
Program 
Comprehension
Moumita Asad

IIT, DU



Program Comprehension

▪ the process of acquiring knowledge 
about a computer program

▪ the precondition of performing any 
maintenance related activities

▪ consumes more than half of the 
maintenance resources

2
Rugaber, S. (1995). Program comprehension. Encyclopedia of Computer Science and Technology, 

35(20), 341-368.



Aims of Program Comprehension

▪ The ultimate purpose of comprehending programs is to be able successfully to 
implement requested changes.

▪ This entails acquiring information about following aspects of a system:

o Problem domain

o Execution effect

o Cause-effect relation

o Product-environment relation

o Decision-support features

3



Problem Domain

▪ To make change or simply to estimate the resource required for a maintenance task, 
knowledge of the problem domain in general and the sub-problems in particular is 
essential to direct maintenance personnel in the choice of suitable algorithms, 
methodologies and tools

▪ Information can be obtained from various sources - the system documentation, end-
users, or the program source code

4



Execution Effect

▪ At a high level of abstraction, the maintenance personnel need to know what results 
the program will produce for a given input without necessarily knowing which 
program units contributed to the overall result or how the result was accomplished

▪ At a low level of abstraction, they need to know the results that individual program 
units will produce on execution

▪ Knowledge of data flow, control flow and algorithmic patterns can facilitate the 
accomplishment of these goals

▪ During maintenance, this information can assist the maintenance personnel to 
determine whether an implemented change achieved the desired effect or not

5



Cause-Effect Relation

▪ It allows the maintenance personnel to reason about how components of a software 
product interact during execution

▪ It enables a programmer to predict the scope of a change and any knock-on effect 
that may arise from the change

▪ The cause-effect relation can be used to trace the flow of information through the 
program. The point in the program where there is an unusual interruption of this 
flow may signal the source of a bug

6



Product-Environment Relation

▪ A product is a software system. An environment is the totality of all conditions and 
influences which act from outside upon the product, e.g., business rules, 
government regulations, work patterns, software and hardware operating platforms

▪ This knowledge can be used to predict how changes in these elements will affect 
the product in general and the underlying programs in particular

7



Decision-Support Features

▪ Software product attributes such as complexity and maintainability are examples 
that can guide maintenance personnel in technical and management decision-
making processes like decision making, budgeting and resource allocation

o Measures of the complexity of the system can be used to determine which components of 
the system require more resource for testing

o The maintainability of the system may be used as an indicator of its quality

8



Cognition Models for Program 
Comprehension
▪ Letovsky model

▪ Shneiderman and Mayer model

▪ Brooks model

▪ Soloway, Adelson, and Ehrlich model (top-down model)

▪ Pennington model (bottom-up model)

▪ Integrated metamodel

9



Letovsky Model

10



Shneiderman and Mayer Model

11



Brooks Model

12



Soloway, Adelson, and Ehrlich 
Model

13



Pennington Model

14



Integrated Metamodel

15



Factors that Affect 
Understanding
▪ Expertise

▪ Implementation Issues

▪ Documentation

▪ Organisation and Presentation of Programs

16



Expertise

▪ Programmers become experts in a particular application domain or with a particular 
programming language by virtue of the repertoire of knowledge and skills they 
acquire from working in the domain or with the language

▪ Expertise has a significant impact on comprehension

▪ The more experienced a programmer is with an application domain or with a 
programming language, the easier and quicker it is to understand a program and 
indeed, the whole software system

▪ Experts differ from novices in both their breadth and their organisation of 
knowledge: experts store information in larger chunks organised in terms of 
underlying abstractions. This organization apparently facilitates quick recognition of 
problem types and recall of associated solution strategies

17



Implementation Issues

▪ At the program level, the naming style, 
comments, level of nesting, clarity, 
readability, simplicity, decomposition 
mechanism, information hiding and coding 
standards can affect comprehension

18



Implementation Issues: 
Naming Style
▪ Meaningful identifier names can provide clues 

that assist programmers to invoke appropriate 
plans during understanding

▪ Identifier names should be as informative, 
concise and unambiguous

19



Implementation Issues: 
Comments
▪ Program comments within and between 

modules and procedures usually convey 
information about the program, such as the 
functionality, design decisions, assumptions, 
declarations, algorithms, nature of input and 
output data, and reminder notes

▪ Prologue comments precede a program or 
module and describe goals

▪ In-line comments, within the program code, 
describe how these goals are achieved

▪ N.B: The quality of the comment is important, 
not its presence or absence

20



Documentation

▪ It is not always possible to contact the original authors of the system for information 
about it. This is partly due to the high turnover of staff within the software 
industry: they may move to other projects or departments, or to a different 
company altogether

▪ Maintainers need to have access to the system documentation to enable them to 
understand the functionality, design, implementation and other issues that may be 
relevant for successful maintenance

21



Organisation and Presentation 
of Programs
▪ Well-structured programs take less time 

to understand

▪ Indentation is used to emphasise the 
logical or syntactic relation between 
statements (or groups of statements) in 
a program, for example the use of 
indentation to group together 
statements belonging to a given control 
structure

▪ Automatic program layout tools such as 
pretty-printers can be used 
automatically to enforce consistent 
program layout

22


