client Code

EmployeeGateway e = EmployeeGateway.find(47);
e.setDependents(2);
e.update();

Example 2: Evaluate the following class
design in terms of information hiding

class Course {
 private Set students;

 public Set getStudents() {
 return students;
 }
 public void setStudents(Set s) {
 students = s;
 }
}

Example 2: Improved
Information Hiding

class Course {
 private Set students;

 public Set getStudents() {
 return Collections.
 unmodifiableSet(students);
 }
 public void addStudent(Student student) {
 students.add(student);
 }
 public void removeStudent(Student student) {
 students.remove(student);
 }
}

Why Practice Information Hiding?

• Hiding complexity – limiting the amount of
information you have to deal with at any one time

• Reducing dependencies on design and
implementation decisions to minimize the impact
of changes. (Avoid the ripple effect of changes.)

• “Large programs that use information hiding were
found …to be easier to modify—by a factor of
4—than programs that don’t.[Korson and
Vaishnavi 1986]

Encapsulation

• Encapsulation is an implementation
mechanism for enforcing information hiding
and abstractions.

• There is no clear widely accepted definition
of encapsulation. It can mean:
– A grouping together of related things (records,

arrays)
– A protected enclosure (object with private data

and/or methods)

Supporting Design Principles and
Heuristics

Don’t Repeat Yourself (DRY)

• In general, every piece of knowledge should have a single,
unambiguous, authoritative representation within a system.

• Most programmers will recognize this principle as it
applies to coding: you shouldn’t have duplicate code (e.g.
cutting and pasting code or its close cousin:
copy-paste-modify).

• More generally, it applies to documentation, test cases, test
plans, etc.

• Repeating yourself invites maintenance problems. You
have two or more locations that have to be kept
synchronized/consistent.

Principle of Least
Astonishment/Surprise (POLA)

• The POLA is probably more applicable during UI design, but is also
relevant during software design.

• In short, don’t surprise the user (UI design) or programmer (software
design) with unexpected behavior. Users and developers should be able
to rely on their intuition.

• Most web users expect clicking on the icon in the upper left-hand
corner of a web page will take them to the home page of the web site.
It would be a surprise if it did anything else.

• During software design use descriptive names for variables, methods
and classes. The name of a method should reflect what it does. The
name of a variable should reflect the use or meaning of the data it
holds.

• Putting business logic in a class called Settings would be a violation of
the POLA. Most programmers would expect a class called Settings to
contain constants only.

Separation of Concerns

• The functions, or more generally concerns, of a program
should be separate and distinct such that they may be dealt
with on an individual basis.

• Separation of concerns helps guide module formation.
Functions should be distributed among modules in a way
that minimizes interdependencies with other modules.

• Example: many web applications are structured around the
4-tier web architecture:
1. Presentation or UI
2. Business Logic
3. Data Access
4. Database (typically relational)

• Each layer encapsulates a related set of related functions.

Single Responsibility Principle (SRP)
• SRP is a subtle variation on the concept of cohesion.
• A cohesive module is one where all the elements of the module are

functionally related (separation of concerns).
• A module that conforms to the SRP is one that has a single reason to

change. The SRP defines a responsibility as a reason to change.
• Example: let’s say you had a custom UI control that also included code

needed to save it’s state when the app loses focus. If the UI control
doesn’t have any event handling code you could argue it is a good
example of separation of concerns. (It has one concern: display view.)
However, there are two reasons it might change: (1) view changes, (2)
change in storage method used to persist state.

Open-Closed Principle (OCP)
• Simply stated, the OCP says that modules (functions, classes,

etc) should be open for extension but closed for modification.
• Translation: it should be possible to extend the

function/behavior of a module without having to modify its
code.

• Example: Web browser plug-in architecture. You can add
support for a new media type without making major changes to
existing code.

OCP [Cont]

• Categories in Objective-C allow you to
extend the behavior of classes while
remaining compliant with the OCP. (You
can actually add methods to a class at
runtime.)

• Delegation is another pattern for designing a
class that is open for extension but closed
for modification.

OCP Using
Delegation

Final Classes can abide by O/C

Dependency Inversion Principle
(DIP)

• The DIP formalizes the general design
concept of Inversion of Control (IoC).

• Both are sometimes called the Hollywood
Principle because they describe a
phenomena where the reused component
embraces the Hollywood cliché, “Don't call
us, we'll call you.”

Dependency Inversion Principle (DIP)

• There are two parts to the DIP:
– High-level modules should not depend on low-level modules. Both

should depend on abstractions.
– Abstractions should not depend upon details. Details should

depend upon abstractions.
• Example: many class libraries have a factory method for

creating an XML parser. At runtime a specific
implementation of a parser is provided to application code
requesting a parser. High level modules depend on the
abstract interface to the parser. Detailed implementation of
the parser depends only on the abstract interface it
implements.

Example
Imagine a programming language, let’s call it Java, that
didn’t want to implement an XML parser but instead
wanted to make community-written parsers available to
programmers. One option is to ask the community to
submit parsing classes and then make these classes
available to programmers. Programmers would write
code that looked like:

IBMParser p = new IBMParser();
p.parse(inputStream);

The obvious problem with this is the dependency
between client code and utility code. The
consequences are a little more severe since it is a class
from a outside source, but this type of dependency is
common between client code and utility classes.

Example [Cont]
Another option is to define an abstract base class for XML parsers, let’s
call it DocumentBuilder, and have vendors implement their parsers as
subclasses of this abstract base class. The important point is this abstract
class is owned by the language designers. The code supplied by XML
parser vendors is dependent on this abstract class.
With this new arrangement, the dependency is reversed or inverted.

Inversion of Control and
Frameworks

• Much of programming today consists of extending
existing frameworks rather than writing traditional
procedural programs that retain responsibility for
the control flow of an application.

• With traditional procedural programming, control
is passed from the operating system to the main
entry point of the program. Control may pass
temporarily to library subroutines, but the main
program has complete control and sole
responsibility for the sequence of activities that
comprise the application.

Frameworks

• Programming with frameworks inverts the locus of control.
The main thread of control resides in the framework rather
than your code.

• Your code is hooked into the framework and called by the
framework as needed.

• With procedural programming, every routine you write
(except the main entry point) is called from your code.
When extending a framework, many of the routines you
write are only called by the framework. At first it might
seem strange to have routines in your code with no
apparent caller.

Program to an interface, not an
implementation

• There are considerations for the client and service.
ServiceClient

interface ILogger {
 void log(String);
}

abstract class ALogger {
 abstract void log(String);
}

class Logger {
 void log(String);
}

f1(ILogger l);

f2(ALogger l);

f3(Logger l);

Interface segregation principle (ISP)

• In short, the message of the ISP is: avoid “fat” interfaces.
An interface is considered “fat” if it attracts clients
interested in only a portion of the methods offered by the
interface and different clients are interested in different
portions of the interface.

Interface segregation principle (Cont.)

• The suggested alternative to “fat” interfaces,
is to define multiple “skinny” interfaces
each with a small group of methods that
appeal to different classes of clients.

• Interfaces should be cohesive, that is,
focused on one thing.

• Clients should not be forced to implement
or depend on portions of an interface they
don’t use

Example
• Java has two interfaces for mouse events, one for

common mouse events (MouseListener) and one
for motion events (MouseMotionListener).
Grouping all events into one interface would have
violated the ISP.

interface MouseListener {
 void mouseClicked(MouseEvent e);
 void mousePressed(MouseEvent e);
 void mouseReleased(MouseEvent e);
 void mouseEntered(MouseEvent e);
 void mouseExited(MouseEvent e);
}

interface MouseMotionListener {
 void mouseDragged(MouseEvent e);
 void mouseMoved(MouseEvent e);
}

SOLID Principles of
Object-Oriented Design

• S – Single responsibility principle
• O – Open/closed principle
• L – Liskov substitution principle
• I – Interface segregation principle
• D – Dependency inversion principle

Consider Design by Contract

• Formalize class contracts.
• You an define the services of a routine in

terms of pre- and post-conditions. This
makes it very clear what to expect.

Try Design for Testing

• Create a test-friendly design
• A test-friendly module is likely to exhibit

other important design characteristics.
• Example: you would avoid circular

dependencies. Business logic will be better
isolated from UI code if you have to test it
separately from the UI

Don’t overlook brute force as an option

• Sometimes its better to use an inelegant
design if the cost of a better design is
prohibitive.

• You can also encapsulate it behind a
well-designed interface.

Consider Experimental
Prototyping

• “Sometimes you can’t really know whether a
design will work until you better understand some
implementation detail.”

• SM recommends starting with a specific question
that you then answer with by writing the “absolute
minimum amount of throwaway code.”

• Need to be disciplined about how you go about
experimental prototyping and how you use the
results. There is a strong temptation to start
writing production code.

API Design and Use

Stop here

Design Knowledge and Skills

• Ability to understand and use design methods,
patterns, principles, heuristics and techniques. This
knowledge is useful for:
– Creating designs
– Evaluating or assessing designs

• Ability to communicate designs and design ideas
– Architect to programmer (communicate implementation

specs)
– Among colleagues (propose a design)
– Among practitioners (share experience and expertise)

Design Qualities

• Fitness for purpose. Satisfies product requirements
• Reliability
• Robustness
• Efficiency
• Usability
• Maintainability
• Evolvability
• Reusability

References

• How to Design a Good API and Why it
Matters, ACM.

• http://www.possibility.com/Cpp/CppCoding
Standard.html [read later]

http://www.possibility.com/Cpp/CppCodingStandard.html
http://www.possibility.com/Cpp/CppCodingStandard.html

Common Subsystems

• Business rules
• UI
• Database access – having a data access component

allows the business logic and other components to
deal with data in the form or at the level of
abstraction as it exists in the problem domain. The
data access layer isolates the rest of the program
from the details of how the data is actually stored.
Very few business people view their data in terms
of tables and relationships.

• System dependencies – isolate hardware and other
environmental dependencies.

Anticipate Change

• Start during requirements by documenting
potential changes and their likelihood.

• Areas of code likely to change should be isolated.
(e.g. hidden in a class.)

• Architect around stable ideas. Avoid putting
volatile ideas in interfaces.

• Anticipating changes is not the same as designing
ahead. Anticipating change guides design
decisions. It doesn’t justify new code that’s not
needed at the moment.

Areas Most Likely To Change

• Business rules
• Hardware dependencies – keyboard,

controller, file system.
• Input / Output
• Difficult areas of code – sections of code

done poorly are likely to change in the
future.

• Data-size Constraints

Divide and Conquer

• Even the best minds can’t hope to fully understand
any but the most trivial software programs. They
shouldn’t have to.

• A good design is one that allows an individual
with average capabilities to fully understand the
program by looking at it in pieces.

• “The goal of all software design techniques is to
break a complicated problem into simple pieces.”

• You should be able to focus on one module nearly
independently of others. (Loose Coupling)

Designers often have to deal with
competing priorities

• Performance versus Readability/Maintainability
• Reusability/Extensibility versus understandability
• <All quality attributers> versus Cost & Schedule
• Game programmers often trade understandability,

maintainability, <just about everything else> for
performance and time-to-market.

• Priorities drive tradeoff decisions
• The best solutions balance competing priorities

References

Kinds of Coupling

• Simple data-parameter coupling – passing
primitive data types: f(int,float). No global data.

• Simple object coupling – a module instantiates
another object.

• Object-parameter coupling – one module passes
another module an object rather than a primitive
type: f(SomeClass). Higher coupling than
simple-data-parameter

• Semantic coupling – one module makes use of
semantic information about another module.

Semantic Coupling
• Semantic coupling is depending on knowledge of how

something is observed to work. Things are a little better if
how it works is a documented part of the interface or
behavior.

• Examples:
– Module1 passes a control flag to module2. The control flag affects

processing in module2. Module1 makes assumptions about internal
workings of module2.

– Module2 uses global data after it has been modified by Module1.
– You know you are suppose to call initialize() before calling f() but

you use special knowledge of the class to conclude that in some
cases you can skip calling initialize() before calling f().

