LA

Moumita Asad - - (e
IT, DU

Program Comprehension

- the process of acquiring knowledge
about a computer program

- the precondition of performing any
maintenance related activities

- consumes more than half of the
maintenance resources i

Rugaber, S. (1995). Program comprehension. Encyclopedia of Computer Science and Technology,
35(20), 341-368.

Aims of Program Comprehension

- The ultimate purpose of comprehending programs is to be able successfully to
implement requested changes.

- This entails acquiring information about following aspects of a system:
o Problem domain

o Execution effect

o Cause-effect relation

o Product-environment relation
o Decision-support features

Problem Domain

- To make change or simply to estimate the resource required for a maintenance task,
knowledge of the problem domain in general and the sub-problems in particular is

essential to direct maintenance personnel in the choice of suitable algorithms,
methodologies and tools

- Information can be obtained from various sources - the system documentation, end-
users, or the program source code

Execution Effect

- At a high level of abstraction, the maintenance personnel need to know what results
the program will produce for a given input without necessarily knowing which
program units contributed to the overall result or how the result was accomplished

- At a low level of abstraction, they need to know the results that individual program
units will produce on execution

- Knowledge of data flow, control flow and algorithmic patterns can facilitate the
accomplishment of these goals

- During maintenance, this information can assist the maintenance personnel to
determine whether an implemented change achieved the desired effect or not

Cause-Effect Relation

- It allows the maintenance personnel to reason about how components of a software
product interact during execution

- It enables a programmer to predict the scope of a change and any knock-on effect
that may arise from the change

- The cause-effect relation can be used to trace the flow of information through the
program. The point in the program where there is an unusual interruption of this
flow may signal the source of a bug

Product-Environment Relation

- A product is a software system. An environment is the totality of all conditions and
influences which act from outside upon the product, e.g., business rules,
government regulations, work patterns, software and hardware operating platforms

- This knowledge can be used to predict how changes in these elements will affect
the product in general and the underlying programs in particular

Decision-Support Features

- Software product attributes such as complexity and maintainability are examples
that can guide maintenance personnel in technical and management decision-
making processes like decision making, budgeting and resource allocation

o Measures of the complexity of the system can be used to determine which components of
the system require more resource for testing

o The maintainability of the system may be used as an indicator of its quality

Cognition Models for Program
Comprehension

- Letovsky model

- Shneiderman and Mayer model

- Brooks model

- Soloway, Adelson, and Ehrlich model (top-down model)
- Pennington model (bottom-up model)

- Integrated metamodel

Letovsky Model

1. Knowledge base

Programming expertise
Goals

Plans

Problem domain

Rules of discourse

5. Dangling purpose unit

-

—

1. Assimilaﬁun\

process }

\ (top-down or
\ bottom-up)

~— P

T

3. Mental representation layers

1. Specification
2. Implementation
3. Annotation

2. External representations

Documentation
Code
Manuals

Shneiderman and Mayer Model

Internal semantics
| High
P _ Short term _
rogram | memory - |
Low

|

Knowledge (Long term memory)
High
-
I C
Low Prolog

Semantic knowledge Syntactic knowledge

Brooks Model

Problem domain
knowledge

Programming
domain knowledge

v /

| Match

-

Intermediate
domain knowledge

Source code +
internal and external
documentations

7

{(Mental model)
Hierarchy of primary and subsidiary hypotheses

Soloway, Adelson, and Ehrlich
Model

Rules of discourse

T T
- “

.f’/Understanding N .
/ process: A\ Programming plans
External representations]
(documents) Matching ! | ‘Ch“"k‘ Chunk
\ documentsto /
N palns S “—
Y

Internal representation
Current mental representtaion of program
(Plans)

Pennington Model

External
reprosentations

(Program code)

i
.. beacons V4
d ™
k!
I|
I|
\ s
"/
Texthase
Meatal . —* (Finzl mentzl
represemtation model)
L A
|'I Cross-reference
I'.I‘ m [
N y,

Situation model

= (Fingl rmental

Integrated Metamodel

Top-down model
Program model Siination model
Documents and Documents and
code code
beacons beacons
i a a\] l,."f_ %.-_
| Read /, | Read |
e L .\\. _ .‘/
A [
. J_r' I\ .,
-~ i f A o s
/ Mawh / kY /' Match
f '\ f b1
| comprehensinn] S Top-dowa Il\mpchnmn |
' process J/ structures , process S
4 . *,
. A Jf-ﬁhnsrmmlﬂspllm;k._ -~
T / -,'Iku]r.s ofd.bur:ursa_l,. \ T Fram
i) ! 1)
ol ""._ _..-" Y From program model §
Sheri-lerm /! \ ,fj ! Shorl-tem
memory e mlu \ / Situstion ST, | memory
A1 .-In' II'. I| ml rl' !
Microstructure | Chuﬂ:lnz:-—-' / srectares '/ structures ' [+{Chunking [+ Lowlevel
\, / |/ Progmmdomain | / Problem domain | /| mappings
— ¥ Imowledge '/ kmowledge W T High-level
™| Macrostructure ma L
Enowledge base PPings
i
Program mvodel Situation model

Factors that Affect
Understanding

- Expertise

- Implementation Issues

- Documentation

- Organisation and Presentation of Programs

Expertise

- Programmers become experts in a particular application domain or with a particular
programming language by virtue of the repertoire of knowledge and skills they
acquire from working in the domain or with the language

- Expertise has a significant impact on comprehension

- The more experienced a programmer is with an application domain or with a
programming language, the easier and quicker it is to understand a program and
indeed, the whole software system

- Experts differ from novices in both their breadth and their organisation of
knowledge: experts store information in larger chunks organised in terms of
underlying abstractions. This organization apparently facilitates quick recognition of
problem types and recall of associated solution strategies

L)

Implementation Issues

- At the program level, the naming style,
comments, level of nesting, clarity,
readability, simplicity, decomposition
mechanism, information hiding and coding
standards can affect comprehension

if (marks<40) {

result = "fail";

}

else {

if (marks>=80) {

result =

}

else if (marks>=60)

n T'A "

!/

result = "B";
}
else {

result = "C";

}

{

Implementation Issues:

Naming Style

- Meaningful identifier names can provide clues
that assist programmers to invoke appropriate
plans during understanding

- |dentifier names should be as informative,
concise and unambiguous

A = FALSE;
WHILE NOT A DO
IF B.C=B.J THEN
B.E := B.E+D.F;
IF G.EOF THEN
A =TRUE
ELSE
ReadBlock (G,D)
END;
ELSE
WriteBlock (H,B);
ReadBlock (I, B)
END:
END;

©

Implementation Issues:

Comments

- Program comments within and between
modules and procedures usually convey
information about the program, such as the
functionality, design decisions, assumptions,
declarations, algorithms, nature of input and
output data, and reminder notes

- Prologue comments precede a program or
module and describe goals

- In-line comments, within the program code,
describe how these goals are achieved

- N.B: The quality of the comment is important,
not its presence or absence

protected boolean
isLoginTicketBased ()
Exception {

throws

(=)

Documentation

- It is not always possible to contact the original authors of the system for information
about it. This is partly due to the high turnover of staff within the software
industry: they may move to other projects or departments, or to a different
company altogether

- Maintainers need to have access to the system documentation to enable them to
understand the functionality, design, implementation and other issues that may be
relevant for successful maintenance

(=)

Organisation and Presentation
of Programs

- Well-structured progl’ams take less time _ E—— 1. python (python3.6)
to understand it i dil A

- Indentation is used to emphasise the ‘created: datetine. datetinel
logical or syntactic relation between el
statements (or groups of statements) in hoieass,
a program, for example the use of il
indentation to group together e
statements belonging to a given control O reaipsumfolor €t smetiorea’s seum/dolor sisiemattoren {psum

'dolor sit ametlorem +ipsum dolor sit ametlorem ipsum dolor sit '
structure

'ametlorem ipsum dolor sit ametlorem ipsum dolor sit ametlorem ipsum '

'dolor sit ametlorem +ipsum dolor sit ametlorem 1ipsum dolor sit amet'

- Automatic program layout tools such as
pretty-printers can be used
automatically to enforce consistent
program layout

